红黑树的C实现源码与剖析


红红红红黑树的 黑树的 黑树的 黑树的 cccc实现源码与剖析实现源码与剖析实现源码与剖析实现源码与剖析 原作者:那谁原作者:那谁原作者:那谁原作者:那谁 源码剖析作者:源码剖析作者:源码剖析作者:源码剖析作者:JulyJulyJulyJuly ==================================================================================== July 说明: 由于原来的程序没有任何一行注释,我把它深入剖析,并一行一行的添加了注释, 详情请参见此文: 教你彻底实现红黑树:红黑树的 c源码实现与剖析 http://blog.csdn.net/v_JULY_v/archive/2011/01/03/6114226.aspx 关于红黑树系列的教程,还可看下以下倆篇文章: 教你透彻了解红黑树: http://blog.csdn.net/v_JULY_v/archive/2010/12/29/6105630.aspx 红黑树算法的层层剖析与逐步实现 http://blog.csdn.net/v_JULY_v/archive/2010/12/31/6109153.aspx Ok,君自看。 -------------------------------------------------------------------------------------------------- //以下是最初的源程序。 //如果你看不太懂,那么就证明了我所做的源码剖析工作有意义了。 :D。 //详情,参见 My Blog[谷歌或百度搜 "结构之法 "] //http://blog.csdn.net/v_JULY_v ------------------------------------------------------------------------------------------------- #include #include #include typedef int key_t; typedef int data_t; typedef enum color_t { RED = 0, BLACK = 1 }color_t; typedef struct rb_node_t { struct rb_node_t *left, *right, *parent; key_t key; data_t data; color_t color; }rb_node_t; /* forward declaration */ rb_node_t* rb_insert(key_t key, data_t data, rb_node_t* root); rb_node_t* rb_search(key_t key, rb_node_t* root); rb_node_t* rb_erase(key_t key, rb_node_t* root); int main() { int i, count = 900000; key_t key; rb_node_t* root = NULL,*node = NULL; srand(time(NULL)); for (i = 1; i < count; ++i) { key = rand() % count; if ((root = rb_insert(key, i, root))) { printf("[i = %d] insert key %d success!\n", i, key); } else { printf("[i = %d] insert key %d error!\n", i, key); exit(-1); } if ((node = rb_search(key, root))) { printf("[i = %d] search key %d success!\n", i, key); } else { printf("[i = %d] search key %d error!\n", i, key); exit(-1); } if (!(i % 10)) { if ((root = rb_erase(key, root))) { printf("[i = %d] erase key %d success\n", i, key); } else { printf("[i = %d] erase key %d error\n", i, key); } } } return 0; } static rb_node_t* rb_new_node(key_t key, data_t data) { rb_node_t *node = (rb_node_t*)malloc(sizeof(struct rb_node_t)); if (!node) { printf("malloc error!\n"); exit(-1); } node->key = key, node->data = data; return node; } /*----------------------------------------------------------- | node right | /\ ==> /\ | a right node y | /\/\ | b y a b //原程序给的这丁点注释错了,我已修正。 -----------------------------------------------------------*/ static rb_node_t* rb_rotate_left(rb_node_t* node, rb_node_t* root) { rb_node_t* right = node->right; if ((node->right = right->left)) { right->left->parent = node; } right->left = node; if ((right->parent = node->parent)) { if (node == node->parent->right) { node->parent->right = right; } else { node->parent->left = right; } } else { root = right; } node->parent = right; return root; } /*----------------------------------------------------------- | node left | /\/\ | left y ==> a node | /\/\ | a b b y //右旋与左旋差不多,分析略过 -----------------------------------------------------------*/ static rb_node_t* rb_rotate_right(rb_node_t* node, rb_node_t* root) { rb_node_t* left = node->left; if ((node->left = left->right)) { left->right->parent = node; } left->right = node; if ((left->parent = node->parent)) { if (node == node->parent->right) { node->parent->right = left; } else { node->parent->left = left; } } else { root = left; } node->parent = left; return root; } static rb_node_t* rb_insert_rebalance(rb_node_t *node, rb_node_t *root) { rb_node_t *parent, *gparent, *uncle, *tmp; while ((parent = node->parent) && parent->color == RED) { gparent = parent->parent; if (parent == gparent->left) { uncle = gparent->right; if (uncle && uncle->color == RED) { uncle->color = BLACK; parent->color = BLACK; gparent->color = RED; node = gparent; } else { if (parent->right == node) { root = rb_rotate_left(parent, root); tmp = parent; parent = node; node = tmp; } parent->color = BLACK; gparent->color = RED; root = rb_rotate_right(gparent, root); } } else { uncle = gparent->left; if (uncle && uncle->color == RED) { uncle->color = BLACK; parent->color = BLACK; gparent->color = RED; node = gparent; } else { if (parent->left == node) { root = rb_rotate_right(parent, root); tmp = parent; parent = node; node = tmp; } parent->color = BLACK; gparent->color = RED; root = rb_rotate_left(gparent, root); } } } root->color = BLACK; return root; } static rb_node_t* rb_erase_rebalance(rb_node_t *node, rb_node_t *parent, rb_node_t *root) { rb_node_t *other, *o_left, *o_right; while ((!node || node->color == BLACK)&& node != root) { if (parent->left == node) { other = parent->right; if (other->color == RED) { other->color = BLACK; parent->color = RED; root = rb_rotate_left(parent, root); other = parent->right; } if ((!other->left || other->left->color == BLACK)&& (!other->right || other->right->color == BLACK)) { other->color = RED; node = parent; parent = node->parent; } else { if (!other->right || other->right->color == BLACK) { if ((o_left = other->left)) { o_left->color = BLACK; } other->color = RED; root = rb_rotate_right(other, root); other = parent->right; } other->color = parent->color; parent->color = BLACK; if (other->right) { other->right->color = BLACK; } root = rb_rotate_left(parent, root); node = root; break; } } else { other = parent->left; if (other->color == RED) { other->color = BLACK; parent->color = RED; root = rb_rotate_right(parent, root); other = parent->left; } if ((!other->left || other->left->color == BLACK)&& (!other->right || other->right->color == BLACK)) { other->color = RED; node = parent; parent = node->parent; } else { if (!other->left || other->left->color == BLACK) { if ((o_right = other->right)) { o_right->color = BLACK; } other->color = RED; root = rb_rotate_left(other, root); other = parent->left; } other->color = parent->color; parent->color = BLACK; if (other->left) { other->left->color = BLACK; } root = rb_rotate_right(parent, root); node = root; break; } } } if (node) { node->color = BLACK; } return root; } static rb_node_t* rb_search_auxiliary(key_t key, rb_node_t* root, rb_node_t** save) { rb_node_t *node = root, *parent = NULL; int ret; while (node) { parent = node; ret = node->key - key; if (0 < ret) { node = node->left; } else if (0 > ret) { node = node->right; } else { return node; } } if (save) { *save = parent; } return NULL; } rb_node_t* rb_insert(key_t key, data_t data, rb_node_t* root) { rb_node_t *parent = NULL,*node; parent = NULL; if ((node = rb_search_auxiliary(key, root, &parent))) { return root; } node = rb_new_node(key, data); node->parent = parent; node->left = node->right = NULL; node->color = RED; if (parent) { if (parent->key > key) { parent->left = node; } else { parent->right = node; } } else { root = node; } return rb_insert_rebalance(node, root); } rb_node_t* rb_search(key_t key, rb_node_t* root) { return rb_search_auxiliary(key, root, NULL); } rb_node_t* rb_erase(key_t key, rb_node_t *root) { rb_node_t *child, *parent, *old, *left, *node; color_t color; if (!(node = rb_search_auxiliary(key, root, NULL))) { printf("key %d is not exist!\n"); return root; } old = node; if (node->left && node->right) { node = node->right; while ((left = node->left) != NULL) { node = left; } child = node->right; parent = node->parent; color = node->color; if (child) { child->parent = parent; } if (parent) { if (parent->left == node) { parent->left = child; } else { parent->right = child; } } else { root = child; } if (node->parent == old) { parent = node; } node->parent = old->parent; node->color = old->color; node->right = old->right; node->left = old->left; if (old->parent) { if (old->parent->left == old) { old->parent->left = node; } else { old->parent->right = node; } } else { root = node; } old->left->parent = node; if (old->right) { old->right->parent = node; } } else { if (!node->left) { child = node->right; } else if (!node->right) { child = node->left; } parent = node->parent; color = node->color; if (child) { child->parent = parent; } if (parent) { if (parent->left == node) { parent->left = child; } else { parent->right = child; } } else { root = child; } } free(old); if (color == BLACK) { root = rb_erase_rebalance(child, parent, root); } return root; } 程序完。 ================================== 运行结果: [i = 1] insert key 52 success! [i = 1] search key 52 success! [i = 2] insert key 80 success! [i = 2] search key 80 success! [i = 3] insert key 2 success! [i = 3] search key 2 success! [i = 4] insert key 81 success! [i = 4] search key 81 success! [i = 5] insert key 96 success! [i = 5] search key 96 success! [i = 6] insert key 16 success! [i = 6] search key 16 success! [i = 7] insert key 92 success! [i = 7] search key 92 success! [i = 8] insert key 20 success! [i = 8] search key 20 success! [i = 9] insert key 63 success! [i = 9] search key 63 success! [i = 10] insert key 16 success! [i = 10] search key 16 success! [i = 10] erase key 16 success [i = 11] insert key 99 success! [i = 11] search key 99 success! [i = 12] insert key 36 success! [i = 12] search key 36 success! [i = 13] insert key 36 success! [i = 13] search key 36 success! [i = 14] insert key 33 success! [i = 14] search key 33 success! [i = 15] insert key 26 success! [i = 15] search key 26 success! [i = 16] insert key 84 success! [i = 16] search key 84 success! [i = 17] insert key 89 success! [i = 17] search key 89 success! [i = 18] insert key 13 success! [i = 18] search key 13 success! [i = 19] insert key 63 success! [i = 19] search key 63 success! [i = 20] insert key 20 success! [i = 20] search key 20 success! [i = 20] erase key 20 success [i = 21] insert key 9 success! [i = 21] search key 9 success! [i = 22] insert key 27 success! [i = 22] search key 27 success! [i = 23] insert key 57 success! [i = 23] search key 57 success! [i = 24] insert key 51 success! [i = 24] search key 51 success! [i = 25] insert key 1 success! [i = 25] search key 1 success! [i = 26] insert key 60 success! [i = 26] search key 60 success! [i = 27] insert key 45 success! [i = 27] search key 45 success! [i = 28] insert key 2 success! [i = 28] search key 2 success! [i = 29] insert key 20 success! [i = 29] search key 20 success! [i = 30] insert key 54 success! [i = 30] search key 54 success! [i = 30] erase key 54 success [i = 31] insert key 41 success! [i = 31] search key 41 success! [i = 32] insert key 10 success! [i = 32] search key 10 success! [i = 33] insert key 74 success! [i = 33] search key 74 success! [i = 34] insert key 68 success! [i = 34] search key 68 success! [i = 35] insert key 9 success! [i = 35] search key 9 success! [i = 36] insert key 12 success! [i = 36] search key 12 success! [i = 37] insert key 7 success! [i = 37] search key 7 success! [i = 38] insert key 38 success! [i = 38] search key 38 success! [i = 39] insert key 83 success! [i = 39] search key 83 success! [i = 40] insert key 42 success! [i = 40] search key 42 success! [i = 40] erase key 42 success [i = 41] insert key 7 success! [i = 41] search key 7 success! [i = 42] insert key 98 success! [i = 42] search key 98 success! [i = 43] insert key 18 success! [i = 43] search key 18 success! [i = 44] insert key 37 success! [i = 44] search key 37 success! [i = 45] insert key 72 success! [i = 45] search key 72 success! [i = 46] insert key 91 success! [i = 46] search key 91 success! [i = 47] insert key 89 success! [i = 47] search key 89 success! [i = 48] insert key 97 success! [i = 48] search key 97 success! ................................................. Press any key to continue ----------------------------------------------------------------------------------------------------- 为了给你个对比,我摘一段我给的源码剖析 [注释完美 ] 五、红黑树的 3种插入情况 接下来,咱们重点分析针对红黑树插入的 3种情况,而进行的修复工作。 //-------------------------------------------------------------- //红黑树修复插入的 3种情况 //为了表示方面下面的注释中,也为了让下述代码与我的倆篇文章相对应, //用z表示当前结点, p[z]表示父母、 p[p[z]]表示祖父、 y表示叔叔。 //-------------------------------------------------------------- static rb_node_t* rb_insert_rebalance(rb_node_t *node, rb_node_t *root) { rb_node_t *parent, *gparent, *uncle, *tmp; //父母 p[z]、祖父 p[p[z]]、叔叔 y、临时结点 *tmp while ((parent = node->parent) && parent->color == RED) {//parent 为node的父母,且当父母的颜色为红时 gparent = parent->parent; //gparent 为祖父 if (parent == gparent->left) //当祖父的左孩子即为父母时。 //其实 上述几行 语句,无 非就是 理顺孩子 、父母、 祖 父的关系。 :D。 { uncle = gparent->right; //定义叔叔的概念,叔叔 y就是父母的右孩子。 if (uncle && uncle->color == RED)//情况 1:z的叔叔 y是红色的 { uncle->color = BLACK;//将叔叔结点 y着为黑色 parent->color = BLACK;//z的父母 p[z]也着为黑色 。解决 z,p[z]都是红 色的问题。 gparent->color = RED; node = gparent; //将祖父当做新增结点 z,指针 z上移俩层 ,且着为红 色。 //上述情况 1中,只考虑了 z作为父母的右孩子的情况。 } else //情况 2:z的叔叔 y是黑色的, { if (parent->right == node) //且z为右孩子 { root = rb_rotate_left(parent, root); //左旋 [结点 z,与父母结点 ] tmp = parent; parent = node; node = tmp; //parent与node 互换角色 } //情况 3:z的叔叔 y是黑色的,此时 z成为了左孩子。 //注意, 1:情况 3是由上述情况 2变化而来的。 //......2:z的叔叔总是黑色的 ,否则就是情况 1了。 parent->color = BLACK;//z的父母 p[z]着为黑色 gparent->color = RED;//原祖父结点着为红色 root = rb_rotate_right(gparent, root); //右旋 [结点 z,与祖父结点 ] } } else { //这部分是特别为情况 1中, z作为左孩子情况,而写的。 uncle = gparent->left; //祖父的左孩子作为叔叔结点 。[原理还是与上部分一样 的] if (uncle && uncle->color == RED)//情况 1:z的叔叔 y是红色的 { uncle->color = BLACK; parent->color = BLACK; gparent->color = RED; node = gparent; //同上。 } else //情况 2:z的叔叔 y是黑色的, { if (parent->left == node) //且z为左孩子 { root = rb_rotate_right(parent, root); //以结点 parent、root 右旋 tmp = parent; parent = node; node = tmp; //parent与node 互换角色 } //经过情况 2的变化,成为了情况 3. parent->color = BLACK; gparent->color = RED; root = rb_rotate_left(gparent, root); //以结点 gparent 和root左旋 } } } root->color = BLACK;//根结点,不论怎样,都得置为黑色。 return root; //返回根结点。 } //:D。这下,你应该发现我所添加的注释的价值了。 本文来自CSDN 博客,转载请标明出处: http://blog.csdn.net/v_JULY_v/archive/2011/01/03/6114226.aspx 一切的详情请参见此文: 教你彻底实现红黑树:红黑树的 c源码实现与剖析 http://blog.csdn.net/v_JULY_v/archive/2011/01/03/6114226.aspx 关于红黑树系列的教程,还可看下以下倆篇文章: 教你透彻了解红黑树: http://blog.csdn.net/v_JULY_v/archive/2010/12/29/6105630.aspx 红黑树算法的层层剖析与逐步实现 http://blog.csdn.net/v_JULY_v/archive/2010/12/31/6109153.aspx 我博客里还有有关微软等公司数据结构 +算法面试 100 题的资料, 详情,参见 My Blog: http://blog.csdn.net/v_JULY_v ----- July 、二零一一年一月三日。
还剩16页未读

继续阅读

下载pdf到电脑,查找使用更方便

pdf的实际排版效果,会与网站的显示效果略有不同!!

需要 3 金币 [ 分享pdf获得金币 ] 2 人已下载

下载pdf

pdf贡献者

wujiuliu

贡献于2013-06-01

下载需要 3 金币 [金币充值 ]
亲,您也可以通过 分享原创pdf 来获得金币奖励!
下载pdf