自己的专业方向是机器学习、数据挖掘,就业意向是互联网行业与本专业相关的工作岗位。各个企业对这类岗位的命名可能有所不同,比如数据挖掘/自然语言 处理/机器学习算法工程师,或简称算法工程师,还有的称为搜索
掘,不仅能给美团业务发展方向提供决策支持,也为业务的迭代指明了方向。目前在美团的团购系统中大量地应用到了机器学习和数据挖掘技术,例如个性化推荐、 筛选排序、搜索排序、用户建模等等,为公司创造了巨大的价值。本文
Python的数据科学(数据分析&机器学习)工具和扩展库,包括文本预处理、Pandas工具、文件IO工具、Scikit-learn工具、数学工具、Matplotlib工具等 项目主页: http://www
目前 BAT 都有各自的机器学习开源平台,阿里云早在 2015 年就推出了数据挖掘平台“DTPAI”;百度推出了面向开发者的 PaddlePaddle,腾讯推出了面向企业的 “Angel”。而在最近,腾讯又发布了最新的机器学习基础平台
i = 1:row % 这部分可能可以优化 minDist = 10000; minIndex = 0; for j = 1:K distCal = distEclud(dataSet(i,:) , centSet(j
怎样进入机器学习领域没有定式。我们的学习方式都有些许不同,学习的目标也因人而异。 但一个共同的目标就是要能尽快上手。如果这也是你的目标,那么这篇文章为你列举了程序员们在通往机器学习高手道路上常见的五种错误。
Azure 机器学习服务(以下简称 Azure ML ) 是 Microsoft 所推出的一个云端服务,它让您能够使用易于操作的图形化接口,进行数据整理以及机器学习的运算,您可以在这个服务上从 0 开始,
上一节中介绍了 《随机森林算法》 ,该算法使用bagging的方式作出一些决策树来,同时在决策树的学习过程中加入了更多的随机因素。该模型可以自动做到验证过程同时还可以进行特征选择。 这一节,我们将
Swift AI是一个完全采用Swift开发的高性能AI和机器学习库。这些工具完已经专门为iOS 和OS X应用优化。 Features Feed-Forward Neural Network Recurrent
Adam 关于Adam的报道,参见[3]. Adam是微软研究院的深度学习项目,该项目仍然是应用卷积神经网络进行图像分类,效果提高了很多,但从我读论文的角度看,adam更偏向于分布式 框架的
html 当今机器学习算法已经广泛应用于我们的日常生活之中,每天我们需要处理的数据也在不断增加。理解数据背后的真实含义,能够帮助人们认识事物本质,提高生产效率。机器学习算法主要用于分类、回归和聚类,常用的几种算法如下所示:
新年到,作为格律诗研究的第一步探索,微软亚洲研究院推出了全新的绝句生成系统,为热爱诗词的人们带来了乐趣。自然语言计算组的研究员们基于统计机器翻译的方法,利用计算机对格律诗进行辅助创作。首先,创作者选择几个表达创作意图的关键词,然后系统会对
总结一下我读过的机器学习/数据挖掘/数据分析方面的书,有的适合入门,有的适合进阶,没有按照层次排列,先总结一下,等总结的差不多了再根据入门--->进阶分块写。下面列的书基本上我写的都是读完过的,不然不敢写,怕误人子弟
既然我们要估计知道A和B两组参数,在开始状态下二者都是未知的,但如果知道了A的信息就可以得到B的信息,反过来知道了B也就得到了A。所以可能想到的一种方法就是考虑首先赋予A某种初值,以此得到B的估
checking)机器学习算法是指如何找出最适合于给定数据集的算法模型。本文中我将介绍八个常用于抽查的机器学习算法,文中还包括各个算法的 R 语言代码,你可以将其保存并运用到下一个机器学习项目中。 适用于你的数据集的最佳算法
官方的解释很简单: Machine Learning in Python, 用python来玩机器学习。 什么是机器学习 机器学习关注的是: 计算机程序如何随着经验积累自动提高性能。而最大的吸引力在于,不需要写
一. 大规模机器学习的挑战 随着互联网,移动互联网的兴起,可以获取的数据变得越来越多,也越来越丰富。数据资源的丰富,给机器学习带来了越来越多,越来越大创造价值的机会。 机器学习在计算广告,推荐系统
导读:机器学习和深度学习是近年技术的热点,面对众多的机器学习平台如何进行选择,这是一个很困扰的问题。本文对分布式机器学习(ML)平台中使用的设计方法进行了调查,并提出了未来的研究方向。 本文比较了机器学习平台设计方法和使用指南,是我和
Jordan 实验室发表论文《CoCoA: A General Framework for Communication-Efficient Distributed Optimization》提出了一种用于机器学习的分布式优化的通
机器学习神书之一的 PRML(模式识别与机器学习)是所有机器学习读者或希望系统理解机器学习的读者所必须了解的书籍。这本书系统而全面地论述了模式识别与机器学习领域的基本知识和最新发展,而该 GitHub