部——数据挖掘与计算 吴炜(梧苇) 2. 目录Graphx简介和特性 图计算场景 整体模型,流程和算法 调优与改进 性能和技巧 总结 3. Graphx的发展0.62013-08-23Bagel0.8
背景 机器学习在经过近些年的野蛮生长之后,其有效性已经被无数成功应用所验证,在这一点上已经不需要更多证明。在使用方法和常用模型方面也已经没有什么太新奇的东西了。例如在模型方面,经过实践检验过的模型
在本篇文章,作者将讨论机器学习概念以及如何使用Spark MLlib来进行预测分析。后面将会使用一个例子展示Spark MLlib在机器学习领域的强悍。 1.引言 Spark机器学习API包含两个package:spark
and the chunker was refactored。 OpenNLP 是一个机器学习工具包,用于处理自然语言文本。支持大多数常用的 NLP 任务,例如:标识化、句子切分、部分词性标注、名称抽取、组块、解析等。
Ng(吴恩达)则宣布加入百度的深度学习研究院。最近几天,他正在密集地为百度面试人才,奔走于 Coursera 的新办公楼和百度的新办公楼之间。他说,能和他多年的好朋友、著名机器学习专家余凯一起工作,他感到相当兴奋。
com/cn/news/2015/06/DMLC-github 为了实现分布式机器学习领域中代码的共享与共同开发, 分布式机器学习社区(DMLC)近日正式发布 。作为一个开源项目,DMLC的相关代码直接托管在
5月21日消息,由百度牵头的分布式深度机器学习开源平台日前正式面向公众开放,该平台隶属于名为“深盟”的开源组织,该组织核心开发者来自百度深度学习研究院(IDL),微软亚洲研究院、华盛顿大学、纽约大学、
的,与这次旅行相关的微博才算。 到现在为止,似乎只有旅行推做到了这一点。 我设计了一套核心算法,过滤掉脏数据,仅保留有效数据,后来又加入了另外9道过滤规则,以及不断调试关键字库,最后达到了惊人的……97%有效率。
TensorFlow 是谷歌的第二代机器学习系统,按照谷歌所说,在某些基准测试中,TensorFlow的表现比第一代的DistBelief快了2倍。 TensorFlow 内建深度学习的扩展支持,任何能够用计
Ebay 和携程从事数据分析与机器学习方面的工作,关注统计与机器学习方面的研究、大数据风控系统的建设。本文探讨的是:互联网金融时代,如何借助互联网思维利用 机器学习方法建立高效安全的大数据风控系统?
8个最好的机器学习速查表(Cheat Sheets)
SystemML是灵活的,可伸缩机器学习 (ML) 语言,使用Java编写。可实现三大功能:(1) 可定制算法;(2) 多个执行模式,包括单个,Hadoop 批量和 Spark 批量;(3) 自动优化。
谷歌 AutoML 系统最近出产了一系列机器学习代码,其效率甚至比研究人员自身还要高。显然,这是对“人类优越论”的又一次打击,因为机器人“学生”们已经成为了“自我复制”的大师。AutoML 是在人工智
Oryx的目标是帮助Hadoop用户搭建并部署能够实时查询的机器学习模型,例如垃圾邮件过滤和推荐引擎。随着数据的不断流入,Oryx还将支持自我更新。 无论从建模还是部署,Oryx都可以随需扩展
在解释 机器学习 的基本概念的时候,我发现自己总是回到有限的几幅图中。以下是我认为最有启发性的条目列表。 1. Test and training error: 为什么低训练误差并不总是一件好的事情呢:
Sampling(重要性采样),MCMC(MarkovChain Monte Carlo 马尔科夫蒙特卡罗采样算法:Metropolis-Hasting& Gibbs)。 Clustering(聚类):
在机器学习和数据挖掘中,我们经常需要知道个体间差异的大小,进而评价个体的相似性和类别。最常见的是数据分析中的相关分析,数据挖掘中的分类和聚 类算法,如 K 最近邻(KNN)和 K 均值(K-Means
Kaggle比赛源代码和讨论的收集整理。
逻辑回归(Logistic Regression)是机器学习中的一种分类模型,由于算法的简单和高效,在实际中应用非常广泛。本文作为美团机器学习InAction系列中的一篇,主要关注逻辑回归算法的数学模型和参数求解方法,最后
以下表格摘自:http://www.shogun-toolbox.org/ 另推荐机器学习软件汇总网站 http://mloss.org/software/ feature shogun weka