java程序员必知的8大排序

jopen 7年前

8种排序之间的关系:

1, 直接插入排序

   (1)基本思想:在要排序的一组数中,假设前面(n-1)[n>=2] 个数已经是排

好顺序的,现在要把第n个数插到前面的有序数中,使得这n个数

也是排好顺序的。如此反复循环,直到全部排好顺序。

 (2)实例

(3)用java实现

 package com.njue;     public class insertSort {  public insertSort(){      inta[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51};      int temp=0;      for(int i=1;i<a.length;i++){         int j=i-1;         temp=a[i];         for(;j>=0&&temp<a[j];j--){         a[j+1]=a[j];                       //将大于temp的值整体后移一个单位         }         a[j+1]=temp;      }      for(int i=0;i<a.length;i++)         System.out.println(a[i]);  }  }

2,           希尔排序(最小增量排序)

(1)基本思想:算法先将要排序的一组数按某个增量d(n/2,n为要排序数的个数)分成若干组,每组中记录的下标相差d.对每组中全部元素进行直接插入排序,然后再用一个较小的增量(d/2)对它进行分组,在每组中再进行直接插入排序。当增量减到1时,进行直接插入排序后,排序完成。

(2)实例:


(3)用java实现

public class shellSort {  public shellSort(){   int a[]={1,54,6,3,78,34,12,45,56,100};   double d1=a.length;   int temp=0;   while(true){    d1= Math.ceil(d1/2);    int d=(int) d1;    for(int x=0;x<d;x++){     for(int i=x+d;i<a.length;i+=d){      int j=i-d;      temp=a[i];      for(;j>=0&&temp<a[j];j-=d){      a[j+d]=a[j];      }      a[j+d]=temp;     }    }    if(d==1)     break;   }   for(int i=0;i<a.length;i++)    System.out.println(a[i]);  }  }

3.简单选择排序

(1)基本思想:在要排序的一组数中,选出最小的一个数与第一个位置的数交换;

然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环到倒数第二个数和最后一个数比较为止。

(2)实例:

 

(3)用java实现

public class selectSort {   public selectSort(){    int a[]={1,54,6,3,78,34,12,45};    int position=0;    for(int i=0;i<a.length;i++){          int j=i+1;     position=i;     int temp=a[i];     for(;j<a.length;j++){     if(a[j]<temp){      temp=a[j];      position=j;     }     }     a[position]=a[i];     a[i]=temp;    }    for(int i=0;i<a.length;i++)     System.out.println(a[i]);   }  }

4,      堆排序

(1)基本思想:堆排序是一种树形选择排序,是对直接选择排序的有效改进。

堆的定义如下:具有n个元素的序列(h1,h2,...,hn),当且仅当满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1)(i=1,2,...,n/2)时称之为堆。在这里只讨论满足前者条件的堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项(大顶堆)。完全二叉树可以很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储序,使之成为一个堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点的堆,并对它们作交换,最后得到有n个节点的有序序列。从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。

(2)实例:

初始序列:46,79,56,38,40,84

建堆:


交换,从堆中踢出最大数

依次类推:最后堆中剩余的最后两个结点交换,踢出一个,排序完成。

(3)用java实现

import java.util.Arrays;    public class HeapSort {    int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51};   public  HeapSort(){    heapSort(a);   }   public  void heapSort(int[] a){          System.out.println("开始排序");          int arrayLength=a.length;          //循环建堆          for(int i=0;i<arrayLength-1;i++){              //建堆          buildMaxHeap(a,arrayLength-1-i);              //交换堆顶和最后一个元素              swap(a,0,arrayLength-1-i);              System.out.println(Arrays.toString(a));          }      }        private  void swap(int[] data, int i, int j) {          // TODO Auto-generated method stub          int tmp=data[i];          data[i]=data[j];          data[j]=tmp;      }      //对data数组从0到lastIndex建大顶堆      private void buildMaxHeap(int[] data, int lastIndex) {          // TODO Auto-generated method stub          //从lastIndex处节点(最后一个节点)的父节点开始          for(int i=(lastIndex-1)/2;i>=0;i--){              //k保存正在判断的节点              int k=i;              //如果当前k节点的子节点存在              while(k*2+1<=lastIndex){                  //k节点的左子节点的索引                  int biggerIndex=2*k+1;                  //如果biggerIndex小于lastIndex,即biggerIndex+1代表的k节点的右子节点存在                  if(biggerIndex<lastIndex){                      //若果右子节点的值较大                      if(data[biggerIndex]<data[biggerIndex+1]){                          //biggerIndex总是记录较大子节点的索引                          biggerIndex++;                      }                  }                  //如果k节点的值小于其较大的子节点的值                  if(data[k]<data[biggerIndex]){                      //交换他们                      swap(data,k,biggerIndex);                      //将biggerIndex赋予k,开始while循环的下一次循环,重新保证k节点的值大于其左右子节点的值                      k=biggerIndex;                  }else{                      break;                  }              }

  }

    }

 }



5.冒泡排序

(1)基本思想:在要排序的一组数中,对当前还未排好序的范围内的全部数,自上而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较小的往上冒。即:每当两相邻的数比较后发现它们的排序与排序要求相反时,就将它们互换。

(2)实例:


(3)用java实现

public class bubbleSort {  public bubbleSort(){    int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51};   int temp=0;   for(int i=0;i<a.length-1;i++){    for(int j=0;j<a.length-1-i;j++){    if(a[j]>a[j+1]){     temp=a[j];     a[j]=a[j+1];     a[j+1]=temp;    }    }   }   for(int i=0;i<a.length;i++)   System.out.println(a[i]);   }  }


6.快速排序

(1)基本思想:选择一个基准元素,通常选择第一个元素或者最后一个元素,通过一趟扫描,将待排序列分成两部分,一部分比基准元素小,一部分大于等于基准元素,此时基准元素在其排好序后的正确位置,然后再用同样的方法递归地排序划分的两部分。

(2)实例:

(3)用java实现

public class quickSort {    int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51};  public quickSort(){   quick(a);   for(int i=0;i<a.length;i++)    System.out.println(a[i]);  }  public int getMiddle(int[] list, int low, int high) {              int tmp = list[low];    //数组的第一个作为中轴              while (low < high) {                  while (low < high && list[high] >= tmp) {             high--;                  }                  list[low] = list[high];   //比中轴小的记录移到低端                  while (low < high && list[low] <= tmp) {                      low++;                  }                  list[high] = list[low];   //比中轴大的记录移到高端              }                list[low] = tmp;              //中轴记录到尾              return low;                   //返回中轴的位置          }    public void _quickSort(int[] list, int low, int high) {              if (low < high) {                 int middle = getMiddle(list, low, high);  //将list数组进行一分为二                  _quickSort(list, low, middle - 1);        //对低字表进行递归排序                 _quickSort(list, middle + 1, high);       //对高字表进行递归排序              }          }   public void quick(int[] a2) {              if (a2.length > 0) {    //查看数组是否为空                  _quickSort(a2, 0, a2.length - 1);             }         }   }


7、归并排序

(1)基本排序:归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。

(2)实例:


(3)用java实现


import java.util.Arrays;    public class mergingSort {  int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51};  public mergingSort(){   sort(a,0,a.length-1);   for(int i=0;i<a.length;i++)    System.out.println(a[i]);  }  public void sort(int[] data, int left, int right) {      // TODO Auto-generated method stub      if(left<right){          //找出中间索引          int center=(left+right)/2;          //对左边数组进行递归          sort(data,left,center);          //对右边数组进行递归          sort(data,center+1,right);          //合并          merge(data,left,center,right);                }  }  public void merge(int[] data, int left, int center, int right) {      // TODO Auto-generated method stub      int [] tmpArr=new int[data.length];      int mid=center+1;      //third记录中间数组的索引      int third=left;      int tmp=left;      while(left<=center&&mid<=right){       //从两个数组中取出最小的放入中间数组          if(data[left]<=data[mid]){              tmpArr[third++]=data[left++];          }else{              tmpArr[third++]=data[mid++];          }      }      //剩余部分依次放入中间数组      while(mid<=right){          tmpArr[third++]=data[mid++];      }      while(left<=center){          tmpArr[third++]=data[left++];      }      //将中间数组中的内容复制回原数组      while(tmp<=right){          data[tmp]=tmpArr[tmp++];      }      System.out.println(Arrays.toString(data));  }    }

8、基数排序

(1)基本思想:将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后,数列就变成一个有序序列。

(2)实例:



(3)用java实现

import java.util.ArrayList;  import java.util.List;    public class radixSort {   int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,101,56,17,18,23,34,15,35,25,53,51};  public radixSort(){   sort(a);   for(int i=0;i<a.length;i++)    System.out.println(a[i]);  }  public  void sort(int[] array){                            //首先确定排序的趟数;             int max=array[0];             for(int i=1;i<array.length;i++){                 if(array[i]>max){                    max=array[i];                 }              }           int time=0;             //判断位数;              while(max>0){                 max/=10;                  time++;              }                           //建立10个队列;              List<ArrayList> queue=new ArrayList<ArrayList>();              for(int i=0;i<10;i++){               ArrayList<Integer> queue1=new ArrayList<Integer>();                queue.add(queue1);             }                           //进行time次分配和收集;              for(int i=0;i<time;i++){                                    //分配数组元素;                 for(int j=0;j<array.length;j++){                      //得到数字的第time+1位数;                int x=array[j]%(int)Math.pow(10, i+1)/(int)Math.pow(10, i);               ArrayList<Integer> queue2=queue.get(x);               queue2.add(array[j]);               queue.set(x, queue2);              }                  int count=0;//元素计数器;                 //收集队列元素;                  for(int k=0;k<10;k++){                   while(queue.get(k).size()>0){                   ArrayList<Integer> queue3=queue.get(k);                       array[count]=queue3.get(0);                          queue3.remove(0);                      count++;                }                 }            }                      }      }


转自:http://blog.csdn.net/without0815/article/details/7697916