
Recurrent Neural Network based Language Modeling in Meeting Recognition

Stefan Kombrink, Tomáš Mikolov, Martin Karafiát, Lukáš Burget

Speech@FIT, Brno University of Technology, Brno, Czech Republic
{kombrink,imikolov,karafiat,burget}@fit.vutbr.cz

Abstract
We use recurrent neural network (RNN) based language mod-
els to improve the BUT English meeting recognizer. On the
baseline setup using the original language models we decrease
word error rate (WER) more than 1% absolute by n-best list
rescoring and language model adaptation. When n-gram lan-
guage models are trained on the same moderately sized data set
as the RNN models, improvements are higher yielding a system
which performs comparable to the baseline. A noticeable im-
provement was observed with unsupervised adaptation of RNN
models. Furthermore, we examine the influence of word his-
tory on WER and show how to speed-up rescoring by caching
common prefix strings.
Index Terms: automatic speech recognition, language model-
ing, recurrent neural networks, rescoring, adaptation

1. Introduction
Neural network (NN) based language models as proposed in
[12] have been continuously reported to perform well amongst
other language modeling techniques. The best results on some
smaller tasks were obtained by using recurrent NN-based lan-
guage models [10], [11]. In RNNs, the feedback between hid-
den and input layer allows the hidden neurons to remember the
history of previously processed words.

Neural networks in language modeling offer several advan-
tages. In contrary to commonly used n-gram language models,
smoothing is applied in an implicit way, and due to the projec-
tion of the entire vocabulary into a small hidden layer, seman-
tically similar words get clustered. This explains, why n-gram
counts of data sampled from the distribution defined by NN-
based models could lead to better estimates for n-grams, which
may have never been seen during training: Words get substi-
tuted by other words which the NN learned to be related. While
no such relation could be learned by a standard n-gram model
using the original sparse training data, we already showed in [1]
how we can incorporate some of the improvements gained by
RNN language models into systems using just standard n-gram
language models: by generating a large amount of additional
training data from the RNN distribution.

The purpose of this paper is to show, to what extent the
current RNN language model is suitable for mass application
in common LVCSR systems. We will show that the promising
results of previously conducted experiments on smaller setups
[10],[1] generalize to our state-of-the-art meeting recognizer
and can be applied in fact in any other ASR system without too

This work was partly supported by Technology Agency of the
Czech Republic grant No. TA01011328, Czech Ministry of Educa-
tion project No. MSM0021630528, Grant Agency of Czech Republic
projects Nos. GP102/09/P635 and 102/08/0707, and by BUT FIT grant
No. FIT-11-S-2.

wi-1

Si-1

Si

P(|s· i)

Pci(|s· i)

P(wi|wi-1,si-1) =

wi

ci

P(ci|si)Pci(wi|si)

Figure 1: Architecture of the class-based recurrent NN.

much effort. While RNN models effectively complement stan-
dard n-grams, they can be used also efficiently, even in systems
where speed or memory consumption is an issue.

In the following, we briefly introduce the utilized class-
based RNN architecture for language modeling. A system de-
scription and details about used language models follows. Fi-
nally, we present our experiments in detail and conclude with a
summary of our findings.

2. Class-based RNN language model
The RNN language model operates as a predictive model for the
next word given the previous ones. As in n-gram models, the
joint probability of a given sequence of words is factorized into
the product of probability estimates of all words wi conditioned
on their history hi = w1w2...wi−1:

P (w1w2...wn) =

n∏
i=1

P (wi|hi) (1)

The utilized RNN architecture is shown in figure 1. The previ-
ous word wi−1 is fed to the input of the net using 1-of-n encod-
ing1 together with the information encoded in the state vector
si−1 from processing the previous words. By propagating the
input layer we obtain the updated state vector si so that we can
write:

P (wi|hi) = Prnn(wi|wi−1, si−1) = Prnn(wi|si) (2)

Usually, the posterior probability of the predicted word is
estimated by using a softmax activation function on the out-
put layer, which has the size of the vocabulary. The posterior
probability for any given wi can be read immediately from the
corresponding output. Although often just the posterior proba-
bility of a particular wi is required, the entire distribution has to

1The input vector has the same dimensionality as the vocabulary
size. All inputs are set to zero except the one corresponding to the word
which is set to one.

be computed because of the softmax. By assuming, that words
can be mapped to classes surjectively, we can add a part for es-
timating the posterior probability of classes to the output layer,
and hence estimate the probability for the predicted word as the
product of two independent probability distributions - one over
classes and the other one over words within a class:

Prnn(wi|si) = Prnn(ci|si)P ci
rnn(wi|si) (3)

This leads to speed-up both in training and testing because only
the distribution over classes and then the distribution over words
belonging to the class ci of the predicted word have to be com-
puted [11].

3. Setup
3.1. System description

Our state-of-the-art baseline speech recognition system uses
acoustic and language models from the AMIDA Rich Transcrip-
tion 2009 system [9]. Standard speaker adaptation techniques
(VTLN and per-speaker CMLLR), fMPE MPE trained acous-
tic models and NN-bottleneck features [4] with CVN/CMN and
HLDA are used. The output of two complementary branches
(one based on PLP and the other based on posterior features)
served for cross-adapting the system. In both branches, lattices
are generated using a 2-gram language model and subsequently
expanded up to 4-gram order. The estimated adaptation trans-
formations are used in a lattice rescoring stage, whose lattices
finally serve as input to RNN rescoring as performed later in the
experiments.

Corpus Words RT09 RT11 RNN
Web data 931M ! – –
Hub4 152M ! 33M –
Fisher 1/2 21M ! ! !

Swbd/CHE 3.4M ! ! !

Meetings 2.1M ! ! !

Total 1.1G 1.1G 60M 26.5M

Table 1: Language models utilized in the LVCSR system

3.2. Language Models

In Table 1 we show the corpora2 used for training the base-
line language models. RT09 and RT11 were 4-gram models
using modified Kneser-Ney smoothing, and shared the same
vocabulary of 50k words. RNN was a class-based recurrent
network model trained online with 13 iterations of backprop-
agation through time (BPTT, [3]) and a learning rate of 0.1.
It used 500 hidden neurons, 1000 classes and full vocabulary
(without cut-offs, 65k words). Using only a moderately sized
subset3 of 26.5M words one iteration took approximately three
days on a single CPU. The rt06seval data set (30k words) served
as validation data in model training and combination. In our ex-
periments we report speech recognition results in WER on the
NIST rt05seval and rt07seval sets.

2The web data actually consists of four separate data sets described
more thoroughly in [8].

3AMI meetings + Fisher1/2 + CallHome English + Switchboard

4. Experiments
In our first experiment we kept the existing LVCSR setup and
just replaced the old n-gram models by models that used artifi-
cial RNN-sampled data in addition. Hence, no RNN language
model is required in this system.

4.1. Adding RNN-generated data

Model PPL Data #n-grams
RT11 82.5 see Table 1 14.4M

VA 81.7 300M words from RNN 35.5M
RT11+VA 76.6 interpolated RT11+VA 46.5M

RT09 72.2 see Table 1 51.2M
RT09+VA 69.2 interpolated RT09+VA 78.6M

Table 2: Interpolated language model perplexities (4-grams)

We sampled 300M additional words from the RNN lan-
guage model and used this data to create improved n-gram lan-
guage models. In Table 2 we show an overview of all n-gram
model combinations in decreasing order of perplexity (PPL).
It can be seen that the LM trained on the RNN data (VA) per-
forms already comparable to the RT11 model. Both models still
seem to be complementary: the RT11+VA model is an equally
weighted mixture of the RT11 and VA model and shows de-
creased PPL. Its model size is almost comparable to the RT09
model which uses much more data. When the RNN data is
used in combination with the RT09 model (RT09+VA) PPL de-
creases just slightly whereas the growth in number of n-grams
(78.6M) turns out to be huge.

As shown in table 3, by just replacing the original n-gram
model by an improved n-gram model using sampled RNN data
we can keep the original LVCSR setup and yet achieve some im-
provement. RNN data sampling decreases WER in case of the
smaller RT11 model, but does not work for the RT09 model,
which already uses plenty of training data. The RT09+VA
model showed no improvement over the RT09 model which is
why we did not use it in the following experiments at all.

Test set RT11 RT11+VA RT09 RT09+VA
rt07seval 22.2 21.5 20.3 20.4
rt05seval 19.0 18.5 17.7 17.7

Table 3: WER reduction due to the use of RNN sampled data

4.2. RNN rescoring

Further improvements are obtained by running a RNN rescoring
stage. In n-best list rescoring, the RNN model re-estimated a
log-likelihood score for each n-best hypothesis s:

logL(s) = n · wp+
n∑

i=1

asci + lms

n∑
i=1

logPx(wi|hi) (4)

where n is the number of words, wp is the word insertion
penalty, asci is the acoustic score for word wi, hi the history
w1...wi−1 and lms the language model scale applied in the
generation of the input lattices. Px is the combined probabil-
ity estimate of standard 4-gram and RNN models, which was
obtained by linear interpolation:

Px(wi|h) = λPrnn(wi|h) + (1− λ)Png(wi|h) (5)

rt07seval - 2.25 hours - 4527 utterances
n-gram model baseline RNN Adapt

RT09 20.3 19.6 19.4
RT11+VA 21.5 20.5 20.2

RT11 22.2 20.7 20.4

rt05seval - 2.00 hours - 3130 utterances
n-gram model baseline RNN Adapt

RT09 17.7 16.9 16.6
RT11+VA 18.5 17.4 17.1

RT11 19.0 17.4 17.2

Table 4: Word error rates (WERs) on the rt05seval and rt07seval
test sets using RNN rescoring and adaptation

Table 4 shows the n-gram models used in the system and
their performance gained by RNN rescoring. The 4-gram lat-
tices (4-gram) constituted the baseline which was used to extract
n-best lists. The improvement gained in our best system (RT09)
is 0.7-0.8% absolute, in the system enhanced by RNN data sam-
pling (RT11+VA) 1.0-1.1% and in the light-weight RT11 sys-
tem up to 1.6%.

4.3. LM Adaptation

rt07seval - 8 meetings - 19 speakers
WER Adaptation
19.6 RNN rescoring, no adaptation
19.7 on entire 1-best using one model
19.4 on 1-best per meeting using 8 models

rt05seval - 10 meetings - 50 speakers
WER Adaptation
16.9 RNN rescoring, no adaptation
16.8 on entire 1-best using one model
16.6 on 1-best per meeting using 10 models

Table 5: Influence of data ordering in adaptation (RT09 system)

Earlier experiments have already shown potential improve-
ments in case the language models gets adapted. The adaptation
process for the RNN model is a one-iteration retraining on the
1-best output from the rescored n-best lists. In the following,
rescoring is performed a second time using the adapted RNN
model, and an improved recognition output is obtained. Two
criteria were tried to determine the learning rate for RNN adap-
tation: best PPL on 1-best and best PPL on the validation data.
The optimal learning rate4 in terms of WER was often found in
between the estimates using both criteria.

In Table 5 we compare two ways of adaptation using our
best system. Adapting only one RNN model on the entire recog-
nition output did not work reliably. But when we adapted one
model per meeting and applied it in a second RNN rescoring
to the respective n-best lists only, we obtained considerable im-
provements. As shown in Table 4 we decreased WER further
between 0.2-0.3% on all system variants. In case the RT11 and
RT11+VA models are used, the system obtains finally performs
comparable to the original baseline (RT09) without any RNN
post-processing being used. These models require approxi-
mately 18 times less training data than the large RT09 model.

4Since this value is close to the inital learning rate used for RNN
training we suggest to use it as a guideline.

4.4. Influence of History

In previous experiments in [10] cache models still comple-
mented the RNN model. This suggested, that the simple RNN
architecture we are currently using still does not allow to learn
very long contexts. Hence, we tested the influence of the his-
tory length used in RNN rescoring. In general, the state vector is
conditioning the posterior probability estimate of the predicted
word on the preceding words. But the history can effectively be
“forgotten” by initializing this vector to some random default
value. Table 6 shows three different ways of using history in
RNN rescoring and their influence on WER:

Full history is used if the entire data set is processed se-
quentially where the state vector potentially can represent the
entire history. The state vector is just initialized once in the be-
ginning. For every utterance, all hypotheses are processed by
initializing the RNN with the state from the winning hypothesis
of the utterance processed previously. The drawback is that the
data set cannot be processed easily in parallel. Binned history is
used if the entire data set is split into equally sized bins which
are processed independently of each other. The state vector for
each bin gets initialized at the beginning of the processing. In
our experiments we ran RNN rescoring in parallel used bins
containing as few as 10-20 utterances without noticeable degra-
dation. Hypothesis history can be seen as binned history with
bins containing only one utterance. Although the considered
history comes already close to what is used in (high order) n-
gram models, it increased WER only by 0.1%. We conclude,
that the probability estimate of words is almost independent of
words in previous sentences.

Test-set Full Binned Hypothesis
rt07seval 19.6 19.6 19.7
rt05seval 16.9 16.9 17.0

Table 6: Influence of history in WER (RT09 system)

4.5. Speeding up rescoring

A well-known technique to speed up NN/RNN training and
evaluation is the use of shortlists as done in [5]. Whereas short-
list are known to degrade results, we use the factorization into
classes [11], which leads to faster processing and results without
large degradation. Another proposed speed-up is the block op-
eration: several words get propagated through the net in a single
matrix×matrix operation, which can be performed faster than a
sequence of matrix×vector operations. While that method can
be applied even to recurrent neural networks, the speedup is
smaller when class factorization is used, because the location
of the second softmax output layer is different for every word.
Hence, its softmax computation has do be done exclusively.

Locally caching hypotheses of single utterances
n-best size 10 100 1000
speed-up 2.1 2.6 3.3

avg cache size 55 354 2575
max cache size 438 3336 31392

Table 7: Trade-off between speed-up and cache size when state
vectors of common prefix strings on the rt07seval set are cached

Nevertheless, we can still take advantage of the fact that
n-best lists contain many hypotheses sharing common prefix

strings. We can precompute the set of prefix strings that oc-
cur at least twice and cache their corresponding state vectors
on-the-fly. By doing so, we obtain a speed-up by factor 2-3.

The cache accumulates state vectors and the posterior prob-
abilities of the sequence of words that has been cached. The
size of the cache should be kept down, because a medium-sized
RNN model (1250 hidden neurons) requires already 5 KB per
cached state. Therefore, it is appropriate to apply the caching
locally i.e. just within hypotheses of each single utterance. That
way, the precomputation of the prefix strings just needs to pro-
cess the hypotheses of a single utterance which allows to run
online decoding and online rescoring. Cache size will be al-
ways limited by the number of hypotheses and their length. The
last history state vector can be passed easily across utterances
to optimally preserve word history and obtain full accuracy in
rescoring.

Another speed-up of factor 2-3 was observed in rescoring
when floats were used instead of doubles. In that case, the RNN
model also consumed just half the memory. By now, 1000-best
rescoring can be done in 0.5×RT even for larger models (e.g.
hidden layer size of 500, factored by 1000 classes) on a 3 GHz
single core using 512 MB memory without loss in accuracy and
without the mentioned prefix caching.

Consequently, RNN rescoring of 10- or 100-best could be
used even in light-weight ASR setups, which due to memory
and CPU limitations usually work based on n-grams. Our soft-
ware for training RNN models and rescoring n-best lists can be
downloaded from http://www.fit.vutbr.cz/~imikolov/rnnlm. An
example package to repeat parts of the reported experiment is
also available under the given link.

5. Conclusions
We recommend the use of RNN language models as easy mean
to improve an existing LVCSR system, either by improving n-
gram models using data sampled from an RNN or by perform-
ing the proposed rescoring and adaptation postprocessing steps.

Previous experiments in [10] and [1] already showed the
advantage of RNN language models on simple ASR systems
using limited training data. While RNN training times are still a
bottleneck, we showed, that improvements can be obtained even
in a state-of-the-art ASR system using n-gram language models
trained on much more data than the RNN model. If the system
uses about 18 times less than the original language modeling
data, it still reaches a performance similar to the baseline.

Thus, RNN models are interesting also in cases of low-
resource ASR. RNN data sampling is an easy way to increase
the amount of training data than retrieving domain-relevant web
data, in case of low-resource languages it may be the only
way. The existing system can be improved without the need
to change the structure at all, just n-gram LMs needs to be re-
placed. Improvements may however vanish if RNN rescoring is
applied.

It was already pointed out in [2] that continuous space mod-
els should adapt better on little data than n-gram models. Unsu-
pervised adaptation of the RNN model on a meeting level pro-
vided noticeable improvements in addition to RNN rescoring.
We think there might be still potential e.g. by using dynamic
adaptation or the adaptation of just a subset of all RNN weights.

Still, the current RNN architecture can hardly exploit con-
text longer than a sentence. Further improvement could pos-
sibly be obtained by using long short term memory (LSTM)
RNNs [7] or temporal kernel [6].

Its fast rescoring process make class-based RNNs interest-

ing for light-weight and real-time ASR systems. We proposed
the caching of common prefix strings as an easy way to get
a speed-up of factor 2-3. Rescoring could be still made even
faster by combining block operation and prefix caching or par-
allelization. Prefix caching without block operation seems suit-
able for very light-weight (e.g. 10-best) online systems.

6. References
[1] A. Deoras, T. Mikolov, S. Kombrink, M. Karafiát and

S. Khudanpur. Variational Approximation of Long-Span
Language Models in LVCSR. In IEEE Intl. Conference
on Acoustics, Speech and Signal Processing (ICASSP),
Prague, CZ, May 2011.

[2] M. Afify, O. Siohan, and R. Sarikaya. Gaussian mix-
ture language models for speech recognition. In Acous-
tics, Speech and Signal Processing, 2007. ICASSP 2007.
IEEE International Conference on, volume 4, pages IV–
29. IEEE, 2007.

[3] M. Bodén. A guide to recurrent neural networks and back-
propagation. In THE DALLAS PROJECT, SICS TECHNI-
CAL REPORT T2002:03, SICS, 2002.

[4] F. Grezl, M. Karafiát and L. Burget. Investigation into
bottle-neck features for meeting speech recognition. In
Proc. Interspeech 2009, number 9, pages 2947–2950,
Brighton, GB, 2009. International Speech Communica-
tion Association.

[5] H. Schwenk and J.L. Gauvain. Building continuous space
language models for transcribing european languages.
pages 737–740, Lisbon, Portugal, 2005.

[6] M.C. Mozer. A focused backpropagation algorithm for
temporal pattern recognition, pages 137–169. L. Erlbaum
Associates Inc., Hillsdale, NJ, USA, 1995.

[7] S. Hochreiter and J. Schmidhuber. LSTM Can Solve Hard
Long Time Lag Problems. In Advances in Neural Infor-
mation Processing Systems 9, pages 473–479. MIT Press,
1997.

[8] T. Hain, L. Burget, J. Dines, G. Garau, M. Karafiát,
D.v. Leeuwen, M. Lincoln and V. Wan. The 2007
AMI(DA) system for meeting transcription. In Proc. Rich
Transcription 2007 Spring Meeting Recognition Evalua-
tion Workshop, Baltimore, Maryland USA, May 2007.

[9] T. Hain, L. Burget, J. Dines, N.P. Garner, A.H. El, M. Hui-
jbregts, M. Karafiát, M. Lincoln and V. Wan. The AMIDA
2009 Meeting Transcription System. In Proc. of INTER-
SPEECH 2010, volume 2010, pages 358–361, Makuhari,
Chiba, JP, 2010. International Speech Communication As-
sociation.

[10] T. Mikolov, M. Karafiát, L. Burget, J. Černocký and
S. Khudanpur. Recurrent neural network based language
model. In Proc. of INTERSPEECH 2010, number 9,
pages 1045–1048, Makuhari, Chiba, JP, 2010. Interna-
tional Speech Communication Association.

[11] T. Mikolov, S. Kombrink, L. Burget, J. Černocký and
S. Khudanpur. Extensions of Recurrent Neural Network
Language Models. In IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
Prague, CZ, May 2011.

[12] Y. Bengio, R. Ducharme, P. Vincent, C. Jauvin, T. Hof-
mann, T. Poggio and J. Shawe-taylor. A neural proba-
bilistic language model. In Journal of Machine Learning
Research, volume 3, pages 1137–1155, 2003.

