基于PyTables将(高频)时序数据保存为HDF5文件高效访问的库:TsTables
                 jopen
                 11年前
            
                    TsTables —— Python下基于PyTables将(高频)时序数据保存为HDF5文件高效访问的库。
# Class to use as the table description  class BpiValues(tables.IsDescription):      timestamp = tables.Int64Col(pos=0)      bpi = tables.Float64Col(pos=1)    # Use pandas to read in the CSV data  bpi = pandas.read_csv('bpi_2014_01.csv',index_col=0,names=['date','bpi'],parse_dates=True)    f = tables.open_file('bpi.h5','a')    # Create a new time series  ts = f.create_ts('/','BPI',BpiValues)    # Append the BPI data  ts.append(bpi)    # Read in some data  read_start_dt = datetime(2014,1,4,12,00)  read_end_dt = datetime(2014,1,4,14,30)    rows = ts.read_range(read_start_dt,read_end_dt)    # `rows` will be a pandas DataFrame with a DatetimeIndex.