Oracle Database In-Memory Option in Action


www.enkitec.com 1 Oracle Database In-Memory Opon in Acon Tanel Põder & Kerry Osborne Accenture Enkitec Group hp://www.enkitec.com www.enkitec.com 2 Intro: About •  Tanel Põder •  Consultant, Trainer, Troubleshooter •  Oracle Database Performance geek •  Exadata Performance geek •  In-Memory Columnar Cache perf. geek ;-) •  hp://blog.tanelpoder.com •  Professor Osborne •  Nice Guy and All Around Prince of a Fellow J •  Worked on Oracle since v2 •  Also a performance geek •  hp://kerryosborne.oracle-guy.com Expert Oracle Exadata book (with Kerry Osborne and Randy Johnson of Enkitec) www.enkitec.com 3 Intro: Goals •  Walkthrough of a few example queries that benefit from In-Memory and Oracle 12.1.0.2 features •  First disable most of the performance features and then re- enable one by one (and show performance metrics) www.enkitec.com 4 Intro: What do databases do? 1. Retrieve data 2. Process data 3. Return results www.enkitec.com 5 Tradional Database I/O flow files Database Server Aggregate Filter Join Storage files Data Blocks Read blocks from disks •  Retrieve -> Process -> Return Send all read data to host Filter, join, aggregate in DB server www.enkitec.com 6 Exadata I/O flow files Database Server Aggregate Join Storage files Rows Filter Read blocks from disks •  Retrieve -> Process -> Return Throw away non-needed rows/cols F Send only needed rows back Final filter, join, aggregaon in DB server www.enkitec.com 7 In-Memory Column Store I/O flow Database Server Aggregate Filter Join C C Disk storage not in data retrieval crical path at all •  Retrieve -> Process -> Return Fast RAM access. No disk latency C C C C C C C C C C C C C C Avoid RAM access with In-Memory "storage" indexes Oracle 12c also brings data processing improvements (SIMD, vector joins, vector aggregaon, approximate disnct) www.enkitec.com 8 Data Retrieval www.enkitec.com 9 A simple Data Retrieval test! •  Retrieve 1% rows out of a 8 GB table: SELECT COUNT(*) , SUM(order_total) FROM orders WHERE warehouse_id BETWEEN 500 AND 510 The Warehouse IDs range between 1 and 999 Test data generated by SwingBench tool www.enkitec.com 10 Data Retrieval Test! •  Simulate a tradional Oracle database configuraon: •  The test hardware is sll modern Exadata with flash enabled! SQL> ALTER SESSION SET cell_offload_processing = FALSE; Session altered. SQL> ALTER SESSION SET "_serial_direct_read" = NEVER; Session altered. SQL> ALTER SESSION SET inmemory_query = DISABLE; Session altered. I will re-enable the sengs in following tests www.enkitec.com 11 Data Retrieval: Index Range Scan INDEX hint. Index lookups happen via buffer cache www.enkitec.com 12 Data Retrieval: Full Table Scan - Buffered ALTER SESSION SET "_serial_direct_read"=NEVER; www.enkitec.com 13 Data Retrieval: Full Table Scan – Direct Path Reads ALTER SESSION SET "_serial_direct_read"=ALWAYS; www.enkitec.com 14 Data Retrieval: Full Table Scan – Smart Scan ALTER SESSION SET cell_offload_processing = TRUE www.enkitec.com 15 Data Retrieval: Full Table Scan – In-Memory Scan ALTER SESSION SET inmemory_query = ENABLE www.enkitec.com 16 Data Retrieval: Test Results (from V$SQL) •  Remember, this is a very simple query operaon •  But complex queries are just a bunch of simple query ops in a loop ;-) TESTNAME PLAN_HASH ELA_MS CPU_MS LIOS BLK_READ ------------------------- ---------- -------- -------- --------- --------- test1: index range scan * 16715356 265203 37438 782858 511231 test2: full buffered */ C 630573765 132075 48944 1013913 849316 test3: full direct path * 630573765 15567 11808 1013873 1013850 test4: full smart scan */ 630573765 2102 729 1013873 1013850 test5: full inmemory scan 630573765 155 155 14 0 Eliminang the data retrieval IO component gave 1711x speed improvement CPU usage also dropped 241x Note that tests 1-4 all did physical IO as data working set didn't fit into cache www.enkitec.com 17 Comparing "in memory" with In-Memory Cache all table blocks in buffer cache? www.enkitec.com 18 Data Retrieval: Full Table Scan – Buffer Cache Scan ALTER TABLE orders CACHE; ... SET inmemory_query = DISABLE www.enkitec.com 19 Data Retrieval: Test Results (Buffer Cache) •  Remember, this is a very simple query operaon •  But complex queries are just a bunch of simple query ops in a loop ;-) TESTNAME PLAN_HASH ELA_MS CPU_MS LIOS BLK_READ ------------------------- ---------- -------- -------- --------- --------- test1: index range scan * 16715356 265203 37438 782858 511231 test2: full buffered */ C 630573765 132075 48944 1013913 849316 test3: full direct path * 630573765 15567 11808 1013873 1013850 test4: full smart scan */ 630573765 2102 729 1013873 1013850 test5: full inmemory scan 630573765 155 155 14 0 test6: full buffer cache 630573765 7850 7831 1014741 0 50x difference in logical reads vs buffer cache vs IM processing Your mileage will vary depending on hardware, dataset, filter % and predicates www.enkitec.com 20 "Secret Sauce" •  Columnar organizaon •  Compression •  Column data ghtly packed together •  Less memory traffic! •  Yes, RAM is the new disk (slow compared to CPU speed!) •  Load only those memory lines where required columns reside •  Decompression on-the-fly (probably) benefits from CPU L2/L3 cache •  SIMD •  Reduce ght loops and branches in machine code •  Get the CPU to simultaneously process mulple values in a vector SIMD would be useless if you waited on main memory all the me www.enkitec.com 21 SIMD benefit (not Oracle-specific) •  Modern Intel CPUs have 16-32 SIMD registers •  Each register holds 128, 256 or soon 512 bits: •  SSE/AVX, AVX2, AVX-512 •  A single register can hold many smaller-length values packed into it (depending on datatypes) 1.  Vector load 2.  Vector comparison •  Filter predicates! 3.  Masked Vector addion (etc) 4.  Masked Vector store to RAM Masking allows you to choose which packed values in register to process or ignore (no need to copy stuff around) www.enkitec.com 22 SIMD benefit (not Oracle-specific) •  Reduce the number of loops at low-level data operaons •  2-16x on Intel CPUs, depending on HW & internal data types used •  For example, when looping over 1000 values: 1000 loop iteraons 125 loop iteraons www.enkitec.com 23 Data Processing www.enkitec.com 24 Data Processing •  Joins •  Aggregaons / Group By •  Sorng •  etc… •  A common problem: TEMP IO! www.enkitec.com 25 Example 1: A Small Aggregaon SELECT /*+ MONITOR NO_VECTOR_TRANSFORM NO_PX_JOIN_FILTER(@"SEL$1" "S"@"SEL$1") */ ch.channel_desc , SUM(s.quantity_sold) FROM ssh.sales s , ssh.customers cu , ssh.channels ch WHERE s.cust_id = cu.cust_id AND s.channel_id = ch.channel_id AND cu.cust_postal_code LIKE 'MMM%' GROUP BY ch.channel_desc This selects a few customers (postal codes from AAA 000 to ZZZ 999) Disabling all the fancy new stuff :-) www.enkitec.com 26 No Bloom Filter Pushdown, No Vector Transformaon =========================================================================================== | Id | Operation | Name | Rows |Activity | Activity Detail | | | | |(Actual) | (%) | (# samples) | =========================================================================================== | 0 | SELECT STATEMENT | | 5 | | | | 1 | HASH GROUP BY | | 5 | | | | 2 | HASH JOIN | | 64 | | | | 3 | HASH JOIN | | 64 | 83.33 | Cpu (15) | | 4 | PARTITION RANGE ALL | | 9 | | | | 5 | TABLE ACCESS INMEMORY FULL | CUSTOMERS | 9 | | | | 6 | PARTITION RANGE ALL | | 211M | | | | 7 | TABLE ACCESS INMEMORY FULL | SALES | 211M | 11.11 | in memory (1) | | | | | | | Cpu (1) | | 8 | TABLE ACCESS INMEMORY FULL | CHANNELS | 5 | | | =========================================================================================== 2 - access("S"."CHANNEL_ID"="CH"."CHANNEL_ID") 3 - access("S"."CUST_ID"="CU"."CUST_ID") 5 - inmemory("CU"."CUST_POSTAL_CODE" LIKE 'MMM%') filter("CU"."CUST_POSTAL_CODE" LIKE 'MMM%') Total 17 seconds, most at HASH JOIN (#3) 211 Million rows sent to hash join from SALES www.enkitec.com 27 With Bloom Filter Pushdown, No Vector Transform ============================================================================================= | Id | Operation | Name | Rows | Activity | Activity Detail | | | | |(Actual) | (%) | (# samples) | ============================================================================================= | 0 | SELECT STATEMENT | | 5 | | | | 1 | HASH GROUP BY | | 5 | | | | 2 | HASH JOIN | | 64 | | | | 3 | HASH JOIN | | 64 | | | | 4 | JOIN FILTER CREATE | :BF0000 | 9 | | | | 5 | PARTITION RANGE ALL | | 9 | | | | 6 | TABLE ACCESS INMEMORY FULL | CUSTOMERS | 9 | | | | 7 | JOIN FILTER USE | :BF0000 | 24753 | | | | 8 | PARTITION RANGE ALL | | 24753 | | | | 9 | TABLE ACCESS INMEMORY FULL | SALES | 24753 | 100.00 | in memory (3) | | 10 | TABLE ACCESS INMEMORY FULL | CHANNELS | 5 | | | ============================================================================================= 2 - access("S"."CHANNEL_ID"="CH"."CHANNEL_ID") 3 - access("S"."CUST_ID"="CU"."CUST_ID") 6 - inmemory("CU"."CUST_POSTAL_CODE" LIKE 'MMM%') filter("CU"."CUST_POSTAL_CODE" LIKE 'MMM%') 9 - inmemory(SYS_OP_BLOOM_FILTER(:BF0000,"S"."CUST_ID")) filter(SYS_OP_BLOOM_FILTER(:BF0000,"S"."CUST_ID")) Only 3 seconds of CPU usage noced (all in vectorized code) Only 24753 rows returned from SALES www.enkitec.com 28 With Vector Transformaon ===================================================================================================== | Id | Operation | Name | Rows |Activity | Activity Detail | | | | |(Actual) | (%) | (# samples) | ===================================================================================================== | 0 | SELECT STATEMENT | | 5 | | | | 1 | TEMP TABLE TRANSFORMATION | | 5 | | | | 2 | LOAD AS SELECT | | 2 | | | | 3 | VECTOR GROUP BY | | 1 | | | | 4 | HASH GROUP BY | | 0 | | | | 5 | KEY VECTOR CREATE BUFFERED | :KV0000 | 9 | | | | 6 | PARTITION RANGE ALL | | 9 | | | | 7 | TABLE ACCESS INMEMORY FULL | CUSTOMERS | 9 | | | | 8 | LOAD AS SELECT | | 2 | | | | 9 | VECTOR GROUP BY | | 5 | | | | 10 | KEY VECTOR CREATE BUFFERED | :KV0001 | 5 | | | | 11 | TABLE ACCESS INMEMORY FULL | CHANNELS | 5 | | | | 12 | HASH GROUP BY | | 5 | | | | 13 | HASH JOIN | | 5 | | | | 14 | MERGE JOIN CARTESIAN | | 5 | | | | 15 | TABLE ACCESS FULL | SYS_TEMP_0FD...| 1 | | | | 16 | BUFFER SORT | | 5 | | | | 17 | TABLE ACCESS FULL | SYS_TEMP_0FD...| 5 | | | | 18 | VIEW | VW_VT_0737CF93 | 5 | | | | 19 | VECTOR GROUP BY | | 5 | | | | 20 | HASH GROUP BY | | 0 | | | | 21 | KEY VECTOR USE | :KV0001 | 64 | | | | 22 | KEY VECTOR USE | :KV0000 | 64 | | | | 23 | PARTITION RANGE ALL | | 64 | | | | 24 | TABLE ACCESS INMEMORY FULL | SALES | 64 | 100.00 | in memory (2) | ===================================================================================================== Only 64 rows returned from SALES aer filtering by 2 dimensions VECTOR GROUP BY (#19) reduces results to 5 aggregated rows www.enkitec.com 29 With Vector Transformaon (…continued…) Predicate Information (identified by operation id): --------------------------------------------------- 7 - inmemory("CU"."CUST_POSTAL_CODE" LIKE 'MMM%') filter("CU"."CUST_POSTAL_CODE" LIKE 'MMM%') 13 - access("ITEM_9"=INTERNAL_FUNCTION("C0") AND "ITEM_10"="C2" 
 AND "ITEM_7"=INTERNAL_FUNCTION("C0") AND "ITEM_8"="C2") 24 - inmemory((SYS_OP_KEY_VECTOR_FILTER("S"."CUST_ID",:KV0000) AND 
 SYS_OP_KEY_VECTOR_FILTER("S"."CHANNEL_ID",:KV0001))) filter((SYS_OP_KEY_VECTOR_FILTER("S"."CUST_ID",:KV0000) AND
 SYS_OP_KEY_VECTOR_FILTER("S"."CHANNEL_ID",:KV0001))) - dynamic statistics used: dynamic sampling (level=2) - 1 Sql Plan Directive used for this statement - vector transformation used for this statement www.enkitec.com 30 Example 2: A bigger aggregaon SELECT /*+ MONITOR NO_VECTOR_TRANSFORM NO_PX_JOIN_FILTER(@"SEL$1" "S"@"SEL$1") */ ch.channel_desc , p.promo_subcategory , SUM(s.quantity_sold) FROM ssh.sales s , ssh.channels ch , ssh.promotions p WHERE s.channel_id = ch.channel_id AND s.promo_id = p.promo_id AND p.promo_category = 'TV' GROUP BY ch.channel_desc , p.promo_subcategory This query sums many more rows in SALES based on 2 dimension scans www.enkitec.com 31 No Bloom Filter Pushdown, No Vector Transformaon ============================================================================================== | Id | Operation | Name | Rows |Activity | Activity Detail | | | | |(Actual) | (%) | (# samples) | ============================================================================================== | 0 | SELECT STATEMENT | | 15 | | | | 1 | HASH GROUP BY | | 15 | | | | 2 | HASH JOIN | | 15 | | | | 3 | TABLE ACCESS INMEMORY FULL | CHANNELS | 5 | | | | 4 | VIEW | VW_GBC_10 | 15 | | | | 5 | HASH GROUP BY | | 15 | 35.00 | Cpu (7) | | 6 | HASH JOIN | | 48M | 50.00 | Cpu (10) | | 7 | TABLE ACCESS INMEMORY FULL | PROMOTIONS | 115 | | | | 8 | PARTITION RANGE ALL | | 211M | | | | 9 | TABLE ACCESS INMEMORY FULL | SALES | 211M | 15.00 | in memory (3) | ============================================================================================== Predicate Information (identified by operation id): --------------------------------------------------- 2 - access("ITEM_1"="CH"."CHANNEL_ID") 6 - access("S"."PROMO_ID"="P"."PROMO_ID") 7 - inmemory("P"."PROMO_CATEGORY"='TV') filter("P"."PROMO_CATEGORY"='TV') Total 20 seconds runme (most in HASH JOIN and HASH GROUP BY) 211M rows from SALES, 48M rows survive the joins www.enkitec.com 32 With Bloom Filter Pushdown, No Vector Transform =============================================================================================== | Id | Operation | Name | Rows |Activity | Activity Detail | | | | |(Actual) | (%) | (# samples) | =============================================================================================== | 0 | SELECT STATEMENT | | 15 | | | | 1 | HASH GROUP BY | | 15 | | | | 2 | HASH JOIN | | 15 | | | | 3 | TABLE ACCESS INMEMORY FULL | CHANNELS | 5 | | | | 4 | VIEW | VW_GBC_10 | 15 | | | | 5 | HASH GROUP BY | | 15 | 71.43 | Cpu (10) | | 6 | HASH JOIN | | 48M | 28.57 | Cpu (4) | | 7 | JOIN FILTER CREATE | :BF0000 | 115 | | | | 8 | TABLE ACCESS INMEMORY FULL | PROMOTIONS | 115 | | | | 9 | JOIN FILTER USE | :BF0000 | 49M | | | | 10 | PARTITION RANGE ALL | | 49M | | | | 11 | TABLE ACCESS INMEMORY FULL | SALES | 49M | | | =============================================================================================== 2 - access("ITEM_1"="CH"."CHANNEL_ID") 6 - access("S"."PROMO_ID"="P"."PROMO_ID") 8 - inmemory("P"."PROMO_CATEGORY"='TV') filter("P"."PROMO_CATEGORY"='TV') 11 - inmemory(SYS_OP_BLOOM_FILTER(:BF0000,"S"."PROMO_ID")) filter(SYS_OP_BLOOM_FILTER(:BF0000,"S"."PROMO_ID")) 49M rows returned from SALES aer bloom filtering www.enkitec.com 33 With Vector Transformaon ==================================================================================================== | Id | Operation | Name | Rows |Activity |Activity Detail| | | | |(Actual) | (%) | (# samples) | ==================================================================================================== | 0 | SELECT STATEMENT | | 15 | | | | 1 | TEMP TABLE TRANSFORMATION | | 15 | | | | 2 | LOAD AS SELECT | | 2 | | | | 3 | VECTOR GROUP BY | | 5 | | | | 4 | KEY VECTOR CREATE BUFFERED | :KV0000 | 5 | | | | 5 | TABLE ACCESS INMEMORY FULL | CHANNELS | 5 | | | | 6 | LOAD AS SELECT | | 2 | | | | 7 | VECTOR GROUP BY | | 3 | | | | 8 | KEY VECTOR CREATE BUFFERED | :KV0001 | 115 | | | | 9 | TABLE ACCESS INMEMORY FULL | PROMOTIONS | 115 | | | | 10 | HASH GROUP BY | | 15 | | | | 11 | HASH JOIN | | 15 | | | | 12 | HASH JOIN | | 15 | | | | 13 | TABLE ACCESS FULL | SYS_TEMP_0FD...| 5 | | | | 14 | VIEW | VW_VT_0737CF | 15 | | | | 15 | VECTOR GROUP BY | | 15 | 20.00 | Cpu (1) | | 16 | HASH GROUP BY | | 0 | | | | 17 | KEY VECTOR USE | :KV0000 | 48M | | | | 18 | KEY VECTOR USE | :KV0001 | 48M | | | | 19 | PARTITION RANGE ALL | | 48M | | | | 20 | TABLE ACCESS INMEMORY FULL | SALES | 48M | 60.00 | in memory (3) | | 21 | TABLE ACCESS FULL | SYS_TEMP_0FD...| 3 | | | ==================================================================================================== Vector group by pushed deeper through the HASH JOINs www.enkitec.com 34 With Vector Transformaon (…continued…) Predicate Information (identified by operation id): --------------------------------------------------- 9 - inmemory("P"."PROMO_CATEGORY"='TV') filter("P"."PROMO_CATEGORY"='TV') 11 - access("ITEM_10"=INTERNAL_FUNCTION("C0") AND "ITEM_11"="C2") 12 - access("ITEM_8"=INTERNAL_FUNCTION("C0") AND "ITEM_9"="C2") 20 - inmemory((SYS_OP_KEY_VECTOR_FILTER("S"."PROMO_ID",:KV0001) AND
 SYS_OP_KEY_VECTOR_FILTER("S"."CHANNEL_ID",:KV0000))) filter((SYS_OP_KEY_VECTOR_FILTER("S"."PROMO_ID",:KV0001) AND
 SYS_OP_KEY_VECTOR_FILTER("S"."CHANNEL_ID",:KV0000))) - dynamic statistics used: dynamic sampling (level=2) - 1 Sql Plan Directive used for this statement - vector transformation used for this statement www.enkitec.com 35 A query bolenecked by data processing, not retrieval •  A query bolenecked by data processing, not retrieval •  Hash joins and a GROUP BY spilling to TEMP www.enkitec.com 36 Reducing PGA memory usage and TEMP IO? •  Classic SQL opmizaon techniques: •  Filter early -> Sort and Join less rows •  Group to fewer buckets •  Paron wise joins (or "chunkify" workload) •  Changing join orders •  Kill it with Hardware: •  Increase PGA_AGGREGATE_TARGET •  Increase PX degree •  You'll use more CPU … and more memory! •  Not all operaons are simply addive •  They can't spread memory usage into "parons" with more slaves! •  DISTINCT ! www.enkitec.com 37 Approximate Count Disnct (12.1.0.2) -- traditional (and precise) way: SELECT COUNT(DISTINCT cust_id) FROM ssh.sales WHERE amount_sold > 1; -- new (approximate) way: SELECT APPROX_COUNT_DISTINCT(cust_id) FROM ssh.sales WHERE amount_sold > 1; •  It looks like this feature ulizes the HyperLogLog algorithm: hp://externaltable.blogspot.com/2014/08/scaling-up-cardinality- esmates-in.html www.enkitec.com 38 COUNT (DISTINCT column) www.enkitec.com 39 APPROX_COUNT_DISTINCT(column) www.enkitec.com 40 Thanks! Tanel Põder & Kerry Osborne Accenture Enkitec Group hp://www.enkitec.com hp://kerryosborne.oracle-guy.com hp://blog.tanelpoder.com
还剩39页未读

继续阅读

下载pdf到电脑,查找使用更方便

pdf的实际排版效果,会与网站的显示效果略有不同!!

需要 6 金币 [ 分享pdf获得金币 ] 0 人已下载

下载pdf

pdf贡献者

zts2014

贡献于2014-10-23

下载需要 6 金币 [金币充值 ]
亲,您也可以通过 分享原创pdf 来获得金币奖励!
下载pdf