Python 数据分析包:pandas 基础

jopen 10年前

pandas 是基于 Numpy 构建的含有更高级数据结构和工具的数据分析包

类似于 Numpy 的核心是 ndarray,pandas 也是围绕着 Series 和 DataFrame 两个核心数据结构展开的 。Series 和 DataFrame 分别对应于一维的序列和二维的表结构。pandas 约定俗成的导入方法如下:

from pandas import Series,DataFrame  import pandas as pd

 

Series


Series 可以看做一个定长的有序字典。基本任意的一维数据都可以用来构造 Series 对象:

>>> s = Series([1,2,3.0,'abc'])  >>> s  0      1  1      2  2      3  3    abc  dtype: object

虽然 dtype:object 可以包含多种基本数据类型,但总感觉会影响性能的样子,最好还是保持单纯的 dtype。

Series 对象包含两个主要的属性:index 和 values,分别为上例中左右两列。因为传给构造器的是一个列表,所以 index 的值是从 0 起递增的整数,如果传入的是一个类字典的键值对结构,就会生成 index-value 对应的 Series;或者在初始化的时候以关键字参数显式指定一个 index 对象:

>>> s = Series(data=[1,3,5,7],index = ['a','b','x','y'])  >>> s  a    1  b    3  x    5  y    7  dtype: int64  >>> s.index  Index(['a', 'b', 'x', 'y'], dtype='object')  >>> s.values  array([1, 3, 5, 7], dtype=int64)

Series 对象的元素会严格依照给出的 index 构建,这意味着:如果 data 参数是有键值对的,那么只有 index 中含有的键会被使用;以及如果 data 中缺少响应的键,即使给出 NaN 值,这个键也会被添加。

注意 Series 的 index 和 values 的元素之间虽然存在对应关系,但这与字典的映射不同。index 和 values 实际仍为互相独立的 ndarray 数组,因此 Series 对象的性能完全 ok。

Series 这种使用键值对的数据结构最大的好处在于,Series 间进行算术运算时,index 会自动对齐。

另外,Series 对象和它的 index 都含有一个 name 属性:

>>> s.name = 'a_series'  >>> s.index.name = 'the_index'  >>> s  the_index  a            1  b            3  x            5  y            7  Name: a_series, dtype: int64

 

DataFrame


DataFrame 是一个表格型的数据结构,它含有一组有序的列(类似于 index),每列可以是不同的值类型(不像 ndarray 只能有一个 dtype)。基本上可以把 DataFrame 看成是共享同一个 index 的 Series 的集合。

DataFrame 的构造方法与 Series 类似,只不过可以同时接受多条一维数据源,每一条都会成为单独的一列:

>>> data = {'state':['Ohino','Ohino','Ohino','Nevada','Nevada'],          'year':[2000,2001,2002,2001,2002],          'pop':[1.5,1.7,3.6,2.4,2.9]}  >>> df = DataFrame(data)  >>> df     pop   state  year  0  1.5   Ohino  2000  1  1.7   Ohino  2001  2  3.6   Ohino  2002  3  2.4  Nevada  2001  4  2.9  Nevada  2002    [5 rows x 3 columns]

虽然参数 data 看起来是个字典,但字典的键并非充当 DataFrame 的 index 的角色,而是 Series 的 “name” 属性。这里生成的 index 仍是 “01234”。

完整的 DataFrame 构造器参数为:DataFrame(data=None,index=None,coloumns=None),columns 即 “name”:

>>> df = DataFrame(data,index=['one','two','three','four','five'],                 columns=['year','state','pop','debt'])  >>> df         year   state  pop debt  one    2000   Ohino  1.5  NaN  two    2001   Ohino  1.7  NaN  three  2002   Ohino  3.6  NaN  four   2001  Nevada  2.4  NaN  five   2002  Nevada  2.9  NaN    [5 rows x 4 columns]

同样缺失值由 NaN 补上。看一下 index、columns 和 索引的类型:

>>> df.index  Index(['one', 'two', 'three', 'four', 'five'], dtype='object')  >>> df.columns  Index(['year', 'state', 'pop', 'debt'], dtype='object')  >>> type(df['debt'])  <class 'pandas.core.series.Series'>

DataFrame 面向行和面向列的操作基本是平衡的,任意抽出一列都是 Series。

对象属性


重新索引

Series 对象的重新索引通过其 .reindex(index=None,**kwargs) 方法实现。**kwargs 中常用的参数有俩:method=None,fill_value=np.NaN

ser = Series([4.5,7.2,-5.3,3.6],index=['d','b','a','c'])  >>> a = ['a','b','c','d','e']  >>> ser.reindex(a)  a   -5.3  b    7.2  c    3.6  d    4.5  e    NaN  dtype: float64  >>> ser.reindex(a,fill_value=0)  a   -5.3  b    7.2  c    3.6  d    4.5  e    0.0  dtype: float64  >>> ser.reindex(a,method='ffill')  a   -5.3  b    7.2  c    3.6  d    4.5  e    4.5  dtype: float64  >>> ser.reindex(a,fill_value=0,method='ffill')  a   -5.3  b    7.2  c    3.6  d    4.5  e    4.5  dtype: float64

.reindex() 方法会返回一个新对象,其 index 严格遵循给出的参数,method:{'backfill', 'bfill', 'pad', 'ffill', None} 参数用于指定插值(填充)方式,当没有给出时,自动用 fill_value 填充,默认为 NaN(ffill = pad,bfill = back fill,分别指插值时向前还是向后取值)

DataFrame 对象的重新索引方法为:.reindex(index=None,columns=None,**kwargs)。仅比 Series 多了一个可选的 columns 参数,用于给列索引。用法与上例类似,只不过插值方法 method 参数只能应用于,即轴 0。

>>> state = ['Texas','Utha','California']  >>> df.reindex(columns=state,method='ffill')      Texas  Utha  California  a      1   NaN           2  c      4   NaN           5    d      7   NaN           8    [3 rows x 3 columns]  >>> df.reindex(index=['a','b','c','d'],columns=state,method='ffill')     Texas  Utha  California  a      1   NaN           2  b      1   NaN           2  c      4   NaN           5  d      7   NaN           8    [4 rows x 3 columns]

不过 fill_value 依然对有效。聪明的小伙伴可能已经想到了,可不可以通过 df.T.reindex(index,method='**').T 这样的方式来实现在列上的插值呢,答案是可行的。另外要注意,使用 reindex(index,method='**') 的时候,index 必须是单调的,否则就会引发一个 ValueError: Must be monotonic for forward fill,比如上例中的最后一次调用,如果使用 index=['a','b','d','c'] 的话就不行。

删除指定轴上的项

即删除 Series 的元素或 DataFrame 的某一行(列)的意思,通过对象的 .drop(labels, axis=0) 方法:

>>> ser  d    4.5  b    7.2  a   -5.3  c    3.6  dtype: float64  >>> df     Ohio  Texas  California  a     0      1           2  c     3      4           5  d     6      7           8    [3 rows x 3 columns]  >>> ser.drop('c')  d    4.5  b    7.2  a   -5.3  dtype: float64  >>> df.drop('a')     Ohio  Texas  California  c     3      4           5  d     6      7           8    [2 rows x 3 columns]  >>> df.drop(['Ohio','Texas'],axis=1)     California  a           2  c           5  d           8    [3 rows x 1 columns]

.drop() 返回的是一个新对象,元对象不会被改变。

索引和切片

就像 Numpy,pandas 也支持通过 obj[::] 的方式进行索引和切片,以及通过布尔型数组进行过滤。

不过须要注意,因为 pandas 对象的 index 不限于整数,所以当使用非整数作为切片索引时,它是末端包含的。

>>> foo  a    4.5  b    7.2  c   -5.3  d    3.6  dtype: float64  >>> bar  0    4.5  1    7.2  2   -5.3  3    3.6  dtype: float64  >>> foo[:2]  a    4.5  b    7.2  dtype: float64  >>> bar[:2]  0    4.5  1    7.2  dtype: float64  >>> foo[:'c']  a    4.5  b    7.2  c   -5.3  dtype: float64

这里 foo 和 bar 只有 index 不同——bar 的 index 是整数序列。可见当使用整数索引切片时,结果与 Python 列表或 Numpy 的默认状况相同;换成 'c' 这样的字符串索引时,结果就包含了这个边界元素。

另外一个特别之处在于 DataFrame 对象的索引方式,因为他有两个轴向(双重索引)。

可以这么理解:DataFrame 对象的标准切片语法为:.ix[::,::]。ix 对象可以接受两套切片,分别为行(axis=0)和列(axis=1)的方向:

>>> df     Ohio  Texas  California  a     0      1           2  c     3      4           5  d     6      7           8    [3 rows x 3 columns]  >>> df.ix[:2,:2]     Ohio  Texas  a     0      1  c     3      4    [2 rows x 2 columns]  >>> df.ix['a','Ohio']  0

而不使用 ix ,直接切的情况就特殊了:

  • 索引时,选取的是列
  • 切片时,选取的是行

这看起来有点不合逻辑,但作者解释说 “这种语法设定来源于实践”,我们信他。

>>> df['Ohio']  a    0  c    3  d    6  Name: Ohio, dtype: int32  >>> df[:'c']     Ohio  Texas  California  a     0      1           2  c     3      4           5    [2 rows x 3 columns]  >>> df[:2]     Ohio  Texas  California  a     0      1           2  c     3      4           5    [2 rows x 3 columns]

使用布尔型数组的情况,注意行与列的不同切法(列切法的 : 不能省):

>>> df['Texas']>=4  a    False  c     True  d     True  Name: Texas, dtype: bool  >>> df[df['Texas']>=4]     Ohio  Texas  California  c     3      4           5  d     6      7           8    [2 rows x 3 columns]  >>> df.ix[:,df.ix['c']>=4]     Texas  California  a      1           2  c      4           5  d      7           8    [3 rows x 2 columns]

 

算术运算和数据对齐

pandas 最重要的一个功能是,它可以对不同索引的对象进行算术运算。在将对象相加时,结果的索引取索引对的并集。自动的数据对齐在不重叠的索引处引入空值,默认为 NaN。

>>> foo = Series({'a':1,'b':2})  >>> foo  a    1  b    2  dtype: int64  >>> bar = Series({'b':3,'d':4})  >>> bar  b    3  d    4  dtype: int64  >>> foo + bar  a   NaN  b     5  d   NaN  dtype: float64

DataFrame 的对齐操作会同时发生在行和列上。

当不希望在运算结果中出现 NA 值时,可以使用前面 reindex 中提到过 fill_value 参数,不过为了传递这个参数,就需要使用对象的方法,而不是操作符:df1.add(df2,fill_value=0)。其他算术方法还有:sub(), div(), mul()

Series 和 DataFrame 之间的算术运算涉及广播,暂时先不讲。

函数应用和映射

Numpy 的 ufuncs(元素级数组方法)也可用于操作 pandas 对象。

当希望将函数应用到 DataFrame 对象的某一行或列时,可以使用 .apply(func, axis=0, args=(), **kwds) 方法。

f = lambda x:x.max()-x.min()  >>> df     Ohio  Texas  California  a     0      1           2  c     3      4           5  d     6      7           8    [3 rows x 3 columns]  >>> df.apply(f)  Ohio          6  Texas         6  California    6  dtype: int64  >>> df.apply(f,axis=1)  a    2  c    2  d    2  dtype: int64

 

排序和排名

Series 的 sort_index(ascending=True) 方法可以对 index 进行排序操作,ascending 参数用于控制升序或降序,默认为升序。

若要按值对 Series 进行排序,当使用 .order() 方法,任何缺失值默认都会被放到 Series 的末尾。

在 DataFrame 上,.sort_index(axis=0, by=None, ascending=True) 方法多了一个轴向的选择参数与一个 by 参数,by 参数的作用是针对某一(些)进行排序(不能对行使用 by 参数):

>>> df.sort_index(by='Ohio')     Ohio  Texas  California  a     0      1           2  c     3      4           5  d     6      7           8    [3 rows x 3 columns]  >>> df.sort_index(by=['California','Texas'])     Ohio  Texas  California  a     0      1           2  c     3      4           5  d     6      7           8    [3 rows x 3 columns]  >>> df.sort_index(axis=1)     California  Ohio  Texas  a           2     0      1  c           5     3      4  d           8     6      7    [3 rows x 3 columns]

排名(Series.rank(method='average', ascending=True))的作用与排序的不同之处在于,他会把对象的 values 替换成名次(从 1 到 n)。这时唯一的问题在于如何处理平级项,方法里的 method 参数就是起这个作用的,他有四个值可选:average, min, max, first

>>> ser=Series([3,2,0,3],index=list('abcd'))  >>> ser  a    3  b    2  c    0  d    3  dtype: int64  >>> ser.rank()  a    3.5  b    2.0  c    1.0  d    3.5  dtype: float64  >>> ser.rank(method='min')  a    3  b    2  c    1  d    3  dtype: float64  >>> ser.rank(method='max')  a    4  b    2  c    1  d    4  dtype: float64  >>> ser.rank(method='first')  a    3  b    2  c    1  d    4  dtype: float64

注意在 ser[0]=ser[3] 这对平级项上,不同 method 参数表现出的不同名次。

DataFrame 的 .rank(axis=0, method='average', ascending=True) 方法多了个 axis 参数,可选择按行或列分别进行排名,暂时好像没有针对全部元素的排名方法。

统计方法

pandas 对象有一些统计方法。它们大部分都属于约简和汇总统计,用于从 Series 中提取单个值,或从 DataFrame 的行或列中提取一个 Series。

比如 DataFrame.mean(axis=0,skipna=True) 方法,当数据集中存在 NA 值时,这些值会被简单跳过,除非整个切片(行或列)全是 NA,如果不想这样,则可以通过 skipna=False 来禁用此功能:

>>> df      one  two  a  1.40  NaN  b  7.10 -4.5  c   NaN  NaN  d  0.75 -1.3    [4 rows x 2 columns]  >>> df.mean()  one    3.083333  two   -2.900000  dtype: float64  >>> df.mean(axis=1)  a    1.400  b    1.300  c      NaN  d   -0.275  dtype: float64  >>> df.mean(axis=1,skipna=False)  a      NaN  b    1.300  c      NaN  d   -0.275  dtype: float64

其他常用的统计方法有:

######################## ******************************************
count 非 NA 值的数量
describe 针对 Series 或 DF 的列计算汇总统计
min , max 最小值和最大值
argmin , argmax 最小值和最大值的索引位置(整数)
idxmin , idxmax 最小值和最大值的索引值
quantile 样本分位数(0 到 1)
sum 求和
mean 均值
median 中位数
mad 根据均值计算平均绝对离差
var 方差
std 标准差
skew 样本值的偏度(三阶矩)
kurt 样本值的峰度(四阶矩)
cumsum 样本值的累计和
cummin , cummax 样本值的累计最大值和累计最小值
cumprod 样本值的累计积
diff 计算一阶差分(对时间序列很有用)
pct_change 计算百分数变化

 

处理缺失数据


pandas 中 NA 的主要表现为 np.nan,另外 Python 内建的 None 也会被当做 NA 处理。

处理 NA 的方法有四种:dropna , fillna , isnull , notnull

is(not)null

这一对方法对对象做元素级应用,然后返回一个布尔型数组,一般可用于布尔型索引。

dropna

对于一个 Series,dropna 返回一个仅含非空数据和索引值的 Series。

问题在于对 DataFrame 的处理方式,因为一旦 drop 的话,至少要丢掉一行(列)。这里的解决方式与前面类似,还是通过一个额外的参数:dropna(axis=0, how='any', thresh=None) ,how 参数可选的值为 any 或者 all。all 仅在切片元素全为 NA 时才抛弃该行(列)。另外一个有趣的参数是 thresh,该参数的类型为整数,它的作用是,比如 thresh=3,会在一行中至少有 3 个非 NA 值时将其保留。

fillna

fillna(value=None, method=None, axis=0) 中的 value 参数除了基本类型外,还可以使用字典,这样可以实现对不同的列填充不同的值。method 的用法与前面 .reindex() 方法相同,这里不再赘述。

inplace 参数


前面有个点一直没讲,结果整篇示例写下来发现还挺重要的。就是 Series 和 DataFrame 对象的方法中,凡是会对数组作出修改并返回一个新数组的,往往都有一个 replace=False 的可选参数。如果手动设定为 True,那么原数组就可以被替换。