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Abstract

We have recently shown that deep Long Short-Term Memory
(LSTM) recurrent neural networks (RNNs) outperform feed
forward deep neural networks (DNNs) as acoustic models for
speech recognition. More recently, we have shown that the
performance of sequence trained context dependent (CD) hid-
den Markov model (HMM) acoustic models using such LSTM
RNNs can be equaled by sequence trained phone models initial-
ized with connectionist temporal classification (CTC). In this
paper, we present techniques that further improve performance
of LSTM RNN acoustic models for large vocabulary speech
recognition. We show that frame stacking and reduced frame
rate lead to more accurate models and faster decoding. CD
phone modeling leads to further improvements. We also present
initial results for LSTM RNN models outputting words directly.
Index Terms: speech recognition, acoustic modeling, connec-
tionist temporal classification, CTC, long short-term memory
recurrent neural networks, LSTM RNN.

1. Introduction

While speech recognition systems using recurrent and feed-
forward neural networks have been around for more than two
decades [1}[2], it is only recently that they have displaced Gaus-
sian mixture models (GMMs) as the state-of-the-art acoustic
model. More recently, it has been shown that recurrent neural
networks can outperform feed-forward networks on large-scale
speech recognition tasks [3} 4].

Conventional speech systems use cross-entropy training
with HMM CD state targets followed by sequence training.
CTC models use a “blank” symbol between phonetic labels and
propose an alternative loss to conventional cross-entropy train-
ing. We recently showed that RNNs for LVCSR trained with
CTC can be improved with the sMBR sequence training crite-
rion and approaches state-of-the-art [S]. In this paper we further
investigate the use of SMBR-trained CTC models for acoustic
speech recognition and show that with appropriate features and
the introduction of context dependent phone models they out-
perform the conventional LSTM RNN models by 8% relative
in recognition accuracy. The next section describes the LSTM
RNNs and summarizes the CTC method and sequence training.
We then describe acoustic frame stacking as well as context de-
pendent phone and whole-word modeling. The following sec-
tion describes our experiments and presents results which are
summarized in the conclusions.

2. RNN Acoustic Modeling Techniques

In this work we focus on the LSTM RNN architecture which
has shown good performance in our previous research, outper-
forming deep neural networks.
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Figure 1: Layer connections in unidirectional (top) and bidirec-
tional (bottom) 5-layer LSTM RNNs.

RNNs model the input sequence either unidirectionally or
bidirectionally [6]. Unidirectional RNE}IS (Figure |I| top) esti-

mate the label posteriors yf = p(l¢|x+, ht) using only left con-
text of the current input x; by processing the input from left

to right and having a hidden state h: in the forward direction.
This is desirable for applications requiring low latency between
inputs and corresponding outputs. Usually output targets are de-
layed with respect to features, giving access to a small amount
of right/future context, improving classification accuracy with-
out incurring much latency.

If one can afford the latency of seeing the entire sequence,
bidirectional RNNs (Figure [T] bottom) estimate the label poste-
riors p(l¢|ze, m, +) using separate layers for processing the
input in the forward and backward directions. We use deep
LSTM RNN architectures built by stacking multiple LSTM lay-
ers. These have been shown to perform better than shallow
models for speech recognition [[7, |8, 9 13]. For bidirectional
models, we use two LSTM layers at each depth — one operat-
ing in the forward and another operating in the backward direc-
tion over the input sequence. Both of these layers are connected
to both the previous forward and backward layers. The output
layer is also connected to both of the final forward and back-
ward layers. We experiment with different acoustic units for
the output layer, including context dependent HMM states and
phones, both context independent and context dependent (Sec-
tion [Z4). We train the models in a distributed manner using
asynchronous stochastic gradient descent (ASGD) optimization
technique allowing parallelization of training over a large num-
ber of machines on a cluster and enabling large scale training
of neural networks [10} [11} 12, |13} |3]. The weights in all the
networks are randomly initialized with a uniform (-0.04, 0.04)
distribution. We clip the activations of memory cells to [-50,
50], and their gradients to [-1, 1], making CTC training stable.

2.1. CTC Training

The CTC approach [14] is a technique for sequence labeling
using RNNs where the alignment between the inputs and tar-



get labels is unknown. CTC can be implemented with a soft-
max output layer using an additional unit for the blank label
used to estimate the probability of outputting no label at a given
time. “Blank” is similar to the “non-perceiving state” proposed
earlier [15]. The output label probabilities from the network
define a probability distribution over all possible labelings of
input sequences including the blank labels. The network can
be trained to optimize the total log probability of correct label-
ings for training data as estimated using the network outputs and
forward-backward algorithm [16]. The correct labelings for an
input sequence are defined as the set of all possible labelings
of the input with the target labels in the correct sequence pos-
sibly with repetitions and with blank labels permitted between
separate labels. The targets for CTC training can be efficiently
and easily computed using finite state transducers (FSTs) as de-
scribed in [S]], with additional optional blank states interposed
between the states of the sequence labels.

While conventional hybrid speech and handwriting recog-
nition systems usually train from fixed alignments, the use of
the forward-backward algorithm to reestimate network targets
given the current model can equally be applied to conventional
recurrent [17] or feed-forward networks [18]] if no such align-
ment is available. These conventional realignment systems have
followed the practice of choosing alignments to maximize the
likelihood of the data under state sequence(s) that match the
transcript, and use posteriors scaled by the label priors.

Hence, CTC differs from conventional modeling in two
ways. First, the additional blank label relieves the network from
making label predictions at a frame when it is uncertain. Sec-
ond, the training criterion optimizes the log probability of state
sequences rather than the log likelihood of inputs.

Whether using CTC with posteriors and a blank symbol or a
conventional model with scaled posteriors, once the target pos-
teriors are computed by the forward-backward algorithm, gra-
dients of the Cross Entropy loss between the softmax outputs
and the targets are backpropagated through the network.

As described in [5], one can use the standard beam search
algorithm for speech decoding with CTC models, again allow-
ing an optional blank state labels between the output labels in
the search graph. In decoding, we only scale the blank label
posterior by a constant scalar decided by cross-validation on
a held-out set. We found that CTC models with phone labels
do not require a language model weight to normalize acoustic
model scores with respect to language model scores. However,
CTC models with CD phone labels (Section[2.4)) perform better
with a weighting constant (2.1).

2.2. Sequence Discriminative Training

Cross-entropy and CTC criteria are suboptimal for the objective
of word error rate (WER) minimization in ASR. A number of
sequence-level discriminative training criteria incorporating the
lexical and language model constraints used in speech decod-
ing have been shown to improve the performance of DNN and
RNN acoustic models bootstrapped with CE [191 120112} 211 4]
or CTC training criteria [S]). In this paper, we use the state-level
minimum Bayes risk (sSMBR) sequence discriminative training
criterion [19] for improving accuracy of RNN acoustic mod-
els initialized with CE or CTC criterion. As discussed above
and before [3]], decoding with CTC models requires scaling the
blank label posterior. We found that sMBR training can fix this
scaling issue if we do not scale the blank label posterior while
decoding an utterance to get numerator and denominator lattices
during sSMBR training. Alternatively, the blank label scaling can

be baked into into the bias of the blank label output unit in the
RNN model by adding negative log of the scale before starting
sMBR training, just as the state priors can be baked into the
softmax biases of conventional models before sequence train-
ing.

To summarize, after sequence discriminative training, the
only difference between CTC and “conventional” models is the
use of the blank symbol. Henceforth we use “CTC” to refer to
these models (and their initial training using unscaled posteriors
to generate alignments) and contrast them with “conventional”
models which have no blank symbol, and which, in this paper,
we train with fixed hard alignments.

2.3. Acoustic Features

We use 80-dimensional log mel filterbank energy features com-
puted every 10ms on 25ms windows. We obtained significant
improvements by increasing the number of filterbanks from 40
up to 80, but only present results for the latter.

In the past, we have observed that training with CTC is un-
stable, in that some training runs fail to converge. We found [J3]
that stability was improved by starting training using two output
layers with CTC and the conventional CE loss, or initializing
from a network whose LSTM layers had been pretrained using
the CE loss. We suggest that this is because of the inherent arbi-
trariness of the alignment with CTC, which considers valid any
alignment in which the target symbols are emitted in the correct
order interspersed with an arbitrary number of blanks. One way
of reducing the huge space of alignments is to reduce the num-
ber of input frames. This can be done by simply decimating the
input frames, though to present the full acoustic information of
the input signal, we first stack frames so that the networks sees
multiple (e.g. 8) frames at a time but then decimate the frames
so that we skip forward multiple frames (e.g. 3) after processing
each such “super-frame”. This process is illustrated in Figure[2]

By decimating the frames in this manner, the acoustic
model is able to process the full signal but acoustic model com-
putation need only happen every 30ms. For a network of a fixed
size this results in a dramatic reduction in the acoustic model
computation and decoding time.
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Figure 2: Stacking and subsampling of frames. Acoustic fea-
tures are generated every 10ms, but are concatenated and down-
sampled for input to the network: 8 frames are stacked for uni-
directional (top) and 3 for bidirectional models (bottom).

2.4. Context-Dependent Phones

Previously CTC models [8l 5] used context independent out-
puts, yet it is well known that context dependent states out-
perform context independent models for conventional speech
recognition systems, both GMM-based and neural-network hy-
brids. We argue that context dependency is an important con-
straint on decoding and provides a useful labeling for state out-
puts, so believe it should be useful for CTC models.
Previously, [22] it was shown that it is possible to build con-
text dependent whole-phone models, and that for LSTM-HMM



hybrid speech recognition, these models can give similar results
to context dependent state models, provided that a minimum du-
ration is enforced. We repeat that procedure, using the hierar-
chical binary divisive clustering algorithm of Young et al. [23]]
for context-tying. We use three frames of 40-dimensional log-
mel filterbanks to represent each whole-phone instance. One
tree per phone is constructed, with the maximum-likelihood-
gain phonetic question being used to split the data at each node.
On our training data we end up with 9287 CD phones.

As found before, enforcing a minimum duration for each
phone was found to improve word error rates, and we again use
a 10% cutoff of the training-set duration histogram as the mini-
mum duration for each CD-phone for decoding of our conven-
tional models. For CTC, no such duration model is imposed.

2.5. Word Acoustic Models

The combination of LSTM RNNs’ memory and CTC’s abil-
ity to learn an alignment between label and acoustic frame se-
quences, while relieving the network from having to label each
frame by introducing the blank label, enables the use of longer
duration modeling units. For instance, we can train acoustic
models predicting whole words rather than phonemes. There
have been previous studies using LSTM RNN CTC models
for keyword spotting tasks with small vocabularies (e.g. 12
words [24]). In this paper, we investigate the effectiveness of
word acoustic models trained over a large training set with var-
ious large vocabularies ranging from 7,000 to 90,000 words.

3. Experiments
3.1. Data & Models

We train and evaluate LSTM RNN acoustic models on hand-
transcribed, anonymized utterances taken from real 16kHz
Google voice search traffic. Our training set consists of 3 mil-
lion utterances with average duration of about 4s. To achieve ro-
bustness to background noise and reverberant environments we
synthetically distort each utterance in a room simulator with a
virtual noise source. Noise is taken from the audio of YouTube
videos. Each utterance is randomly distorted to get 20 varia-
tions. This “Multi-style training” also alleviates overfitting of
CTC models to training data.

The test set’s 28,000 utterances are each distorted once with
held-out noise samples. Evaluation uses a 5-gram language
model pruned to 100 million n-grams. Rescoring word lattices
with a larger n-gram model gives similar relative gains for all
the acoustic models, therefore we only report results after first
pass decoding. For all the experiments, we use a wide beam
in decoding to avoid search errors and obtain the best possible
performance.

For training networks with CE criterion using fixed align-
ments, the training utterances are force-aligned using an 85 mil-
lion parameter DNN with 13522 CD HMM states. We explored
variations of frame stacking and skipping as described in sec-
tion[2.3] For the conventional unidirectional models’ inputs, we
either stack 8 consecutive feature frames and skip 1 frame or
present a single frame with a 5 frames delayed target — both
approaches give similar results. For the bidirectional models,
we only need to use a single frame input. For bidirectional CTC
models, we stack 3 consecutive feature frames as input feature
vector and skip 3 frames. For unidirectional CTC models, we
stack 8 consecutive feature frames and skip 3 frames (Figure2).
We found longer context helps unidirectional models but is not
needed for bidirectional models.

For CTC models, we obtained the best results with depth 5.

Unidirectional models used 500 memory cells in each layer and
bidirectional models had 300 memory cells for each direction
in each layer. For the conventional models, we got the best
results with 2 LSTM layers of 1000 cells each with a recurrent
projection layer of 512 units.

3.2. Results & Discussion

Table [T shows the word error rates (WERS) on the voice search
task for various unidirectional and bidirectional LSTM RNN
acoustic models trained with CE or CTC loss with CD HMM
state, CI phone or CD phone labels. As can be expected from
trying to learn with 3 state HMM labels, CTC CD state models
do not perform well. The unidirectional CE CD phone model
is marginally better than the corresponding CE CD state model.
CTC CI phone models perform very similarly to CE CD state
models. CTC CD phone models give significant improvements
over CTC CI phone models — about 8% for unidirectional and
3.5% for bidirectional. Bidirectional models improve over uni-
directional ones about 10% for CD state and CI phone models
— while improving CTC CD phone models only 5%.

Labels CE (%) CTC (%)

Uni | Bi | Uni [ Bi
CD state | 15.6 [ 14.0 | 18.9 | 16.5
CI phone 15.5 | 141
CD phone | 15.5 | 143 | 13.6

Table 1:  WERs for conventional and CTC initialization of
LSTM RNN acoustic models.

Table 2]shows the results for sequence discriminative train-
ing of these initial CE/CTC models with sMBR loss. We can
see that SMBR training consistently improves all of the models
initially trained with CE or CTC loss about 10% relative. We
obtain best results with CTC CD phone models outperforming
the second best model about 8% for unidirectional and 4% for
bidirectional model.

Labels Initialization +sMBR
Method [ Uni | Bi Uni | Bi
CD state CE 156 | 14.0 | 14.0 | 129
CI phone CTC 155 | 14.1 | 142 | 12.7
CD phone CTC 143 | 13.6 | 129 | 122

Table 2: WERs (%) for sequence-trained LSTM RNN models.

Figure [3] shows label posteriors estimated by various CTC
phone and CD phone models. It can be seen that spikes for the
label posteriors do not correspond to the DNN alignment and
differ between the models. Unidirectional models delay their
output labels by about 300 milliseconds. As can be expected,
bidirectional models make better predictions. The models are
not good at modeling silence labels. Sequence discriminative
training changes posteriors, but not the spike positions.

While learning an alignment in conventional GMM-HMM
systems and DNN-HMM hybrid systems has been shown to
work well, learning a conventional alignment without blank la-
bel using LSTM RNNs does not work well. Figure [d] shows la-
bel posteriors estimated using a unidirectional LSTM RNN CD
phone model trained with CTC loss with no blank label allowed
between CD phone labels. The model has learned an arbitrary
alignment. Having a memory as in RNN models in contrast to
memoryless feed forward neural networks means the model can
delay its outputs instead of making decisions using only local
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Figure 3: Label posteriors estimated by various LSTM RNN

models plotted against fixed DNN frame level alignments

shown only for labels in the alignment on a heldout utterance
‘museums in Chicago’. <b> refers to the blank label.

temporal information. Therefore, the model learns an alignment
where it chooses to adjust its labeling according to its certainty
for a label given the input. This results in an arbitrary alignment
where some labels are repeated more than others depending on
the input. Note that using a hybrid approach with a prior cannot
fix this issue.
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Figure 4: Label posteriors for a unidirectional LSTM RNN
model with conventional alignment — no blank label.

We have experimented with CTC word models with various
vocabulary sizes where the output layer directly predicts words
rather than phonemes. We have used two different vocabular-
ies with the most frequent 7,000 (> 150 exemplars) or 25,000
(> 20 exemplars) words from the training data transcripts. Ta-
ble Bl shows WERs for bidirectional CTC word acoustic mod-
els as calculated edit distance between reference word sequence

and predicted word sequence where the word with highest prob-
ability is taken ignoring repetitions and the blank label with no
language model or decoding. We have also experimented with
90k vocabulary CTC word models, and note that the bidirec-
tional model gives a 25% lower WER than the unidirectional
model. Figure [5] shows label posteriors estimated by the bidi-

[ Vocabulary | OOV | WER (%) [ In vocab. WER (%) |

25k Word 4.8 19.5 14.5
7k Word 13 26.8 11.8

Table 3: LSTM RNN CTC word acoustic models. The WERs
and out of vocabulary (OOV) rates for word models are on held-
out data with no decoding or language model. WERs in the last
column are computed ignoring utterances containing OOVs.

rectional CTC models with 7k and 90k vocabulary for a heldout
utterance. We plot the posteriors for all the labels that were
above 0.05 probability at any time. The words ’dietary’ and
‘nutritionist” are OOV for the 7k vocabulary. It is interesting
to see that the models make spiky predictions even with a large
vocabulary and the predictions for confused words are output
at the same time. Although these two models have very simi-
lar spike positions for the words, they are different for the 25k
model.
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Figure 5: ‘To become a dietary nutritionist what classes should
I take for a two year program in a community college’

4. Conclusions

In this work we have shown a number of improvements to recur-
rent network acoustic models. The use of longer-term feature
representations, processed at lower frame rates brought stabil-
ity to the convergence of CTC training of models with blank
symbol outputs while also resulting in a considerable reduction
in computation. After sequence training, such models are found
to perform better than previous acoustic models. Performance
of the blank-symbol acoustic models was further improved by
the introduction of context-dependent phonetic units, with the
result that these models now outperform conventional sequence
trained LSTM-hybrid models. We have also shown that we can
train word level acoustic models to achieve reasonable accuracy
on medium vocabulary speech recognition without using a lan-
guage model.
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