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Abstract

We propose Neural Responding Machine (NRM), a neural nétlvased response generator for
Short-Text Conversation. NRM takes the general encoderdi framework: it formalizes the
generation of response as a decoding process based orethterégiresentation of the input text,
while both encoding and decoding are realized with rectimearal networks (RNN). The NRM
is trained with a large amount of one-round conversatioma datlected from a microblogging
service. Empirical study shows that NRM can generate grainatly correct and content-wise
appropriate responses to over 75% of the input text, oudpeihg state-of-the-arts in the same
setting, including retrieval-based and SMT-based models.

1 Introduction

Natural language conversation is one of the most challgngirtificial intelligence problems,
which involves language understanding, reasoning, anduthigation of common sense knowl-
edge. Previous works in this direction mainly focus on eithde-based or learning-based meth-
ods (Williams and Young, 2007; Schatzmann et al., 2006; Mtsal., 2012} Litman et al., 2000). These
types of methods often rely on manual effort in designingswr automatic training of model with a par-
ticular learning algorithm and a small amount of data, whitdikes it difficult to develop an extensible
open domain conversation system.

Recently due to the explosive growth of microblogging seesisuch as Twittrand Weiba the
amount of conversation data available on the web has tremoshdincreased. This makes a data-driven
approach to attack the conversation problem (Ji et al., 2Ritéer et al., 201[1) possible. Instead of mul-
tiple rounds of conversation, the task at hand, referred ®hert-Text Conversation (STC), only consid-
ers one round of conversation, in which each round is fornyetivb short texts, with the former being
an input (referred to as post) from a user and the latter ansspgiven by the computer. The research
on STC may shed light on understanding the complicated nmisrhzof natural language conversation.

Previous methods for STC fall into two categories, 1) theieedl-based method (Ji et al., 2014),
and 2) the statistical machine translation (SMT) based oawk{Ritter et al., 2011). The basic idea of
retrieval-based method is to pick a suitable response Wimaithe candidate responses with a linear or
non-linear combination of various matching features (eugnber of shared words). The main drawbacks
of the retrieval-based method are the following

¢ the responses are pre-existed and hard to be customizdukfpatticular text or requirement from
the task, e.g., style or attitude.

¢ the use of matching features alone is usually not sufficienditinguishing positive responses from
negative ones, even after time consuming feature engimee(e.g., a penalty due to mismatched
named entities is difficult to be incorporated into the mpdel

The SMT-based method, on the other hand, is generativec@lysit treats the response generation as
a translation problem, in which the model is trained on alpreorpus of post-response pairs. Despite

https://twitter.com/.
2http://www.weibo.com/.
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its generative nature, the method is intrinsically undlédor response generation, because the responses
are not semantically equivalent to the posts as in trapslatActually one post can receive responses
with completely different content, as manifested throughdaxample in the following figure:

| Post | Having my fish sandwich right now |
UserA | For god'’s sake, itis 11 in the morning
UserB | Enhhhh... sounds yummy
UserC| which restaurant exactly?

1.1 Overview

In this paper, we take a probabilistic model to address thpamse generation problem, and propose
employing a neural encoder-decoder for this task, nahedral Responding MachingNRM). The
neural encoder-decoder model, as illustrated in Figurerdt, Summarizes the post as a vector repre-
sentation, then feeds this representation to decoder terggenresponses. We further generalize this
scheme to allow the post representation dynamically chdagag the generation process, following the
idea in (Bahdanau et al., 2014) originally proposed for akoetwork-based machine translation with
automatic alignment.

For god's sake, it is 11 in the morning

Decoder

ﬁ vector

Encoder

i)

Having my fish sandwich right now

Enhhhh... sounds yummy which restaurant exactly?

Figure 1: The diagram of encoder-decoder framework forraat response generation.

NRM essentially estimates the likelihood of a responsergavpost. Clearly the estimated probability
should be complex enough to represent all the suitable nsggo Similar framework has been used
for machine translation with a remarkable success (Katmer and Blunsom, 2013; Auli et al., 2013;
Sutskever et al., 2014; Bahdanau et al., 2014). Note thataichine translation, the task is to estimate
the probability of a target language sentence conditiometth® source language sentence with the same
meaning, which is much easier than the task of STC which weamsidering here. In this paper, we
demonstrate that NRM, when equipped with a reasonable aobdata, can yield a satisfying estimator
of responses (hence response generator) for STC, despitiéfthulty of the task.

Our main contributions are two-folds: 1) we propose to usereoder-decoder-based neural net-
work to generate a response in STC; 2) we have empiricallfiegthat the proposed method, when
trained with a reasonable amount of data, can yield perfocedetter than traditional retrieval-based
and translation-based methods.

1.2 RoadMap

In the remainder of this paper, we start with introducing dag¢aset for STC in Sectidd 2. Then we
elaborate on the model of NRM in Sectidn 3, followed by thadebn training in Sectionl4. After that,
we report the experimental results in Secfidn 5. In Sefiare @onclude the paper.

2 TheDataset for STC

Our models are trained on a corpus of roughly 4.4 milliongpafrconversations from Weilfb

3The dataset and its English translation (by machine tréioslaystem) will be released soon.



2.1 Conversationson Sina Weibo

Weibo is a popular Twitter-like microblogging service ini@4, on which a user can post short messages
(referred to agostin the reminder of this paper) visible to the public or a grafpusers following
her/him. Other users make comment on a published post, whiche referred to asesponseJust like
Twitter, Weibo also has the length limit of 140 Chinese chema on both posts and responses, making
the post-response pair an ideal surrogate for short-textersation.

#posts 219,905

Training #responses | 4,308,211
#pairs 4,435,959

Test Data #test posts 110

| abeled Dataset #posts 225
(retrieval-based) #reSponseS. 6,017
#labeled pairg 6,017

Fine Tuning #posts 2,925
(SMT-based) #res_ponses 3,000
#pairs 3,000

Table 1: Some statistics of the dataskeabeled Dataset andFine Tuning are used by retrieval-based
method for learning to rank and SMT-based method for finenyniespectively.

2.2 Dataset Description

To construct this million scale dataset, we first crawl headrof millions of post-response pairs, and
then clean the raw data in a similar way as suggested in (Waadg 2013), including 1) removing trivial
responses like “wow”, 2) filtering out potential advertisamts, and 3) removing the responses after first
30 ones for topic consistency. Talile 1 shows some statistitise dataset used in this work. It can
be seen that each post have 20 different responses on avémaagition to the semantic gap between
post and its responses, this is another key difference tonargkeparallel data set used for traditional
translation.

3 Neural Responding Machinesfor STC

The basic idea of NRM is to build a hidden representation obst,pand then generate the response
based on it, as shown in Figdrk 2. In the particular illugirgtthe encoder converts the input sequence
x = (x1,--- ,x7) into a set of high-dimensional hidden representatiors (44, - - - , hr), which, along
with the attention signal at time(denoted asy;), are fed to the context-generator to build the context
input to decoder at time (denoted ag;). Theng; is linearly transformed by a matrik (as part of the
decoder) into a stimulus of generating RNN to producetttieword of response (denoted @3.

In neural translation systenl; converts the representation in source language to thargdttéan-
guage. In NRML plays a more difficult role: it needs to transform the repnéstion of post (or some
part of it) to the rich representation of many plausible oes®s. It is a bit surprising that this can be
achieved to a reasonable level with a linear transformatidhe “space of representation”, as validated
in Sectior 5.B, where we show that one post can actually ewoény different responses from NRM.

The role of attention signal is to determine which part of hidden representatioh should be em-
phasized during the generation process. It should be nb#&td: could be fixed over time or changes
dynamically during the generation of response sequenda the dynamic settingsy; can be function
of historically generated subsequer(eg, - -- ,y:—1), input sequence or their latent representations,
more details will be shown later in Section13.2.

We use Recurrent Neural Network (RNN) for both encoder arwbdier, for its natural ability to
summarize and generate word sequence of arbitrary lenidgikelpv et al., 2010; Sutskever et al., 2014;
Cho et al., 2014).
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Figure 2: The general framework and dataflow of the encodeoder-based NRM.
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Figure 3: The graphical model of RNN decoder. The dashed li@note the variables related to the
function g(-), and the solid lines denote the variables related to thetifumg (-).

3.1 TheComputation in Decoder

Figure[3 gives the graphical model of the decoder, whichssmtilly a standard RNN language model
except conditioned on the context inputThe generation probability of theth word is calculated by

p(yt|yt71, ce aylax) = Q(Z/tfl,st,ct), (1)

wherey; is a one-hot word representatigy;) is a softmax activation function, angis the hidden state
of decoder at time calculated by

St = f(yt—h St—1, Ct), 2)

and f(-) is a non-linear activation function and the transformatibnis often assigned as pa-
rameters off(-). Here f(-) can be a logistic function, the sophisticated long shortitenem-
ory (LSTM) unit (Hochreiter and Schmidhuber, 1997), or thecently proposed gated recurrent
unit (GRU) (Chung et al., 2014; Cho et al., 2014). Comparedingated” logistic function, LSTM and
GRU are specially designed for its long term memory: it canesinformation over extended time steps
without too much decay. We use GRU in this work, since it penfocomparably to LSTM on squence
modeling (Chung et al., 2014), but has less parameters anet ¢atrain.

3.2 TheComputation in Encoder
We consider three types of encoding schemes, namely 1)dbalgicheme, 2) the local scheme, and the
hybrid scheme which combines 1) and 2).

Global Scheme:  Figure 4 shows the graphical model of the RNN-encoder aatl@kcontext generator
for a global encoding scheme. The hidden state at tinsecalculated byr, = f(z¢, h—1) (i.€. still



GRU unit), and with a trivial context generation operatiamg essentially use the final hidden state

as the global representation of the sentence. The samegstiaas been taken in (Cho et al., 2014) and
(Sutskever et al., 2014) for building the intermediate @spntation for machine translation. This scheme
however has its drawbacks: a vectorial summarization oétttiee post is often hard to obtain and may
lose important details for response generation, espgaidlen the dimension of the hidden state is not
big enougﬂ. In the reminder of this paper, a NRM with this global encgdétheme is referred to as
NRM-glo.

Ct
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Figure 4: The graphical model of the encoder in NRM-glo, vehiire last hidden state is used as the
context vectoe; = hr.

Local Scheme: Recently| Bahdanau et al. (2014) &nd Graves (2013) intemlan attention mecha-
nism that allows the decoder to dynamically select and ligezombine different parts of the input
sequence; = Zle ai;hj, where weighting factors,; determine which part should be selected to
generate the new worgl, which in turn is a function of hidden states; = ¢(h;, s;—1), as pictorially
shown in Figurd b. Basically, the attention mechanisn models the alignment between the inputs
around positiory and the output at positiot) so it can be viewed as a local matching model. This local
scheme is devised in (Bahdanau et al., 2014) for automagjnrabnt between the source sentence and
the partial target sentence in machine translation. THieree enjoys the advantage of adaptively focus-
ing on some important words of the input text according togbeerated words of response. A NRM
with this local encoding scheme is referred to as NRM-loc.
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Figure 5: The graphical model of the encoder in NRM-loc, vehitwe weighted sum of hidden sates is

used as the context vectgr= Zle agihj.

{Sutskever et al. (2014) has to usg000 dimension for satisfying performance on machine trarmtati while
(Cho et al., 2014) with a smaller dimension perform poorlytramslating an entire sentence.



3.3 Extensions. Local and Global Model

In the task of STC, NRM-glo has the summarization of the emivst, while NRM-loc can adaptively
select the important words in post for various suitable sasps. Since post-response pairs in STC are
not strictly parallel and a word in different context can @alifferent meanings, we conjecture that the
global representation in NRM-glo may provide useful cohfex extracting the local context, therefore
complementary to the scheme in NRM-loc. It is therefore anmahextension to combine the two models
by concatenating their encoded hidden states to form amextkehidden representation for each time
stamp, as illustrated in Figufé 6. We can see the summanizafi is incorporated inta; and«y; to
provide a global context for local matching. With this hygbmethod, we hope both the local and global
information can be introduced into the generation of respormhe model with this context generation
mechanism is denoted as NRM-hyb.

It should be noticed that the context generator in NRM-hylbevoke different encoding mechanisms
in the global encoder and the local encoder, although th#ybericombined later in forming a unified
representation. More specifically, the last hidden stateRM-glo plays a role different from that of
the last state of NRM-loc, since it has the responsibilibet@ode the entire input sentence. This role
of NRM-glo, however, tends to be not adequately emphasizdrhining the hybrid encoder when the
parameters of the two encoding RNNs are learned jointly fsonatch. For this we use the following
trick: we first initialize NRM-hyb with the parameters of NRMc and NRM-glo trained separately,
then fine tune the parameters in encoder along with traitiagparameters of decoder.
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Figure 6: The graphical model for the encoder in NRM-hyb, levlsontext generator function is =
Zle asj[hk; hY), here[hl; hf] denotes the concatenation of vectbfsandhf.

To learn the parameters of the model, we maximize the likelihof observing the original response
conditioned on the post in the training set. For a new postyis@enerate their responses by using a
left-to-right beam search with beam size = 10.

4 Experiments

We evaluate three different settings of NRM described irtiSef8, namely NRM-glo, NRM-loc, and
NRM-hyb, and compare them to retrieval-based and SMT-bamtods.

4.1 Implementation Details

We use Stanford Chinese word segmeﬁtdam split the posts and responses into sequences of words.
Although both posts and responses are written in the sangeidge, the distributions on words for the
two are different: the number of unique words in post tex®§,237, and that of response text is 679,958.
We therefore construct two separate vocabularies for postgesponses by using 40,000 most frequent
words on each side, covering 97.8% usage of words for pos2@u286 for response respectively. All the

Shttp://nlp.stanford.edu/software/segmenter.shtml



remaining words are replaced by a special tokdNK”. The dimensions of the hidden states of encoder
and decoder are both 1,000, and the dimensions of the wobaédaiing for post and response are both
620. Model parameters are initialized by randomly sampiiogn a uniform distribution between -0.1
and 0.1. All our models were trained on a NVIDIA Tesla K40 GPsing stochastic gradient descent
algorithm with mini-batch. The training stage of each mddek about two weeks.

4.2 Competitor Models

Retrieval-based: with retrieval-based models, for any given ppstthe response* is retrieved from

a big post-response paifs, ) repository. Such models rely on three key components: agpigsitory,
sets of feature function®; (p*, (p, r)), and a machine learning model to combine these featurekisin t
work, the whole 4.4 million Weibo pairs are used as the répogi 14 features, ranging from simple
cosine similarity to some deep matching modgls (Ji et all42@re used to determine the suitability of
a post to a given pogt" through the following linear model

score(p®, (p,r)) = Zwiq’z‘(l?*7 (p, 7)) (3)

Following the ranking strategy in (Ji et al., 2014), we pi@62osts and about 30 retrieved responses for
each of them given by a baseline retri€/@om the 4.4M repository, and manually label them to obtain
labeled6,017 post-response pairs. We use ranking SVM maodel (Juacll006) for the parametess
based on the labeled dataset. In comparison to NRM, onlyapene response is considered in the
evaluation process.

SMT-based: In SMT-based models, the post-response pairs are diresdlg as parallel data for train-
ing a translation model. We use the most widely used opercegohrase-based translation model-
Moses |(Koehn et al., 2007). Another parallel data congjstir3000 post-response pairs is used to tune
the system. In[(Ritter et al., 2011), the authors used a nedd8MT model to obtain the “Response”
of Twitter “Stimulus”. The main modification is in replacinge standard GIZA++ word alignment
model (Och and Ney, 2003) with a new phrase-pair selectiotihaae in which all the possible phrase-
pairs in the training data are considered and their assatciaobabilities are estimated by the Fisher’'s
Exact Test, which yields performance slightly better thafadit settin. Compared to retrieval-based
methods, the generated responses by SMT-based methodsadte fluency or even grammatical prob-
lems. In this work, we choose the Moses with default settagysur SMT model.

5 Resultsand Analysis

Automatic evaluation of response generation is still amop@blem. The widely accepted evaluation
methods in translation (e.g. BLUE scofe (Papineni et aD220do not apply, since the range of the
suitable responses is so large that it is practically imiptes$o give reference with adequate coverage. It
is also not reasonable to evaluate with Perplexity, a glipersed measurement in statistical language
modeling, because the naturalness of response and thedredas to post can not be well evaluated.
We therefore resort to human judgement, similar to thatrtakgRitter et al., 20111) but with important
difference.

5.1 Evaluation Methods

We adopt human annotation to compare the performance efeliff models. Five labelers with at least
three-year experience of Sina Weibo are invited to do humvatluation. Responses obtained from the
five evaluated models are pooled and randomly permuted fir kebeler. The labelers are instructed
to imagine that they were the authors of the original postsjadge whether a response (generated or
retrieved) is appropriate and natural to a input post. Theeels are assigned to a response with scores
from O to 2:

Swe use the default similarity function of Lucelfie
8Reported results showed that the new model outperformebatbeline SMT model 57.7% of the time.



Post fh:ﬁ: glff ali_\iyf )E;%};l\z;l;r/s\ at ihje’\ltj%z;lgii:rlT restricted area. Unbelievable! Related Criterion Labels
Responsel Ié%;f? j: b/iJ;gj,:f‘ilfl)\()éflJ tili%tély%e?nfviﬁjz c>for the football game to start Logic Consistency | Unsuitable
Response2 Ii lji{afjfiziziihaj‘t;\s?;tg delicious. Semantic Relevance | Unsuitable
Response3 ljj—\ni‘eiijaﬁe!! Generality Neutral
Response4 ;i ﬁ:ﬁggﬁf& til? 0": Oi;igfafdsif;ji.o Scenario Dependence [ Neutral
ResponseS lTihi]s:_f jfaﬁf}‘/l tj}}gﬁtj’l.ii:igfending style football game. T Suitable

Figure 7: An example post and its five candidate responséshuinan annotation. The content of the
post implies that the football match is already started |evthie author of Responsel is still waiting for
the match to start. Response2 talks about the food of ItadgpBnse3 is a widely used response, but it
is suitable to this post. Response4 states that the cuerg & still 0:0, it is a suitable response only in

this specific scenario.

Table 2: The results of evaluated methods. Mean score is/érage value of annotated scores over all

Models Mean Score | Suitable (+2) | Neutral (+1) | Unsuitable (0) || Agreement
NRM-glo 0.969 34.0% 28.9% 37.1% 0.397
NRM-loc 1.065 36.0% 34.5% 29.5% 0.247
NRM-hyb 1.156 39.3% 37.1% 23.6% 0.309
\ Rtr.-based \ 0.984 \ 29.8% \ 38.7% \ 31.5% H 0.346 \
| SMT-based 0313 | 56% | 200% | 744% [ 0448 |

annotations. (Rtr.-based means the retrieval-based ahetho
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Happy birthday! Wish

A
Getting old now. Time

ID Post NRM-glo NRM-loc NRM-hyb Rtr.-based
HFTBARE . ZHE, BRREN |\ FFALREERA |LFARL, FHIE Sk
1 ) B!
High fever attacks me Rest more to boost Go to see a doctor Get well soon and stay | High fever...
every New Year’s Day | your immune system. |every New Year’s Day | healthy!
XET—%, B#ft&N | AR KZIH [ARRR! KTH5R | XTET, FARR |ZARELT —¥

I just gain only one

We should go out with
some cute guys to enjoy
a great outing in such a
nice weather.

Where is it? It is so
beautiful!

Such a nice sunny day!
I am in a great mood.

It is indeed a very nice
weather.

Grateful to my group, so | stand by you forever! |you always stay young | has no mercy. more year.
happy and pretty!
LR AR, BHME, [ LORIHF! il | BEAE, BRTE, |[FRBRERIE | BHE!
E RS
3 [ First day of being a I come to offer my Hold on, keep it up. I have been being a Hold on!
vegetarian. Hold on, support. Keep it up! vegetarian everyday
CuiDuoLa
AR AARZFAI | ZATOUR? AE!D [ TBAPE, SHEGFG| I RAAFRREN | LT & L3 HF
R KRR b

WenShan, let’s go out
to get some
inspiration. Ha! Ha!

Figure 8: Some responses generated by different modetgralty in Chinese with their literal English

translation), where the words in boldfaces are entity names




e Suitable (+2): the response is evidently an appropriate and natural resgorthe post;
e Neutral (+1): the response can be a suitable responsespeaificscenario;
e Unsuitable (0): it is hard or impossible to find a scenario where responseitatde.
To make the annotation task operable, the suitability obgated responses is judged from the follow-
ing five criteria:
(a) Grammar and Fluency: Responses should be natural language and free of any floegegmmat-
ical errors;
(b) Logic Consistency: Responses should be logically consistent with the tegt pos
(c) Semantic Relevance: Responses should be semantically relevant to the test post

(d) Scenario Dependence: Responses can depend on a specific scenario but shouldnitddiot the
first three criteria;

(e) Generality: Responses can be general but should not contradict théhfiest criteria;

If any of the first three criteria (a), (b), and (c) is contdd, the generated response should be labeled
as “Unsuitable”. The responses that are general or suitabpmst in a specific scenario should be
labeled as “Neutral”. Figure 7 shows an example of the labelésults of a post and its responses. The
first two responses are labeled as “Unsuitable” becauseedbtfic consistency and semantic relevance
errors. Response4 depends on the scenario (i.e., the teoae is 0:0), and is therefore annotated as
“Neutral”.

Model A | Model B Average

rankings
NRM-loc | NRM-glo | (1.463, 1.537) 2.01%
NRM-hyb | NRM-glo | (1.434, 1.566), 0.01%
NRM-hyb | NRM-loc | (1.465, 1.535)] 3.09%
Rtr.-based| NRM-glo | (1.512, 1.488)| 48.1%
Rtr.-based| NRM-loc | (1.533, 1.467)| 6.20%
Rtr.-based| NRM-hyb | (1.552, 1.448)| 0.32%

SMT NRM-hyb | (1.785, 1.215) 0.00 %
SMT Rtr-based | (1.738, 1.262)] 0.00 %

p value

Table 3: p-values and average rankings of Friedman test for pairwisdetncomparison. (Rtr.-based
means the retrieval-based method)

5.2 Resaults

Our test set consists of 110 posts that do not appear in théngaset, with length between 6 to 22
Chinese words and 12.5 words on average. The experimestdtgdased on human annotation are
summarized in Tablg]2, consisting of the ratio of three aaieg and the agreement among the five
labelers for each model. The agreement is evaluated bysFlappa [(Fleiss, 1971), as a statistical
measure of inter-rater consistency. Except the SMT-basmtknthe value of agreement is in a range
from 0.2 to 0.4 for all the other models, which should be ipteted as “Fair agreement”. The SMT-based
model has a relatively higher kappa value 0.448, which gellathan 0.4 and considered as “Moderate
agreement”, since the responses generated by the SMT aftentlhe fluency and grammatical errors,
making it easy to reach an agreement on such unsuitable. cases

From Tabld 2, we can see the SMT method performs significandhge than the retrieval-based and
NRM models and 74.4% of the generated responses were laagledsuitable mainly due to fluency
and relevance errors. This observation confirms with owition that the STC dataset, with one post
potentially corresponding to many responses, can not b@simken as parallel corpus in a SMT model.
Surprisingly, more than 60% of responses generated by althree NRM are labeled as “Suitable”
or “Neutral”, which means that most generated responsefitemet and semantically relevant to post.
Among all the NRM variants



¢ NRM-loc outperforms NRM-glo, suggesting that a dynamicgknerated context might be more ef-
fective than a “static” fixed-length vector for the entirespavhich is consistent with the observation
made in|(Bahdanau et al., 2014) for machine translation;

o NRM-hyp outperforms NRM-loc and NRM-glo, suggesting thajlabal representation of post is
complementary to dynamically generated local context.

The retrieval-based model has the similar mean score as §RMand its ratio on neutral cases
outperforms all the other methods. This is because 1) thmnses retrieved by retrieval-based method
are actually wrote by human, so they do not suffer from gratimalaand fluency problems, and 2)
the combination of various feature functions potentiallsgkes sure the picked responses semantically
relevant to test posts. However the picked responses amistimized for new test posts, so the ratio
of suitable cases is lower than the three neural generatamers

To test statistical significance, we use the Friedman ftestve, 2010), which is a non-parametric
test on the differences of several related samples, baseghkimg. Tablé B shows the average rankings
over all annotations and the correspondingalues for comparisons between different pairs of methods
The comparison between retrieval-based and NRM-glo isigatficant and their difference in ranking
is tiny. This indicates that the retrieval-based methodisgarable to the NRM-glo method. The NRM-
hyb outperforms all the other methods, and the differencstasstically significant)f < 0.05). The
difference between NRM-loc and retrieval-based methodasgmal ¢ = 0.062). SMT is significantly
worse than retrieval-based and NRM-hyb methods.

5.3 Case Study

Figure[8 shows some example responses generated by our NRRNgHe one with biggest likelihood

is given) and the comparable retrieval-based model. Ittiigining to notice that three NRM variants
give suitable but quite distinct responses, with differgetspectives and choices of words. This, as we
conjecture, is caused by both the architecture variationsng models as well as the variations from
random effects like the initialization of parameters. Arestinteresting observation is on the forth exam-
ple, where the retrieval-based method returns a resporkéehgia mismatched entity name “WenShan”,
which is actually a quite common problem for retrieval-lwhseodel, where the inconsistency details
(e.g., dates, named entities), which often render the resspansuitable, cannot be adequately consid-
ered in the matching function employed in retrieving theogses. In contrast, we observe that NRMs
tend to make general response and barely generate thodle.deta

wEH-R, BHAE, EXiE.
First day of being a vegetarian. Hold on, CuiDuoLa

Bz, BEEZR!

Hold on, Keep up your vegetarian diet.

BEfRD? BRERKFD? A KRG ML,
R2 | Would you like to be healthy? Would you like to live
long? If so, follow me on Weibo.

EFEARAA P AL E D7

This is the so-called vegetarian diet ?

LT A ARAE

R4 | Eat up so that you will have enough energy to go for
a diet!

ARRFEGHAR, TEHE!
R5 [Health is the essence for winning your future battles.
No rush!

Post

R1

R3

Figure 9: Multiple responses generated by the NRM-hyb.

We also use the NRM-hyb as an example to investigate thetyabiliNRM to generate multiple
responses. Figufe 9 lists 5 responses to the same post, arkigotten with beam search with beam size



=500, among which we keep only the best one (biggest liketihdor each first word. It can be seen
that the responses are fluent, relevant to the post, andastlly different from each other, validating our
initial conjecture that NRM, when fueled with large and rtcaining corpus, could work as a generator
that can cover a lot of modes in its density estimation.

6 Conclusionsand Future Work

In this paper, we explored using encoder-decoder-basedlmeiwork system, with coined name Neural
Responding Machine, to generate responses to a post. Ealgitiidies confirm that the newly proposed
NRMs, especially the hybrid encoding scheme, can outper&tate-of-the-art retrieval-based and SMT-
based methods. Our preliminary study also shows that NRMyeaerrate multiple responses with great
variety to a given post. In future work, we would consideriaddhe intention (or sentiment) of users as
an external signal of decoder to generate responses withfisggoals.
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