Android的延迟实现的几种解决方案以及原理分析

wduo8499 6年前
   <p>写这篇文章的目的,是看到群里有人在实现延迟的时候,用如下的第四种方法,个人感觉有点不妥,为了防止更多的人有这种想法,所以自己抽空深入分析,就分析的结果,写下此文,希望对部分人有启示作用。</p>    <h2>1.实现延迟的几种方法?</h2>    <p>答:</p>    <p>1.java.util.Timer类的:</p>    <pre>  <code class="language-java">public void schedule(TimerTask task, long delay) {          if (delay < 0)              throw new IllegalArgumentException("Negative delay.");          sched(task, System.currentTimeMillis()+delay, 0);      }</code></pre>    <p>2.android.os.Handler类:</p>    <pre>  <code class="language-java">public final boolean postDelayed(Runnable r, long delayMillis)      {          return sendMessageDelayed(getPostMessage(r), delayMillis);      }</code></pre>    <p>3.android.app.AlarmManager类:</p>    <pre>  <code class="language-java">@SystemApi      @RequiresPermission(android.Manifest.permission.UPDATE_DEVICE_STATS)      public void set(@AlarmType int type, long triggerAtMillis, long windowMillis,              long intervalMillis, OnAlarmListener listener, Handler targetHandler,              WorkSource workSource) {          setImpl(type, triggerAtMillis, windowMillis, intervalMillis, 0, null, listener, null,                  targetHandler, workSource, null);      }</code></pre>    <p>4.Thread.sleep()然后在一定时间之后再执行想执行的代码:</p>    <pre>  <code class="language-java">new Thread(new Runnable(){      Thead.sleep(4*1000);      doTask();  }).start()</code></pre>    <h2>2.他们的各自的实现原理?</h2>    <p>答:</p>    <h3>1.Timer的实现,是通过内部开启一个TimerThread:</h3>    <pre>  <code class="language-java">private void mainLoop() {          while (true) {              try {                  TimerTask task;                  boolean taskFired;                  synchronized(queue) {                      // Wait for queue to become non-empty                      while (queue.isEmpty() && newTasksMayBeScheduled)                          queue.wait();                      if (queue.isEmpty())                          break; // Queue is empty and will forever remain; die                        // Queue nonempty; look at first evt and do the right thing                      long currentTime, executionTime;                      task = queue.getMin();                      synchronized(task.lock) {                          if (task.state == TimerTask.CANCELLED) {                              queue.removeMin();                              continue;  // No action required, poll queue again                          }                          currentTime = System.currentTimeMillis();                          executionTime = task.nextExecutionTime;                          if (taskFired = (executionTime<=currentTime)) {                              if (task.period == 0) { // Non-repeating, remove                                  queue.removeMin();                                  task.state = TimerTask.EXECUTED;                              } else { // Repeating task, reschedule                                  queue.rescheduleMin(                                    task.period<0 ? currentTime   - task.period                                                  : executionTime + task.period);                              }                          }                      }                      if (!taskFired) // Task hasn't yet fired; wait                          queue.wait(executionTime - currentTime);                  }                  if (taskFired)  // Task fired; run it, holding no locks                      task.run();              } catch(InterruptedException e) {              }          }      }</code></pre>    <p>是通过wait和延迟时间到达的时候,调用notify来唤起线程继续执行,这样来实现延迟的话,我们可以回开启一个新的线程,貌似为了个延迟没必要这样吧,定时,频繁执行的任务,再考虑这个吧。</p>    <p>2.Handler的postDelay是通过设置Message的when为delay的时间,我们知道当我们的应用开启的时候,会同步开启Looper.loop()方法循环的,不停的通过MeassgeQueue的next方法:</p>    <pre>  <code class="language-java">Message next() {          ......          int nextPollTimeoutMillis = 0;          for (;;) {              if (nextPollTimeoutMillis != 0) {                  Binder.flushPendingCommands();              }                nativePollOnce(ptr, nextPollTimeoutMillis);                synchronized (this) {                  // Try to retrieve the next message.  Return if found.                  final long now = SystemClock.uptimeMillis();                  Message prevMsg = null;                  Message msg = mMessages;                  if (msg != null && msg.target == null) {                      // Stalled by a barrier.  Find the next asynchronous message in the queue.                      do {                          prevMsg = msg;                          msg = msg.next;                      } while (msg != null && !msg.isAsynchronous());                  }                  if (msg != null) {                      if (now < msg.when) {                          // Next message is not ready.  Set a timeout to wake up when it is ready.                          nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);                      } else {                          // Got a message.                          mBlocked = false;                          if (prevMsg != null) {                              prevMsg.next = msg.next;                          } else {                              mMessages = msg.next;                          }                          msg.next = null;                          if (DEBUG) Log.v(TAG, "Returning message: " + msg);                          msg.markInUse();                          return msg;                      }                  } else {                      // No more messages.                      nextPollTimeoutMillis = -1;                  }          ......          }      }</code></pre>    <p>当我们向MessageQueue插入一条延迟的Message的时候,Looper在执行loop方法,底层会调用epoll_wait(mEpollFd, eventItems, EPOLL_MAX_EVENTS, timeoutMillis);其中的timeoutMillis参数指定了在没有事件发生的时候epoll_wait调用阻塞的毫秒数(milliseconds)。这样我们在之前的时间内这个时候阻塞了是会释放cpu的资源,等到延迟的时间到了时候,再监控到事件发生。在这里可能有人会有疑问,一直阻塞,那我接下来的消息应该怎么执行呢?我们可以看到当我们插入消息的时候的方法:</p>    <pre>  <code class="language-java">boolean enqueueMessage(Message msg, long when) {          if (msg.target == null) {              throw new IllegalArgumentException("Message must have a target.");          }          if (msg.isInUse()) {              throw new IllegalStateException(msg + " This message is already in use.");          }            synchronized (this) {              if (mQuitting) {                  IllegalStateException e = new IllegalStateException(                          msg.target + " sending message to a Handler on a dead thread");                  Log.w(TAG, e.getMessage(), e);                  msg.recycle();                  return false;              }                msg.markInUse();              msg.when = when;              Message p = mMessages;              boolean needWake;              if (p == null || when == 0 || when < p.when) {                  msg.next = p;                  mMessages = msg;                  needWake = mBlocked;              } else {                  needWake = mBlocked && p.target == null && msg.isAsynchronous();                  Message prev;                  for (;;) {                      prev = p;                      p = p.next;                      if (p == null || when < p.when) {                          break;                      }                      if (needWake && p.isAsynchronous()) {                          needWake = false;                      }                  }                  msg.next = p; // invariant: p == prev.next                  prev.next = msg;              }              mQuitting is false.              if (needWake) {                  nativeWake(mPtr);              }          }          return true;      }</code></pre>    <p>阻塞了有两种方式唤醒,一种是超时了,一种是被主动唤醒了,在上面我们可以看到当有消息进入的时候,我们会唤醒继续执行,所以我们的即时消息在延迟消息之后插入是没有关系的。然后在延迟时间到了的时候,我们也会被唤醒,执行对应的消息send,以达到延迟时间执行某个任务的目的。</p>    <p>优势:这种延迟在阻塞的时候,是会释放cpu的锁,不会过多地占用cpu的资源。</p>    <h3>3.AlarmManager的延迟的实现原理,是通过一个AlarmManager的set方法:</h3>    <pre>  <code class="language-java">IAlarmManager mService.set(mPackageName, type, triggerAtMillis, windowMillis, intervalMillis, flags,                      operation, recipientWrapper, listenerTag, workSource, alarmClock);</code></pre>    <p>这里是通过aidl与AlarmManagerService的所在进程进行通信,具体的实现是在AlarmManagerService类里面:</p>    <pre>  <code class="language-java">private final IBinder mService = new IAlarmManager.Stub() {          @Override          public void set(String callingPackage,                  int type, long triggerAtTime, long windowLength, long interval, int flags,                  PendingIntent operation, IAlarmListener directReceiver, String listenerTag,                  WorkSource workSource, AlarmManager.AlarmClockInfo alarmClock) {              final int callingUid = Binder.getCallingUid();              if (interval != 0) {                  if (directReceiver != null) {                      throw new IllegalArgumentException("Repeating alarms cannot use AlarmReceivers");                  }              }                if (workSource != null) {                  getContext().enforcePermission(                          android.Manifest.permission.UPDATE_DEVICE_STATS,                          Binder.getCallingPid(), callingUid, "AlarmManager.set");              }                // No incoming callers can request either WAKE_FROM_IDLE or              // ALLOW_WHILE_IDLE_UNRESTRICTED -- we will apply those later as appropriate.              flags &= ~(AlarmManager.FLAG_WAKE_FROM_IDLE                      | AlarmManager.FLAG_ALLOW_WHILE_IDLE_UNRESTRICTED);                // Only the system can use FLAG_IDLE_UNTIL -- this is used to tell the alarm              // manager when to come out of idle mode, which is only for DeviceIdleController.              if (callingUid != Process.SYSTEM_UID) {                  flags &= ~AlarmManager.FLAG_IDLE_UNTIL;              }                if (windowLength == AlarmManager.WINDOW_EXACT) {                  flags |= AlarmManager.FLAG_STANDALONE;              }              if (alarmClock != null) {                  flags |= AlarmManager.FLAG_WAKE_FROM_IDLE | AlarmManager.FLAG_STANDALONE;              } else if (workSource == null && (callingUid < Process.FIRST_APPLICATION_UID                      || Arrays.binarySearch(mDeviceIdleUserWhitelist,                              UserHandle.getAppId(callingUid)) >= 0)) {                  flags |= AlarmManager.FLAG_ALLOW_WHILE_IDLE_UNRESTRICTED;                  flags &= ~AlarmManager.FLAG_ALLOW_WHILE_IDLE;              }                setImpl(type, triggerAtTime, windowLength, interval, operation, directReceiver,                      listenerTag, flags, workSource, alarmClock, callingUid, callingPackage);          }      }  }</code></pre>    <p>虽然有人觉得用AlarmManager能够在应用关闭的情况下,定时器还能再唤起,经过自己的测试,当杀掉应用程序的进程,AlarmManager的receiver也是接收不到消息的,但是我相信在这里定时器肯定是发送了,但是作为接收方的应用程序进程被杀掉了,执行不了对应的代码。不过有人也觉得AlarmManager更耗电,是因为我们执行定时任务的情况会频繁唤起cpu,但是如果只是用来只是执行延迟任务的话,个人觉得和Handler.postDelayed()相比应该也不会耗电多的。</p>    <p>2.在上面的第四种方法,达到的延迟会一直通过Thread.sleep来达到延迟的话,会一直占用cpu的资源,这种方法不赞同使用。</p>    <h2>3.总结</h2>    <p>如上面我们看到的这样,如果是单纯的实现一个任务的延迟的话,我们可以用Handler.postDelayed()和AlarmManager.set()来实现,用(4)的方法Thread.sleep()的话,首先开启一个新的线程,然后会持有cpu的资源,用(1)的方法,Timer,会开启一个死循环的线程,这样在资源上面都有点浪费。</p>    <p>如果大家还有更好的延迟解决方案,可以拿出来大家探讨,如果文章有不对的地方,欢迎拍砖。</p>    <p> </p>    <p>来自:https://segmentfault.com/a/1190000012328468</p>    <p> </p>