人工智能早就不是一个新词了。早在六十年前,在达特茅斯学院举行的一次会议就正式确立了人工智能(Artificial Intelligence)的名称,以及研究领域和任务。在那之后,人工智能几经沉浮,走过
2016年十大Python机器学习开源项目 1、 Scikit-learn 用于数据挖掘和数据分析的简单而有效的工具,基于NumPy,SciPy和matplotlib,开源,商业可用的BSD许可证。
机器学习令人兴奋,但实际操作却很困难也很复杂。它涉及到很多手动操作,如集合工作流和管道,设置数据源,以及在内部部署与云部署的资源之间切换等。 Python 是一款强大的工具语言,被广泛应用在大数据和机器学习之中。以下推荐了
1. 第一章 机器学习及数据挖掘基本原理王斌 中国科学院信息工程研究所大数据核心技术之数据挖掘与机器学习技术探索及应用 2. 目录基本概念典型应用预备知识 3. 什么是机器学习(Machine Lea
艺术家如何使用机器学习来进行创作?纽约大学《用于艺术的机器学习》课程讲师Gene Kogan在本文中探讨了这个话题。 今年春季,我将在纽约大学的交互式电信项目(ITP)中教授一门课程——用于艺术的
MLPACK 是一个 C++ 的机器学习库,其重点是可伸缩性、速度和易用。 MLPACK 2.0.0 发布,主要更新如下: * Parallelization: the DET (density
1. 数据挖掘—实用机器学习技术及Java实现原书 英文版《Data Mining—Practical Machine Learning Tools and Techniques with Java
是一个快速、模块化、功能丰富的开源 C++ 机器学习库,提供了各种机器学习相关技术,比如线性/非线性优化、基于内核学习算法、神经网络等。Shark 已经应用于多个现实项目中。 机器学习(Machine Lear
Jubatus 是一个分布式处理框架和机器学习库,包含以下功能: 在线机器学习库,包括:分类、聚合和推荐 fv_converter: 数据预处理(用自然语言) 在线机器学习框架,支持容错 项目主页: http://www
机器学习平台、框架、库和软件集合。所有资源来自互联网。 本文是WIKI页面,请自由的参与到这个列表的贡献。 目录 平台 C General-Purpose Machine Learning Computer
MIT一牛人对数学在机器学习中的作用给的评述,写得很实际 机器学习和计算机视觉都是很多种数学的交汇场。看着不同的理论体系的交汇,对于一个researcher来说,往往是非常exciting的enj
计算技术通常用来分析数据,而理解数据则依赖于机器学习。多年来,对于大多数开发者来说,机器学习却是非常遥远、一直是难以企及的。 这可能是现在收益最高,也是最受欢迎的一项技术之一。毫无疑问——作为开发人员,机器学习是一个能够大展身手的舞台。
PLA算法一样,用单位阶跃函数来处理的这种瞬间跳跃的过程有时很难处理。于是,我们希望能得到正例的概率值是多少。 logistic regression的假设 我们在PLA和线性回归算法中都用数
在概率论和统计学中,学生t-分布(Student's t-distribution),可简称为t分布。应用在估计呈正态分布的母群体之平均数。它是对两个样本均值差异进行显著性测试的学生t检定的基础。 其中,ν被称作自由度(degrees
Machine Learning Goals? 我收到过许多想开始学习机器学习的开发者和学生的邮件。我问他们的第一个问题是:是什么阻止了你开始学习? 我试图找出让他们挣扎的核心原因,大多数时候都是一些自我限制的想法在阻止他们前进。
机器学习框架,类库和软件汇总
在学界一般认为,《红楼梦》后 40 回并非曹雪芹所著。本文尝试应用机器学习的方法来分析原著文本中作者的用词习惯,从技术角度去说明《红楼梦》前 80 回和后 40 回的写作风格差别,继而可以确认后 40
http://python.jobbole.com/84326/ 为了理解和应用机器学习技术,你需要学习 Python 或者 R。这两者都是与 C、Java、PHP 相类似的编程语言。但是,因
Netflix的目标是能预测顾客之所想观看的电影,也即推荐预测。为了做到这一点,每天会运行大量机器学习工作流,而为了支撑创建这么多机器学习工作流和有效利用资源,Netflix的工程师开发了Meson。
随着基于人工智能与机器学习的应用如雨后春笋般不断涌现,我们也看到有很多提供类似功能的 API 悄悄登上了舞台。 API 是用于构建软件应用的程序、协议以及工具的组合;本文是对 2015 中这个列表 的修正与完善,移除了部分被废弃的