书籍 机器学习经典书籍小结 http://www.cnblogs.com/snake-hand/archive/2013/06/10/3131145.html 机器学习&深度学习经典资料汇总 http://www
最近在看斯坦福大学的机器学习的公开课,学习了支持向量机,再结合网上各位大神的学习经验总结了自己的一些关于支持向量机知识。 一、什么是支持向量机(SVM)? 1、支持向量机(Support Vector
Swift-AI - Swift高度优化的人工智能和机器学习库。We currently support iOS and OS X, with support for more platforms coming
http://blog.jobbole.com/97829/ 【导读】:数据是机器学习研究的命门。访问真正的大规模数据集,是一项传统上由机器学习研究者和大公司的数据科学家所保有的特权,然而大多数学术研究人员缺无法
字幕组双语原文: TensorFlow 最出色的 30 个机器学习数据集 英语原文: 30 Largest TensorFlow Datasets for Machine Learning 翻译:雷锋字幕组(
传统数据挖掘/机器学习库存在的问题 缺少一个活跃的技术社区 扩展性差 文档化差,缺少实例 不开源,商业化库 通常由研究机构开发 实施性差 Apache Mahout优点 技术社区活跃
Machine Learning awesome-machine-learning - 非常棒的机器学习框架,库和软件集合,按语言划分。 Inspired by awesome-php. If you
机器学习框架、库和软件集合 (按编程语言分类)。 Table of Contents C General-Purpose Machine Learning Computer Vision C++ Computer
用scikit-learn和IPython构建并行机器学习方案,内容覆盖机器学习、文本分类、并行开发等,附赠全部IPython代码,ogrisel本人也是scikit-learn开发成员,视频是13年
力,即机器学习和数据挖掘的理论知识、编程开发与数据结构算法的基础和业务理解与沟通表达的能力。 上面的图里列出了这个行业不同类型的从业者机器特点。 A. 主要是负责做最顶尖机器学习相关学
第3章 决策树学习 决策树学习是应用最广的归纳推理算法之一。它是一种逼近离散函数的方法,且对噪声数据有很好的鲁棒性,能够学习析取表达式。本章描述了一系列决策树学习算法,包括象ID3、ASSISTANT和C4
第5章 评估假设 对假设的精度进行经验的评估是机器学习中的基本问题。本章介绍了用统计方法估计假设精度,主要为解决以下三个问题:首先,已知一个假设在有限数据样本上观察到的精度,怎样估计它在其他实例上
现在机器学习逐渐成为行业热门,经过二十几年的发展,机器学习目前也有了十分广泛的应用,如:数据挖掘、计算机视觉、自然语言处理、生物特征识别、搜索引擎、医学诊断、DNA序列测序、语音和手写识别、战略游戏和
开发者大会上,苹果宣布了一系列新的面向开发者的机器学习 API,包括面部识别的视觉 API、自然语言处理 API,这些 API 集成了苹果所谓的 Core ML 框架;参阅机器之心报道《苹果开发者大会WWDC 2
几千年来,人们就已经有了思考如何构建智能机器的想法。从那时开始,人工智能 (AI) 经历了起起落落,这证明了它的成功以及还未实现的潜能。如今,随时都能听到应用机器学习算法来解决新问题的新闻。从癌症检测和预测到图像理解和总结以及自然语言处理,AI
导语:本文详细的解释了机器学习中,经常会用到数据清洗与特征提取的方法PCA,从理论、数据、代码三个层次予以分析。 机器学习,这个名词大家都耳熟能详。虽然这个概念很早就被人提出来了,但是鉴于科技水平
awesome-machine-learning 本文汇编了一些机器学习领域的框架、库以及软件(按编程语言排序)。 C++ 计算机视觉 CCV —基于C语言/提供缓存/核心的机器视觉库,新颖的机器视觉库 OpenCV —它提供C++,
是微软的杰出科学家,也是微软在机器学习领域的领军人物。加入微软 17 年,一直在机器学习领域埋首耕耘。 Platt 也是 SVM 最快的加速算法 SMO 的提出者。 NIPS 大会是机器学习领域两大重要学习会议之一,另外一个是
如今,学习编程越来越方便了,Raspberry Pi 提供了便宜的硬件,Codeacademy 上有免费的课程。但是,对于儿童来说,这些工具还是太过复杂了。如果你想要从小培养孩子的编程能力,一款名为《机器乌龟》(Robot
OpenNLP 是一个机器学习工具包,用于处理自然语言文本。支持大多数常用的 NLP 任务,例如:标识化、句子切分、部分词性标注、名称抽取、组块、解析等。 Apache OpenNLP 1.6