
MongoDB
Architecture Guide
The foundational concepts that underpin the
architecture of MongoDB

Introduction
Data and software are at the heart of
every business. But for many organizations,
realizing the full potential of the digital
economy remains a significant challenge.
Since the inception of MongoDB, we’ve
understood that the biggest challenges
developers face are related to working
with data:

	° Demands for higher productivity
and faster time to market are
being held back by rigid relational
data models that are mismatched
to modern code and impose
complex interdependencies among
engineering teams.

	° Organizations are unable to work
with, or extract insights from, the
massive and rapidly growing amount
of data generated by modern
applications, including time series,
geospatial, and polymorphic data.

	° Monolithic and fragile legacy
databases are inhibiting the
wholesale shift to distributed systems
and cloud computing that deliver
the resilience and scale demanded
by digital business and support new
regulatory demands for data privacy.

	° Previously separate transactional,
analytical, search, and mobile
workloads are converging to create
rich data-driven applications and
customer experiences. However,
each workload has traditionally
been powered by its own database,
creating duplicated data silos
stitched together with fragile ETL
pipelines, accessed by different
developer APIs.

To address some of these challenges, non-
tabular (sometimes called NoSQL or non-
relational) databases have been rapidly
adopted over the past decade. But many of
these NoSQL databases are simply Band-
Aids, offering a niche set of functionality.

The problem is that typical NoSQL
databases do one or two things well. They
might offer more flexibility in the data
model than traditional databases or scale
out easily. But to do this, they discard
the most valuable features of relational
databases. They often sacrifice data
integrity and the ability to work with data in
the ways needed to build rich and valuable
applications — whether these are new
digital touchpoints with an organization’s
customers, or modernized core back-end
business processes.

MongoDB
Architecture Guide

2

MongoDB was launched in 2009 as a
completely new class of general-purpose
database and quickly established itself
as one of the most popular databases
among developers. MongoDB retains the
best aspects of relational and NoSQL
databases while providing a technology
foundation that enables organizations
to meet the demands of modern
applications. It does this by replacing
the rigid tables of relational databases
with flexible documents that map to the
way developers think and code. Instead
of storing data in columns and rows,
document databases can store data as
JSON (JavaScript Object Notation). A
document database can store any type of
data, and the structure of documents can
be easily modified. This enables developers
to be far more productive and build or
iterate upon their applications faster. You
can add new fields without affecting other
documents in the collection, the MongoDB
equivalent of a table in a relational
database. And you can model data in any
way that suits the application, for example,
as key-value pairs, as the edges or nodes
of a graph, or as nested structures that
represent relationships.

Improved support for
time series data
Time series data is data that represents
how a system, a process, or a behavior
changes over time. It may be captured
at constant time intervals, like a device
measurement per second, or at irregular
time intervals, as with alerts and event
audits. Time series data is critical for
modern applications, in particular for
IoT, stock trading, clickstreams, and
social media. With the move from
batch to real-time systems, the efficient
capture and analysis of time series
data enables organizations to better
detect and respond to events ahead of
their competitors, improve operational
efficiency, and reduce cost and risk.

Thanks to MongoDB’s flexibility, teams
have been using the database to store
time series data for years. However,
correctly modeling the data to achieve
a performant solution was not always
straightforward. With time series
collections — a new collection type
introduced with MongoDB 5.0 — and
new features such as clustered indexing
and window functions, teams can
work with and store time series data
without having to worry about low-
level model optimization. MongoDB will
automatically optimize your schema
for high-storage efficiency, low-latency
queries, and real-time analytics against
temporal data.

The Document Model

MongoDB
Architecture Guide

3

As developers have experienced the
benefits of the document data model
for themselves, it has become the most
popular alternative to the tabular model
used by traditional relational databases.

The three primary advantages of the
document data model are:

1. Intuitive: faster and
easier for developers
Documents in the database directly map to
the objects in your code, so they are much
more natural to work with.

The following example of a JSON document
in MongoDB demonstrates how a customer
object is modeled in a single document
structure with related data embedded as
subdocuments and arrays. This approach
collapses what would otherwise be seven
separate parent-child tables linked by
foreign keys in a relational database.

With the document data model, there
is no need to decompose data across
tables, run expensive JOINs, or integrate
a separate Object Relational Mapping
(ORM) layer. Data that is accessed
together is typically stored together, so
you have less code to write and your users
get higher performance.

{
 “_id”:
 ObjectId(“5ad88534e3632e1a35a58d00”),
 “name”: {
 “first”: “John”,
 “last”: “Doe” },
 “address”: [
 { “location”: “work”,
 “address”: {
 “street”: “16 Hatfields”,
 “city”: “London”,
 “postal_code”: “SE1 8DJ”},
 “geo”: { “type”: “Point”, “coord”: [
 51.5065752,-0.109081]}},
],

 “phone”: [
 { “location”: “work”,
 “number”: “+44-1234567890”},
],
 “dob”: ISODate(“1977-04-01T05:00:00Z”),
 “retirement_fund”:
 NumberDecimal(“1292815.75”)
}

“The most beautiful
part is the data model.
Everything is a natural

JSON document. So for
the developers, it is easy

— really easy — for them
to work quickly. They’re

spending time on building
business value rather than

data modeling.”
— Filip Dadgar, IT manager,

Toyota Material Handling Europe

MongoDB
Architecture Guide

4

2. Flexible schema:
dynamically adapt
to change
A document’s schema is dynamic and
self-describing, so you don’t need to
predefine it in the database. Fields can
vary from document to document, and
you can modify the structure at any time,
allowing you to continuously integrate new
application functionality without dealing
with disruptive schema migrations.

When you need to make changes to the
data model, the document database
continues to store the updated objects
without the need to perform costly “ALTER
TABLE” operations, update a separate ORM
middleware layer, and coordinate all of
these changes across multiple developer,
DBA, and ops teams. Documents allow
multiple versions of the same schema to
exist in the same table space. Old and new
applications can coexist.

MongoDB also offers schema validation
so you can enforce rules governing the
structure of your documents. This is useful
as your applications move into production
because you can govern your schema
without having to write controls in the
application layer. With schema validation,

you can apply data governance
standards to a document schema while
maintaining the benefits of a flexible data
model in development.

3. Universal: JSON
documents are
everywhere
Lightweight and language-independent,
JSON has become an established
standard for data communication and
storage. Documents allow you to structure
data in any way your application needs
— rich objects, key-value pairs, tables,
geospatial and time series data, and the
nodes and edges of a graph. As a result
of these properties, you can serve
many more classes of application with a
single database.

MongoDB stores data as JSON documents
in a binary representation called BSON
(Binary JSON). Unlike most databases that
store JSON data as primitive strings and
numbers, the BSON encoding extends the
JSON representation to include additional
types such as int, long, date, floating point,
and decimal128. This makes it much easier
for applications using MongoDB to reliably
process, sort, and compare data.

MongoDB
Architecture Guide

5

https://docs.mongodb.com/manual/core/schema-validation/index.html

A few key differences among databases
are the expressivity of the query
language, the richness of indexing, and
the data-integrity controls.

The MongoDB Query API is comprehensive
and expressive. Ad hoc queries, indexing,
and real-time aggregations provide
powerful ways to access, group, transform,
and analyze data. You can federate queries
across databases, supporting transactional
workloads and archived data in your data
lake using the same query API and drivers,
all with a single connection string.

The MongoDB Aggregation Pipeline
allows you to transform and analyze data.
Documents enter a multistage pipeline
that transforms them into an aggregated
result. The most basic pipeline stages
provide filters that operate like queries and
document transformations that modify the
form of the output document. Other pipeline
operations provide tools for grouping and
sorting documents by specific fields, as
well as tools for aggregating the contents
of arrays, including arrays of documents. In
addition, pipeline stages can use operators
for tasks such as calculating an average
or concatenating a string. The pipeline
provides efficient data aggregation using
native operations within MongoDB and is
the preferred method for data aggregation
in MongoDB.

With ACID transactions, you can maintain
the same all-or-nothing and snapshot
isolation guarantees as with relational
databases. This remains possible whether

you’re manipulating data in a single
document or with MongoDB’s scale-out
architecture, across multiple documents, and
geographically distributed in multiple shards.

With strong data consistency, MongoDB
eliminates the application complexity
imposed by eventually consistent NoSQL
systems. MongoDB’s consistency guarantees
are fully tunable, enabling you to balance
data freshness against performance.

To make it easy for businesses to act on
data in real time, many developers are
building fully reactive event-driven data
pipelines. MongoDB goes beyond many
other databases with features such as
Change Streams, which automatically
detects and notifies consuming applications
of any data modifications in the database.

The MongoDB Query API absolves
developers from having to research,
learn, and stay up-to-date on multiple
ways to work with data across different
workloads. It’s more natural to use than
SQL because it feels like an extension of
the programming languages developers
are already using. To further accelerate
developer productivity, MongoDB provides
native drivers for popular programming
languages and frameworks. Supported
drivers include Java, JavaScript, C#/.NET,
Go, Python, PHP, Scala, Rust, and more.
All supported MongoDB drivers are
designed to be idiomatic for the given
programming language. This eliminates
the need for cumbersome and fragile
ORM abstraction layers.

Working With Document Data

MongoDB
Architecture Guide

6

https://www.mongodb.com/mongodb-query-api
https://www.mongodb.com/basics/aggregation-pipeline
https://www.mongodb.com/transactions
https://docs.mongodb.com/manual/changeStreams/

Through replica sets and native sharding,
MongoDB enables you to scale out your
applications with always-on availability.
You can distribute data for low-latency user
access while enforcing data sovereignty
controls for data privacy regulations such
as GDPR.

Availability and data
protection with replica sets
MongoDB replica sets enable you to create
up to 50 copies of your data, which can be
provisioned across separate nodes, data
centers, and geographic regions.

Replica sets are predominantly designed
for resilience. If a primary node suffers an
outage or is taken down for maintenance,
the MongoDB cluster will automatically
elect a replacement in a few seconds,
switching over client connections and
retrying any failed operations for you.

The replica set election process is
controlled by sophisticated algorithms
based on an extended implementation
of the Raft consensus protocol. Before
a secondary replica is promoted, the
election algorithms evaluate a range of
parameters including:

	° Analysis of election identifiers, time
stamps, and journal persistence to

Distributed Architecture:
Scalable, Resilient, and
Mission Critical

identify those replica set members
that have applied the most recent
updates from the primary replica

	° Heartbeat and connectivity status
with the majority of other replica
set members

	° User-defined priorities assigned to
replica set members

By extending data protection,
developers can configure replica sets
to provide tunable, multinode durability
and geographic awareness. Through
MongoDB’s write concern, you can ensure
write operations propagate to a majority
of replicas in a cluster. With MongoDB 5.0,
the default durability guarantee has been
elevated to the majority (w:majority) write
concern. Write success will now only be
acknowledged in the application once it
has been committed and persisted to disk
on a majority of replicas.

Choosing the new default versus the former
w:1 default allows for a stronger durability
guarantee, where acknowledged data can
survive replica set elections and complete
node failures. The new w:majority default
setting is fully tunable, so you can maintain
the earlier w:1 default or any custom write
concern you had previously configured.

You can also create custom write concerns
that target specific members of a replica

MongoDB
Architecture Guide

7

https://docs.mongodb.com/manual/replication/
http://docs.mongodb.org/manual/core/write-concern/

set, deployed locally and in remote regions.
This ensures writes are only acknowledged
once custom policies have been fulfilled,
such as writing to at least a primary and
replica in one region and at least one
replica in a second region. This reduces the
risk of data loss in the event of a complete
regional failure.

Beyond resilience, replica sets can also be
used to scale read operations, intelligently

routing queries to a copy of the data
that is physically closest to the user. With
sophisticated policies such as hedged
reads, the cluster will automatically route
queries to the two closest nodes (measured
by ping distance), returning results from the
fastest replica. This helps minimize queries
waiting on a node that might otherwise be
busy, reducing 95th and 99th percentile
read latency. Note that hedged reads are
available in shared clusters only.

Scale Up, Out, and
Across Storage Tiers
Like most databases, you can scale
MongoDB vertically by moving to larger
or smaller instance sizes. As a distributed
system, MongoDB can perform a rolling
restart of the replica set, enabling you to
move between different instances without
application downtime.

Through native sharding, MongoDB can
also scale out your database across
multiple nodes to handle write-intensive
workloads and growing data sizes. Sharding
with MongoDB allows you to seamlessly
scale the database as your applications
grow beyond the hardware limits of a
single server, and it does so without adding
complexity to the application.

To respond to evolving workload demands,
you can add and remove shards anytime.
You also have the flexibility to refine or

change your shard key — which determines
how data is distributed across a sharded
cluster — on demand without impacting
system availability. As your shard key is
modified or as you change the cluster
topology, MongoDB will automatically
rebalance data across shards as needed
without manual intervention.

By simply hashing a primary key value,
many distributed databases randomly
spray data across a cluster of nodes,
imposing performance penalties when data
is queried or adding application complexity
when you need to locate data in a specific
region. By exposing multiple sharding
policies to developers, MongoDB offers a
better approach. Data can be distributed
according to query patterns or data
placement requirements, giving you much

MongoDB
Architecture Guide

8

https://docs.mongodb.com/master/core/read-preference-hedge-option/index.html
https://docs.mongodb.com/master/core/read-preference-hedge-option/index.html
https://docs.mongodb.com/manual/sharding/

higher scalability across a more diverse set
of workloads. MongoDB native sharding
gives you the following options:

	° Ranged sharding: Documents are
partitioned across shards according
to the shard key value. Documents
with shard key values close to one
another are likely to be co-located
on the same shard. This approach
is well suited for applications that
need to optimize range-based
queries, such as co-locating data for
customers in a specific region on a
specific set of shards.

	° Hashed sharding: Documents are
distributed according to an MD5 hash
of the shard key value. This approach
guarantees a uniform distribution of
writes across shards, which is often
optimal for ingesting streams of time
series and event data.

	° Zoned sharding: This allows
developers to define specific rules
governing data placement in a
sharded cluster.

Beyond vertical and horizontal scaling,
MongoDB also offers tiered scaling. When
working in the cloud, the MongoDB Atlas
Online Archive will automatically tier aged
data out of the database and into cloud
object storage. Archived data remains
fully accessible with federated queries that
span both object and database storage in
a single connection string. This approach
enables you to more economically scale
data storage by moving it to a lower-cost
storage tier without losing access to the
data and without grappling with slow and
complex ETL pipelines.

Figure 1: Serving always-on, globally distributed, write-everywhere apps with MongoDB Atlas Global Clusters

MongoDB
Architecture Guide

9

https://docs.atlas.mongodb.com/online-archive/manage-online-archive/
https://docs.atlas.mongodb.com/online-archive/manage-online-archive/
https://docs.mongodb.com/datalake/reference/config-files/data-lake-configuration

With the growing digital economy comes
an increase in governmental oversight
of privacy and data security. MongoDB
includes extensive capabilities to defend,
detect, and control access to data:

	° Authentication: MongoDB offers
a strong challenge-response
mechanism based on SCRAM-256,
along with integration to enterprise
security infrastructure, including
LDAP, Windows Active Directory,
Kerberos, x.509 certificates, and
AWS IAM.

	° Authorization: Role-based access
control (RBAC) enables you to
configure granular permissions for
a user or application based on the
privileges they need to do their jobs.

	° Auditing: For regulatory compliance,
security administrators can use
MongoDB’s native audit log to record
all database activity and changes.

	° Network isolation: For users
running fully managed databases
in MongoDB Atlas, user data
and underlying systems are fully
isolated from other users. Database
resources are associated with a
user group, which is contained in
its own virtual private cloud (VPC).
Access can be granted only by IP
whitelisting or VPC peering.

	° Encryption everywhere: MongoDB
data can be encrypted while in
motion across the network, while in
use in the database, and while at
rest, whether on disk or in backups.

With client-side field-level encryption
(FLE), you have access to some of the
most advanced data protection controls
anywhere. FLE makes it even safer to
store your most sensitive data in the cloud
because it’s completely inaccessible to
anyone who doesn’t have the encryption
keys, including those running the database
for you.

FLE also makes it easier to comply with
“right to be forgotten” conditions in
privacy regulations, such as the GDPR and
the CCPA. Simply destroy the customer
key and the associated personal data is
rendered useless.

With FLE, you can selectively encrypt
individual document fields, each optionally
secured with its own key and decrypted
seamlessly on the client. In MongoDB, FLE
is totally separated from the database,
making it transparent to the server. Instead,
it’s handled exclusively within the MongoDB
drivers on the client. All encrypted fields
on the server — stored in memory, in system
logs, at rest, and in backups — are rendered
as ciphertext, making them unreadable
to any party that does not have both
client access and the keys necessary to
decrypt the data. This is a different and
more comprehensive approach than the
column encryption used in many relational
databases. Most of these databases
handle encryption server-side, so data is
still accessible to administrators who have
access to the database instance itself, even
if they have no client access privileges.

Privacy and Security

MongoDB
Architecture Guide

10

https://docs.mongodb.com/manual/security/
https://docs.mongodb.com/manual/security/
https://docs.mongodb.com/manual/core/security-client-side-encryption/
https://docs.mongodb.com/manual/core/security-client-side-encryption/

Building on MongoDB’s document
data model, expressive Query API, and
distributed systems DNA, the MongoDB
Atlas application data platform delivers a
cohesive and integrated set of data and
database services. Atlas streamlines how
teams work with data, specifically in the
context of building software and systems
that deliver real-time experiences to both
end customers and internal users. Key
characteristics of MongoDB’s application
data platform include:

	° A data plane with the ability to
support a wide variety of application
types that can be independently
developed, deployed, and evolved to
address a wide variety of application
types and use cases

	° A unified and consistent experience
for developers, data analysts, data
scientists, and critical supporting
functions such as operations teams,
security teams, and data engineers

	° Global, multi-cloud data
distribution — built on MongoDB’s
native sharding — to support data
residency requirements and provide
deployment flexibility

	° Transparent data movement
between services and automated
data life-cycle management

At its core, MongoDB Atlas provides a
general-purpose database (Atlas Database)
for modern applications. Nearly every
application needs a fast database that can
deliver single-digit millisecond response
times. And with its flexible document
data model, transactional guarantees,
rich and expressive query API, and native
support for both vertical and horizontal
scaling, Atlas Database can be employed
for practically any use case, reducing the
need for specialized databases even as
requirements change. Cluster auto-scale
adjusts both compute and storage in
response to application load, eliminating
the need to monitor utilization and react to
scaling needs.

Atlas Database is available in more
than 80 regions across AWS, Google
Cloud Platform, and Azure. Best-in-class
infrastructure and database automation
ensure continuous availability, elastic
scalability, and compliance with the most
demanding data security and privacy
standards. Uptime is backed by a 99.995%
service-level agreement.

One Platform for All
Your Workloads

MongoDB
Architecture Guide

11

https://www.mongodb.com/cloud/atlas
https://www.mongodb.com/cloud/atlas
https://docs.atlas.mongodb.com/cluster-autoscaling/
https://docs.atlas.mongodb.com/cluster-autoscaling/

Security

Multi-Cloud

Distributed
Architecture

Uni	ed Interface
Transactional

Search Mobile

Real-Time
Analytics

Document Model

Objects

Graphs

Geospatial

Relationships

Key Value
Pairs

Beyond offering fully managed MongoDB
databases in the cloud, Atlas provides
additional complementary services
that allow organizations to support a
wide range of application and real-time
analytics data workloads.

Figure 2: MongoDB’s application data platform

MongoDB
Architecture Guide

12

The best way to run
MongoDB in the cloud
Atlas Database delivers MongoDB
as a pay-as-you-go service billed on
an hourly basis. To deploy it, you can
use a GUI or the admin API to select
the public cloud provider, region,
instance size, and features you need.
Atlas Database provides:

	° Automated database and
infrastructure provisioning
along with auto-scaling, so
teams can get the database
resources they need, when
they need them, and elastically
scale in response to application
demands.

	° Always-on security to protect
data, including network
isolation, fine-grained access
controls, auditing, and end-to-
end encryption down to the
level of individual fields.

	° Certifications with global
standards for supporting
compliance, including ISO
27001, SOC 2, and more. Atlas
Database can be used for
workloads subject to HIPAA,
PCI-DSS, or GDPR.

	° Built in replication both within
and across regions for always-
on availability, even in the face
of complete regional outages.

	° Global Clusters for fully
managed, globally distributed
databases that provide low-

Real-Time Analytics
Atlas Database allows you to deploy a
read-only analytics node to serve more
resource-intensive analytics queries.
You can easily target analytics nodes by
configuring the read preference, effectively
ensuring that analytics queries leveraging
MongoDB’s built-in aggregation pipeline
never contend for database resources
with your operational workloads. Analytics
nodes, like all read-only nodes within a
MongoDB cluster, do not participate in
elections and can never be elected to the
cluster primary.

Atlas Search
Atlas Search is built into MongoDB Atlas,
making it easy to build fast, full-text search
capabilities on top of your MongoDB data
with no need to learn a different API or
deploy a separate search technology. Atlas
Search is built on top of Apache Lucene,
the industry standard library. Search
indexes run alongside the database and
are automatically kept in sync. Supported
search capabilities include fuzzy search,
autocomplete, facets and filters, custom
scoring, analyzers for more than 30
languages, and more.

Atlas Data Lake
Atlas Data Lake is an on-demand query
service that enables you to analyze data
in cloud object storage (Amazon S3) in
place using the MongoDB Query API.
There is no infrastructure to set up or
manage. Atlas Data Lake automatically

Continued on next page »

MongoDB
Architecture Guide

13

https://docs.atlas.mongodb.com/global-clusters/
https://www.mongodb.com/atlas/search
https://www.mongodb.com/atlas/data-lake

parallelizes operations by breaking down
queries and dividing the work across
multiple compute nodes. Atlas Data
Lake can also automatically optimize
workloads by utilizing compute in the
region closest to your data. This is useful
for data residency, granting you the ability
to specify the region in which your data
should be processed.

Support for federated queries allows you to
combine and analyze data across S3 and
your Atlas database clusters, together with
a single query. In addition, you can easily
persist the results of aggregations to either
object storage or your cloud database.
Supported data formats include JSON,
BSON, CSV, TSV, Avro, ORC, and Parquet.

Atlas Charts
Atlas Charts is a data visualization service
that natively supports richly structured
JSON data. Easily create charts, graphs,
and dashboards in a drag-and-drop
interface, and share them with other
users for collaboration or embed them
directly into your applications to create
engaging user experiences. Atlas Charts
can be configured to read from analytics
or secondary nodes, ensuring no impact
to operational workloads. Supported
data sources include one or more Atlas
Database deployments, Atlas Data Lake,
or a combination of both.

Realm Sync
Realm Sync provides bidirectional data
sync between Atlas Database clusters and
Realm, a lightweight, open-source mobile

latency, responsive reads
and writes to users anywhere,
with strong data sovereignty
controls for regulatory
compliance. Global Clusters
allow you to quickly implement
zoned sharding using a visual
UI or the Atlas Admin API. Each
zone is part of the same cluster,
so they can be queried globally,
but data is pinned to shards in
specific regions based on data
localization policies.

	° Multi-cloud clusters allow
you to distribute the data in a
single logical database across
multiple cloud providers for
cross-cloud redundancy, even
wider geographic reach, and
seamless migrations across
cloud providers. Multi-cloud
clusters can also be used to
easily leverage the best services
from each cloud provider on
your live, operational data —
e.g., users who run primarily
in AWS can quickly spin up a
replica on Google Cloud to take
advantage of Google’s latest AI/
ML services.

	° Fully managed backups
with point-in-time recovery
to protect against data
corruption, and the ability to
query backups in place without
full restores.

	° Fine-grained monitoring, real-
time metrics, query profiler,
and customizable alerts for
comprehensive performance
visibility.

Continued on next page »

MongoDB
Architecture Guide

14

https://www.mongodb.com/products/charts

database. Realm is a more developer-
friendly alternative to embedded data
stores such as SQLite or Core Data.
This joint solution helps solve the unique
challenges of building offline-first
applications for mobile, making it simple
to store data on-device — allowing data
access even when offline — and enabling
bidirectional updates when a connection
is established. Realm’s SDKs give
developers the tools needed to access
data stored in MongoDB Atlas directly
from the client and interact with the
platform’s broader set of services.

GraphQL
Automatically generate a JSON schema
for your MongoDB collections and
enable GraphQL for your MongoDB
apps with a simple click. By querying
against a single endpoint to get exactly
the data you need, you can build highly
performant applications. When you use
GraphQL alongside MongoDB’s other app
development features — such as built-in
authentication and data access control —
it’s also simple to secure your app.

Event-Driven Architecture
Part of the broader services available
to Atlas users, functions allow you to
define and execute server-side logic
without having to provision or manage
servers, making it easy to integrate with
cloud services, build APIs, and more.
Atlas Triggers allow you to automatically
execute functions in real time — in response
to changes in the database or user-
authentication events, or at preset intervals.

	° Intelligent schema and index
recommendations with the
Performance Advisor, which
analyzes slow query logs of
your database collections and
provides suggestions ranked
by impact to your database
performance.

	° Automated patching and
single-click upgrades for new
major versions of the database,
enabling you to take advantage
of the latest MongoDB features.

	° Auto-archiving of aged data
from your live database clusters
to fully managed cloud object
storage with Online Archive.
Federated query enables you
to analyze your data from
your operational database
and historical data on object
storage together and in
place with a single query for
faster insights. Queries are
automatically routed to the
appropriate data service
without having to think about
data movement, replication,
or ETL.

	° Live migration to move a self-
managed MongoDB database
into the Atlas service or to
move Atlas databases between
cloud providers.

	° A 512 MB perpetual free tier.

Atlas Database is serving a vast range
of workloads for startups, Fortune
500 companies, and government
agencies, including mission-critical
applications handling highly sensitive
data in regulated industries.

MongoDB
Architecture Guide

15

https://www.mongodb.com/realm/appdev
https://docs.mongodb.com/realm/functions/
https://docs.atlas.mongodb.com/triggers/index.html
https://www.mongodb.com/cloud/atlas/performance
https://www.mongodb.com/atlas/online-archive

If you need to run MongoDB on your own
self-managed infrastructure for business
or regulatory requirements, MongoDB
Enterprise Advanced is a finely tuned
package of advanced software, support,
certifications, and other services that can
help. Enterprise Advanced can be used
to power a MongoDB database behind
a single application, or to build your own
private database service and expose it to
your development teams.

As part of the MongoDB Enterprise
Advanced subscription, MongoDB
Enterprise Server is a version of the
database software that includes an in-
memory storage engine for high throughput
and predictable low latency; advanced
security options, such as LDAP and
Kerberos access controls; comprehensive
auditing; and an encrypted storage engine
for protecting data at rest.

MongoDB Ops Manager simplifies the
administration tasks associated with
running MongoDB on premises or in a
private cloud. With Ops Manager, you can

automate deployment, monitoring, backup,
and scaling of MongoDB. You can also
manage the complete life cycle of your
MongoDB databases via a powerful GUI,
or programmatically with APIs to enable
integration with your Infrastructure-as-
Code (IaC) tools.

Kubernetes users can use the MongoDB
Enterprise Operator for Kubernetes, which
integrates with MongoDB Ops Manager to
automate and manage MongoDB clusters.
It gives you full control over your MongoDB
deployment from a single Kubernetes
control plane. You can use the operator with
upstream Kubernetes, or with any popular
distribution such as Red Hat OpenShift or
Pivotal Container Service (PKS).

The MongoDB Connector for BI lets you
use MongoDB as a data source for your
existing SQL-based BI and analytics
platforms such as Tableau, Microstrategy,
Looker, and more. It is included with
MongoDB Enterprise Advanced and
available in a pay-as-you-go model for
Atlas database clusters.

MongoDB for Mission-Critical
Applications in Your
Data Center

MongoDB
Architecture Guide

16

https://www.mongodb.com/products/mongodb-enterprise-advanced
https://www.mongodb.com/products/mongodb-enterprise-advanced
https://www.mongodb.com/try/download/enterprise
https://www.mongodb.com/try/download/enterprise
https://www.mongodb.com/products/ops-manager
https://www.mongodb.com/kubernetes
https://www.mongodb.com/kubernetes
https://www.mongodb.com/products/bi-connector

MongoDB Community Server is the free,
source-available version of the database
software. It has been downloaded hundreds
of millions of times and includes all the core
database functionality — flexible document
model, expressive query API, replication,
and sharding — to support building a wide
variety of applications.

MongoDB Compass
You can easily interact with your MongoDB
data using MongoDB Compass, the GUI
for MongoDB. Through Compass you
can explore and manipulate data, create
queries and aggregation pipelines visually
from the GUI and then export them as code
to your app, view and create indexes, build
schema validation rules, and more.

Cloud Manager
Cloud Manager is the cloud-based
management platform that enables you
to deploy, monitor, back up, and scale
MongoDB. It enables you to automate
administration tasks like deployment,
monitoring and alerts, scaling, upgrades,
backup, and performance optimization.

It also helps you identify issues before
they become emergencies and streamline
operations. With Cloud Manager, you
can monitor trends, see live workload
characteristics, set up alerts, and get
performance-optimization suggestions.

Connectors
The MongoDB Connector for Apache Spark
exposes all of Spark’s libraries, including
Scala, Java, Python, and R. MongoDB data
is materialized as DataFrames and Datasets
for analysis with machine learning, graph,
streaming, and SQL APIs.

With the MongoDB Connector for Apache
Kafka, you can build robust data pipelines
that move events between systems in real
time, using MongoDB as both a source and
sink for Kafka. The connector is supported
by MongoDB and verified by Confluent.

You can use any distribution of Kubernetes
to manage the full life cycle of your
MongoDB clusters, wherever you choose to
run them, from on-premises infrastructure
to the public cloud. With MongoDB’s
Kubernetes integrations, you can run and
scale your clusters with ease regardless of
your chosen infrastructure topology.

Run MongoDB for Free
With Tools From Us

MongoDB
Architecture Guide

17

https://www.mongodb.com/try/download/community
https://www.mongodb.com/try/download/community
https://www.mongodb.com/products/compass
https://www.mongodb.com/products/spark-connector
https://www.mongodb.com/kafka-connector
https://www.mongodb.com/kafka-connector
https://www.mongodb.com/kubernetes
https://www.mongodb.com/kubernetes

Every industry is in the midst of digital
transformation. Many businesses are
unable to realize the full potential of
their investments because they fail to
modernize their data architecture. As
you build or remake your company for a
digital world, speed matters — measured
by how fast you build applications, scale
them, and gain insights from the data
they generate. These are the keys to
applications that provide better customer
experiences; enable deeper, data-
driven insights; and make new products
or business models possible. MongoDB
enables you to meet the demands of
modern apps with a complete application
data platform that includes all the
complementary services developers need.

Getting Started
In this guide we explored the foundational
concepts that underpin the architecture of
MongoDB. Other guides on topics such as
performance, operations, and security best
practices can be found at MongoDB.com.

You can get started now with MongoDB by:

1.	 Reviewing the Use Case Guidance
White Paper to identify applicable
use cases for MongoDB.

2.	Spinning up a fully managed
MongoDB cluster on the Atlas free
tier or downloading MongoDB for
local development.

3.	Reviewing the MongoDB manuals and
tutorials in our documentation.

Safe Harbor
The development, release, and timing of any features or functionality described for our
products remains at our sole discretion. This information is merely intended to outline our
general product direction, and it should not be relied on in making a purchasing decision, nor is
this a commitment, promise, or legal obligation to deliver any material, code, or functionality.

© 2021 MongoDB, Inc. MongoDB and the MongoDB leaf logo are
registered trademarks of MongoDB, Inc. Published November 2021.

MongoDB
Architecture Guide

18

https://www.mongodb.com/atlas
https://www.mongodb.com/collateral/use-case-guidance-where-to-use-mongodb
https://www.mongodb.com/collateral/use-case-guidance-where-to-use-mongodb
https://www.mongodb.com/cloud/atlas
https://www.mongodb.com/cloud/atlas
https://www.mongodb.com/download-center?#community
https://docs.mongodb.com/

