
SOME CONSTRAINTS AND TRADEOFFS
IN THE DESIGN OF

NETWORK COMMUNICATIONS*

E. A. Akkoyunlu
K. Ekanadham
R. V. Hubert

Department of Computer Science
State University of New York at Stony Brook

A number of properties and features of interprocess communication systems are presented,
with emphasis on those necessary or desirable in a network environment. The interactlonsbetween
these features are examlned, and the consequences of thelr incluslon in a system are explored.
Of special interest are the tlme-out feature which forces all system table entries to "die of
old age" after they have remained unused for some period of time, and the insertion property
which states that it is always possible to design a process which may be Invls~bly inserted
into the communication path between any two processes. Though not fled_to any particular system,
the discussion concentrates on distributed systems of sequential processes (no interrupts)
with no system buffering.

Key Words and Phrases: interprocess communication, computer networks, ports.

CR Categories: 3.81, 4.32, 4.39

i. Introduction

The design of an interprocess communication
mechanism (IPCM) usually starts wlth a description
of the desired behavior of the system and the ser-
vices to be provided. In selecting the features to
be incorporated into the IPCM, the greatest amount
of care is required, for these features are inter-
dependent to a great degree, and it is crucial that

the design process start with a complete, detailed
specification of the system to be designed, with
the consequences of each decision fully explored
and understood. The temptation of piecemeal de-
sign is to be avoided at all costs.

The major aim of the paper is to point out
the interdependence of the features to be incorpor-
ated in the system. In some cases, the incompat-
ibility between certain features is direct and
obvious. But often two features which look quite
independent turn out to affect one another, and
these are the more interesting cases. Unless the
trade offs involved are explored at the outset, it
is possible to find oneself 'locked out' of
certain desirable features, because of unforeseen
implications of an earlier decision. Though
certain combinations of alternatives are outright
incompatible, there are also cases where two fea-
tures can both be accomodated, but at the expense
of somebasic design principle. This often

*This work was supported in part by the NSF Grant
JO 42562.

TPresent address: Dept. of Industrial Engineering
Texas A & M University
College Station, Texas 77843

results In some horrendous code 'patched' into the
system, and much elegance is lost. The resulting
system is harder to implement, verify, understand,
debug, and maintain. Theseare the questions
which extract a "well, we didn't actu~implement
it that way," response fro~ system deslgners.

Unfortunately, wlth few exceptions [6, 10, 15],
there is little guldance to be found in the pub-
lished literature on this Importantpolnt - how to
arrive at a consistent and elegant design. This
paper is a modest attempt to help fill this gap.
The paper wlll addressltself to generalconcepts
rather than to the specifics of a particular de-
sign, although it was Influenced to aconslderable
degree by the experience gained in the design and
implementation of the Stony Brook System [2]. A
brief description of this system is given next to
provide a context for the discussion.

I.I The Stony Brook System (SBS) •

SBS is intended to function both as a stand
alone system and as a node in a. network. The aim
was to obtain a design which was simple and elegant
in both environments. Also the overhead due to the
network operation was to be minimal.

In order to localize the effects of changes in
the network, the Remote Executive (REX) is designed
as a separate module and forms the sole interface
to the network. The basic IPC Is simple and sup-
ports only direct communication between local
processes.

Processes wishing to communicate across the
network cannot establish direct connections and

67

must go through indirect paths. On the other hand
users are primarily interested in the communica-
tion between the (logical) sender and receiver of
a message.

In order to reconcile these seemingly contra-
dictory goals (i.e. to have an IPCMwhich knows
only about direct connections and users who are
only interested in logical connections) SBS uses
a strategy which amounts to building a network
communication facility consisting of intermediate
processes. These intermediate processes are not
part of the basic IPC of any site. They are in-
serted in the communication path through the
directory or broker process when a connection is
set up. The intermediate processes are the only
ones to know about the indirect nature of the
communications which involve them. The key to
making this strategy work is a Judicious choice of
the set of primitives of the simple local IPCM.
For example, the basic system can only provide
status information about the outcome of a direct
transaction, whereas the user needs information
about the logical message. To bridge this gap,
the IPCM allows a 'delayed status return', which
is used by the intermediate process to supply the
status only when it finds out the ultimate outcome.
The primitives used by REX and other system pro-
cesses are also available to any user. In addition
to keeping the system simple, this philosophy en-
sures a powerful and flexible communication
facility.

1.2 Features to be Considered

We begin with an informal description of the
major features to be discussed.

Port___s Processes communicate through ports [3, 15]
which may be thought of as abstract connections.
A transaction takes place only when both parties
indicate their willingness through a "rendezvous"
at the port. (In some cases, the initialization
of this procedure presents certain problems
whose solution is not trivial.)

Sequential Processes In keeping with the modern
trend [7, Ii] We assume that all processes are
sequential.

Messages In a network which consists of disparate
machines it is very desirable to deal with mes-
sages at the logical level. It is then easier
to ship a message across the boundary between two
machines with different word sizes and differing
resources. This may be achieved, for instance,
as a series of partial transfers without taxing
the capabilities of the smaller machines. The
participants need only be awakened when the whole
transaction is complete.

System Bufferin$ As this is awkward to implement
with certain architectures, (e.g. on the PDP-15
on which SBS was Implemented each process has to
run within a contiguous block of core) we shall
confine ourselves to systems which do not provide
this facility.

Time-Outs In practice, the system can only re-
tain information for a limited time; undelivered
or partially fulfilled messages are timed out and
deleted. A subsidiary question is whether the

system also forgets about the status of messages
that are timed out. Time-outs affect each of these
situations differently and we shall consider each
case in its context. Also sequential processes re-
quire time-outs, otherwise they would be forced to
wait forever for a message which was never sent - a
situation which is likely to arise in a network
environment.

Status Information One of the facilities provided
by a well-designed IPCM is to return information
to the participants of a transaction as to its out-
come. This status return faeilityis quite burden-
some, especially in computer networks, and it was
proposed [14] to eliminate it altogether in such
situations. Although this would result in consid-
erable simplification, it can beshown (see
appendix) that if the system itselfdidnot provide
this facility, there is theoretically no protocol
that the users themselves may devise to fill this
gap and totally eliminate their anxiety [1]. At
any rate, much of this paper is devoted to the lim-
itatlons of what the system itself can and cannot
do in this respect.

Well-Known Ports Modern operating systems which
provide sophisticated communication facilities,
usually take advantage of this capability to imple-
ment certain system functions. This increases
modularity since such functions (e.g. file direc-
tory) can then be prevented from being buried deep
into the system and can operate (more or less) as
the user processes. They are then easier to debug,
modify and tune up. The problem is that such
processes must participateln communications with
many others without having prior knowledge of the
identity of their partner. This communication
occurs through well-known ports which must at all
costs be protected from malfunction. Undebugged or
malicious user processes have to be prevented from
interfering with the operation of well-known ports.

Insertion Property Computer networks seldom main-
tain the same configuration over extended periods.
If a user process has to resort to a different
protocol with every change a program which ran one
day may not run the next. It is therefore desir-
able to insulate user programs as much as possible
from such variations. This increasesportability
and flexibility. In this paper we dlscussan ex-
treme approach, namely the insertion property, [4]
which makes all intermediate processes inserted
between the two main participants totally invisible
to them - a useful feature to have in a network. A
less extreme and more practical version of the in-
sertion property is also discussed, where the aim
is not so much to prevent a process from detecting
the presence of an intermediate process, but to
enable a process to operate in the same manner in
either case.

2. Centralized vs. Distributed Systems

2.1 Centralized Communication Facility

A centralized facility is characterized by the
presence of a single agent who has the complete
state information pertinent to a communication.
Further such an agent will be able to change the
state of a system in a well-defined manner. For
example the IPCM (which is the centralized agent)
may match SEND and RECEIVE requests of two

68

processes, transfer the data between their buffers
and provid e appropriate status to both. Each of
these processes is then assured that the status
received by the other process was consistent with
the information it received. Though it is possible
that the IPCM may crash during the state change,
in practice, it is the heart of an operating system
and if it crashes there will be no further interest
in the resulting state of the system. We shall
ignore such cases in our discussion.

2.2 DiStributed Communication Facility

A distributed facility is one in which there
is no single agent who knows the complete state at
any time. The IPCM is composed of several inde-
pendent components which have to coordinate and
exchange the parts of state information each has.
As a consequence there is potential delay in ef-
fecting a global change. Further, if one of the
components of a distributed facility crashes we
shall still be interested in the activity of the
rest of the components. As an example (Figure i),
consider the two processes Fl and P2 on two differ-
ent machines communicating through a network.

\ / k /
V

Machine 1 Machine 2

Figure I.

The process P can be thought of as an interface
between the two machines parts of which lle on
each machine. The details of handling the network
lines (which are not shown in the figure but are
assumed to be absorbed in P) are managed by this
interface. If one machine or a communication llnk
crashes, we want the surviving IPCM's to continue
their operation. At least one component should
detect a failure and be able to communicate. (In
the case of a communication llnk failure, both
ends must know.) Note that a star configuration
of many machines where the central node handles
all Inter-machlne requests is distributed, assum-
ing that the central node does not know the states
of all processes on the peripheral nodes at any
time.

Distributed communication can take place even
in a stand-alone system if there are one or more
intermediate processes taking part in a communi-
cation. The situation wo~dbe similar to Figure 1
except that since P, P1 and P2 are now all on the
same machine, IPCMi and IPCM2 are also the same.
The main parties to the communication are P1 and
P2, P being an intermediate process which performs
some service, say translationand/or monitoring
of messages in both directions. Each transaction
between P1 and P2 consists of 2 steps (PI to P and
P to P2) which would normally be treated as inde-
pendent transactions by the IPCM. For instance,
the status returned to P1 would reflect only the
outcome of the transaction between P1 and Pal-

though P1 is really interested in the eventual fate
of its communication with P2. This means that if
Fl (and P2) are to receive status information about
the success/failure of the overall communication
then PI, P2 and P must devise a fairly elaborate
protocol. A solution wh/ch avoids these complications
is the facility to ask for a delay in status as part
of the RECEIVE primitive. This new RECEIVE & DELAY
STATUS primitive has the effect that status return
to the sender does not occur immediately upon the
transmission but only when the receiver issues a
SEND STATUS primitive. In the above example (assum-
ing a message going from P1 to P2) P would use this
facility to receive data from P1. It would then go
ahead and relay the data to P2. Subsequently, when
P itself obtains the status of this second step, it
can issue the appropriate status to P1 through a
SEND STATUS primitive.

2.3 Special Cases of Distributed Facility

We first eliminate a few pathological
situations.

FACT 0: A perfectly reliable distributed
system can be made to behave as a central-
ized system.

Intuitively, this is because the relevant
state information which is distributed in several
components is generally accessible. For the system
to behave as a centralized system it is enough if
the component IPCM at one end of a communication
path knows the fate of a message at the other end.
This can be achieved by an exchange of status in-
formation between the two IPCM's (through reliable
co~mnunication).

In practice, it is unreasonable to expect
perfect reliability of the communication links
connecting the various components of the IPCM's. It
is possible to relax this requirement, and we state
without proof:

FACT I: A distributed IPCM can be made to
simulate a centralized system provided that

(1) the overall system remains connected
at all times, and
(2) when a communication link fails, the
component IPCM's that are connected to it
know about it, and
(3) the mean time between two consecutive
failures is large compared to the mean
transaction time across the network.

In view of Fact 0, it is enough to show that
reliable co~mnunication can be achieved under the
above conditions. The informal Justification is
as follows: Link failure detection enables the
nodes to adopt a scheme in which one and only one
copy of an undelivered message is retained at any
time. Thus an undelivered message cannot be lost
and disappears from the network when delivered.
Condition (1) ensures that there will always be a
path from any node to another. A proper failure
rate (condition(3)) together with the choice of a
suitable routing strategy ensures that a message
moving around within a subset of nodes in the
network (while the target node is outside this
subset) has to get out of the subset in finite
time and this guarantees that the message even-
tually reaches the target. Precise bounds on the
failure rate can be computed for any given routing
strategy. One (rather inefficient) strategy, for

69

example, is that each time a message comes back to
an intermediate node, it tries to send it through
the oldest link on which the same message was sent
before, so that each possible path is tried ulti-
mately.

Both of the cases described above represent
rather special situations because

(a) they involve inefficient and compli-
cated algorithms,
(b) practical systems have other features
such as time-out, which complicate matters,
and
(c) the property of connectedness may be
violated, in that the failure of a single
link may result in two disconnected com-
ponents.

In the following discussion, we consider distribu-
ted systems in general.

3. Status in Distributed Systems

3.1 Complete Status

Ideally, the status supplied to a process
should specify completely the final outcome of a
transaction (i.e. whether the message reached the
destination). Such a status is called complete.
If a system provides complete status to both pro-
cesses, then the two parties not only know the ul-
timate fate of the transaction, but also know that
they are in agreement as to what exactly happened.
While it is possible to achieve complete status in
a centralized system with reasonable assumptions,
we now show that this is not the case in a distri-
buted system where many compromises have to be
made.

FACT 2: In an arbitrary distributed facil-
ity, it is impossible to provide complete
status.

Two examples in which complete status cannot
be provided are given below.

Assume first that condition (I) of FACT i is
violated and at some time the network splits into
two disjoint systems leaving two component IPCM's
(IPCMi and IPCM2) disconnected. If, at that time,
IPCMi was awaiting the outcome of a transaction
(involving IPCM2) in progress, there is no way
IPCMi can provide complete status to the local
party to the transaction.

Consider next a violation of condition (2)
of FACT I and again a transaction involving IPCMI
and IPCM2 (Figure 2).

IPCMi

IPCMi cannot provide
is informed by IPCM2

Network ~ ~

IPCM2

Figure 2.
complete status to Pi until it
about the fate of the trans-

action at the other end. But this status, supplied
by IPCM2 itself uses unreliable communication paths.
Therefore, IPCM2 cannot be sure that the status
reached IPCMi, unless it gets an acknowledgement
message, etc. This leads to an infinite exchange
of messages between the two IPCM's. A more formal
proof of this result is given in [i].

3.2 Time-outs

In practice unfulfilled requests of processes
are timed out and the processes are notified.
Furthermore, the system itself is usually limited
by finite resources such as table space, etc.,
which hold control information in handling requests,
so that it cannot afford deadlock situations which
might arise as a result of a chain of requests
waiting one for the other. A time-out mechanism is
useful in breaking such chains. Next, we show that
such considerations may prevent complete status,
even if the system is totally reliable.

FACT 3: In a distributed system with time-
outs, it is impossible to provide complete
status (even if the system is absolutely
reliable).

This can be shown by an example. Suppose
(Figure 3) Pi sends some data to P2 through a chain
of distributed components as shown. If after Ii
has taken the data from Pi but before the status
information has returned, Pl's request times out,
what status shall be returned to Pi?

Figure 3.

IPCMi has no knowledge of the final outcome of the
transmission (the data may or may not have reached
P2), indeed P2 may not be willing to receive it.
Whatever status IPCMi returns to Pi it may prove to
be incorrect. Hence complete status to both par-
ties is imp~slble. PI has to be told of the un-
certainty. Thus uncertain status is inevitable at
times in a distributed facility with time-outs.

3.3 Insertion Property

An IPCM is said to possess the insertion pro-
perty if it is possible to deign an intermediate
process P as in Figure 4b which remains invisible
to PI and P2; for any pair of primitives Pi and P2
issue, they should get the same status they would
have obtained were they directly connected as in
Figure 4a. Such intermediate processes are useful
in network interfaces; they can do code transla-
tions etc., without bothering the two processes,
Pi and P2.

©,,, o Q
Figure 4a.

70

Figure 4b.

However the insertion property imposes addi-
tional constraints on the status that can be sup-
plied as shown below.

FACT 4: In a distributed system with time-
outs, the insertion property can be possess-
ed only if the IPCM withholds some status
information that is known to it.

To justify this we make the following observa-
tions. It is obvious that delayed status is nec-
essary if the insertion property is to hold and the
configurations in Figures 4a and 4b are to behave
the same way. Consider the case of a message sent
from P1 to P2. Once the data is read by P, P1
enters a state called awalt-status. If this await-
status times out (before P could learn what happen-
ed to the data) what status can be provided to Pi?

Clearly, he cannot be told of the eventual
outcome since that information is not available yet.
On the other hand we cannot very well tell him that
he was awaiting status, which would imply that his
message was received by someone. But what if the
message never reaches as far as P2? This violates
the insertion property since a comparable situation
is not possible in Figure 4a.

If instead PI was told that its original re-
quest was timed out, this again violates the inset- -
tlon property because P2 may in fact have received
the data and this does not happen in the situation
of Figure 4a.

The only other way is to give an ambiguous
status to Pi, which leaves him in doubt as much as
it would have, were P1 and P2 directly connected.
One such scheme is to introduce a new status to
cover the situation. Furthermore, this status
must arise at least in one situation in which the
two processes are directly connected. Thus, a
deliberate suppression of what happened is intro-
duced by providing the same status to cover a
tlme-out which occurs while awaiting status and,
say, a transmission error. If, in addition, it is
stipulated that a RECEIVE request always delays
status to the sender, then the insertion property
may be achieved. Thus if Pl gets such an ambig-
uous status, he does not know whether a transmission
failure occurred or his awalt-status timed out.
Both these situations are possible in Figures 4a
and 4b. Inany case P1 has to conclude that P2
may or may not have received the data.

Thus the IPCM is forced to hide information on
purpose to preserve the insertion property under
the above conditions.

4. Logical and Physical Messages

The basic function of an IPCM is the transfer
of data between two or more processes and the
synchronization of those processes. To effect this

synchronization, the data may be thought of as
being divided into messages, regardless of whether
the IPCM itself is '~essage oriented" or "connec-
tlon oriented".

Because of various limitations imposed by
either the IPCM or the programs themselves, it may
be necessary to divide messages into several units
each of which may be sent through the IPCM as the
result of a single operation. The sizes of these
units depend on the buffer sizes of the processes
involved in communication.

4.1 Buffer Size Considerations

At a relatively early point in the design of
any IPCM which provides no system buffering, a
decision must be made as to the course to be fol m
lowed in the case of unmatched buffer sizes, as
shown in Figure 5.

G SEND 50 ~RECEIVE 1 0 0 Q

Figure 5.

The problem can of course be avoided by setting a
system-wlde standard buffer size. But this is too
restrlctiye in a network of heterogeneous systems.
If a mismatch is to be tolerated one approach is
to satisfy the request with smaller buffer size and
tell both parties what happened. This strategy is
unattractlvebecause it forces the processes to
deal with the low level details of communication.
(It also violates the insertion property.)

A more attractive solution is the design which
allows for p~tlaltransfers. In such a design the
information specified in the smaller request (50
words in the example) is tran~erred and only the
process which issued the smaller request is awaken-
ed. The other process remains asleep awaiting
further transfers. An end of message (EOM) indi-
cator is also required to wake up the receiver even
when its buffer is not full.

If a system is to support partial transfers,
time-outs and the insertion property simultaneously
there is a problem: suppose that the RECEIVE
request in our example times out after receiving
the first 50 words. Telling the process how much
information is present in its buffer violates the
insertion property so that we would have to return
an uncertain status in this case. This is but one
example of a situation which arises often in a sys-
tem with partial transfers: a reasonable strategy
would violate the insertion property by divulging
the buffer size. We therefore propose a weak
insertion property, where the availability of
buffer size information is tolerated. This re-
tains most of the advantages of the strict inser-
tion property since only programs which explicitly"
attempt to detect the buffer size of their partners
would be affected.

71

4.2 Partial Transfers and Well-Known Ports

Consider the situation shown in Figure 6,

~ Well-Known

A single service process is accepting requests
from several different user processes (Pi-Pn).
The service process might be a directory process,
a compiler, or any other process which provides a
general service and accepts messages through a
well-known port (one which is known to all process-
es without recourse to a directory or broker [5];
obviously, the broker process must have a well-
known port). The example in Figure 6 demonstrates
the problem.

If P1 (in Figure 6) sends a message that is
not complete to the service process (the EOM indi-
cation is not ON) and does not fill the service
process buffer, there are two problems we must
consider.

First the port must be "reserved" for Pi. We
cannot allow a message from P2, for example, to be
used to complete the RECEIVE request which was
partially fulfilled by the partial message from Pi.
Secondly we must devise some method of handling
the situation when the reservation times out,
since there is no way to tell P1 that the first
part of the message has timed out and thus been
ignored. Pl is preparing to send the second part
and is not listening for incoming messages from
the service process. This means that the second
part of the message may eventually arrive with the
EOM indication set so that it looks llke a com-
plete message.

Since none of these problems arise in a sys-
tem without partial transfers, another solution
is to ban partial transfers to service processes
with well-known ports. This is the approach
taker in ~22ANET, ~nkere communlcationto well-
known ports are restricted to short, complete
messages [9] which are used to setup a separate
connection for subsequent communication (see
Figure 7).

It should also be noted that the problems with
well-known ports arise through their interaction
with tlme-outs and partial transfers. An IPCM with-
out partial transfers will not have these problems
since there is no time when only one party to the
communication is awakened. True, the service pro-
tess may not have the entire message, but it is
awakened and may do whatever it pleases with the
first part of the message (ignore it, buffer it,
etc.); the burden is no longer on the IPCM.

4.3 Processes Using Many Port s

Consider the arrangement shown in Figure 8,
where a server process accepts requests for service
from many users. Such a situation actually came up
in the design of SBS [2] where the REX was the
service process. As all network communications go
through REX it had to operate efficiently.

RECEIVE

~ v . 2 0 Figure 8. 0

First of all, some sort of primitlvethat
checks several ports simultaneously is required ~,
since we are examining systems where a process goes
to sleep upon executing an IPC primitive. This
primitive may actually perform the operation (it
may act as a llst of RECEIVE's with different ports
and possibly different buffer areas) or it may be a
QUERY operation, which does not transfer data, but
awakens the service process when data is available
on any of the ports (the service process may then
issue a RECEIVE).

Also if the service process is to run effi-
ciently it should not be made to wait on a partial
transfer from one process while thereis a complete
request to be processed. The question once again
is what to do with partial transfers. Suppose,we
had a SEND 25 from Pi (in Figure 8). If we put 25
words in a buffer in the service process, we are
forcing the service process to have a separate
buffer for each request. It we do not wish to make
this requirement, what shall we do about the mes-
sage? If we wake up the service process and tell
it about the 25 words, the strict insertion pro-
perty is violated (and so is the definition of
partial transfers). If the service process re-
mains aslee p and awaits the rest of the message
from PI, we would not be able to process a complete
message which might arrive from P2, and would thus
fail to process the first complete message to
arrive.

Even if we allow separate buffers for separate
ports, we have problems. If the 25 words from P1
are stored in a buffer while the service process

72

continues (asleep) to wait for messages from all
ports, a complete message may come in from some
other process. The service process must now be
awakened, for there is a complete message awaiting
its attention. If the service process is told
about the partial message from Pi, the strict in-
sertion property will be violated. More important-
ly, the service process will be forced to implement
internal buffering. On the other hand, if nothing
is said to the service process about the partial
message from Pi, the IPCM would lose all record of
the message without telling anyone, a poor feature
to design into any IPCM.

One solution to this problem might be to for-
bid partial transfers in this situation. Another
is to ban them altogether and use either the stand-
ard buffer size or the wake-up on matching scheme.
However, if the network supports partial transfers
at all, a service process like REX (which partici-
pates in every network communication) must also
accept partial transfers. A solution with partial
transfers is presented below.

4.4 Buffer Processes

This solution to the above problem assumes
that the system supports dynamic process creation.
In Figure 9 we show the modified configuration
where the S. act as buffer processes in the com-
munication ~etween the Pi and the service process.

Figure 9.

Whenever a process Pi asks to be connected to the
service process, a new Si is created for it and the
connection shown in Figure 9 is established. Each
S i accepts data from Pi until a logical message is
complete, sleeping whenever necessary. It can then
forward the complete message (with the EOM indica-
tion on) to the service process. All the messages
received by the service process are complete since
partial transfers are "filtered out" at the level
of S i .

With reference to the problem of partial
transfers to well-known ports (section 4.2), we
note that a similar solution is not possible there:
the S i can only be inserted when the connection is
initialized but communication through well-known
ports does not involve initialization. Also re-
call that the ARPANET solution to thisproblem
creates the configuration shown in Figure 7. Al-
though S i may be inserted between Pi and the well-
known process during the establishment of the sep-
arate connection, the original well-known port
still remains (and cannot have partial transfers).

At least one such well-known port, accessible with-
out initializaticq, is inevitable in any system:
this would belong to a directory or broker process
through which all other connections are initialized.

5. Concluding Remarks

At several points in this discussion, we have
stated that certain sets of properties do not go
together, and have indicated modifications to elim-
inate the inoompatibilities. It should be empha -~
sized that these modifications by themselves do not
guarantee realizability - they only indicate the
existence of a suitable set of primitives to
achieve the desired behavior. Also, the inclusion
of other features, not discussed in this paper, may
further complicate the problem.

In discussing status returned to the users, we
have indicated how the presence of certain other
features limits the information that can be pro-
vided. In fact, we have shown situations in which
uncertain status had to be returned, providing al-
most no information as to the outcome of the trans-
action. Because of this, one might be tempted to
design a system which provides no status at all.
However, in a well-designed system with reasonable
time-out intervals, etc., the above situations
should not occur with any frequency, and it is still
possible to provide meaningful status most of the
time.

The insertion property, in its strict form,
imposes far too many constraints and complicates
the design of the system, so that it is difficult
to make a case for it. On the other hand, the
weaker version is relatively easy to incorporate;
and has most of the benefits of the stronger ver-
sion. In particular, it permits the design of
user programs which are insensitive to changes in
the environment.

Finally, we list a set of features which may
be combined in a working IPCM.

(i) Time-outs
(2) Weak insertion property and partial

transfer
(3) Buffer processes to allow

a) many-to-one ports, and
b) service processes using multiple,

independent ports to handle re-
quests arriving asynchronously

(4) Well-known ports - with appropriate
methods to deal with partial transfers
to them.

A similar set of features is designed into SBS.

APPENDIX: User Implemented Protocols

To show that no amount of user protocol can
solve the problem in a manner to dissipate the
anxiety of both parties as to the outcome of a
transaction, consider the following model.

A group of gangsters are about to pull off a
big Job. The plan of action is prepared down to
the last detail~ Some of the men are holed up in a
warehouse across town, awaiting precise instruc-
tions. It is absolutely essential that the two
groups act with complete reliance on each other in
executing the plan.

73

Of course, they will never get around to put-
ting the plan into action, because the following
sequence of events is bound to take place.

i. A messenger is dispatched across town,
with instructions from the boss.

2. The messenger reaches his destination.
At this point both parties know the plan
of action. But the boss doesn't know
that his message got through (muggings
are a common occurrence). So the messen-
ger is sent back, to confirm the message.

3. The messenger reaches the boss safely.
Now, everybody knows the message got
through. Of course, the men in the
warehouse are not aware that step 3
occurred, and must he reassured. Off
goes the messenger.

4. Now the men in the warehouse too know
that step 3 was successful, but unless
they communicate their awareness...

.

. . . , . . .

Note that the needs of both parties are quite rea-
sonable. They simply want to reach a state where

(I) The original message (i.e., the plan of
action) is successfully delivered, and

(2) Both parties know that they are in
mutual agreement that (i) occurred.

Fact The sequence cannot terminate successfully.
Proof (a) Clearly the sequence contains at least

one message of importance.
(b) Assume that it is possible to reach the

desired state after a finite sequence
of messages. Then there must exist a
number n > 1 such that n is the length
of the shortest sequence which gets us
to this state. Since this is the short-
est sequence, the last message in it is
important: if the n'th message gets
lost, the desired state cannot be
reached. The sender of the n'th mes-
sage must receive acknowledgment.
This means that the sequence is at
least of length n + i. The assumption
is contradicted and the sequence cannot
be finite.

Note also that the sequence is infinite even when
none of the messages are actually lost.

At first glance it would seem that if the two
processes are in continuous communication, the
problem can be solved by including a sequence num-
ber [8] as part of each message. But this is not
really so: sequence numbers are analogous to the
step numbers in the above example. At any time
the process receiving the highest numbered message
knows the complete state while the other lives in
doubt. Thus in practice only sequential events
can be controlled but simultaneity cannot he
achieved by this means.

References

i. Akkoyunlu, E.A. "On the Limitations of Acknow-
ledgement Messages". Working paper, ACM Inter-
process Communications Workshop, March 1975.

2.

3.

4.

5.

6.

7.

8.

9.

I0.

Ii.

n

13.

14.

15.

Akkoyunlu, E.A., A. Bernstein, and R. Schantz
"Interprocess Communication Facilities for
Network Operating Systems". COMPUTER 7, 6
(June 1974).

Balzer, R.M. "Ports - A Method for Dynamic
Interprocess Communication and Job Control".
Proc. SJCC, Vol. 38, 1971.

Bernstein, A. and K. Ekanadham "Interprocess
Communi~tion in a Network". Network Systems
and Software, INFOTECH State of the Art
Report 24, INFOTECH Information Ltd., 1975.

Bressler, R., D. Murphy, and D. Walden "A
Proposed Experiment with a Message Switching
Protocol". NIC #9926, May 1972 (available from
Network Information Center, SRI, Menlo Park,
California).

Brinch-Hansen, P. "The Nucleus of a Multipro-
gramming System". CACM 13, 4 (April 1970).

Brinch-Hansen, P. "An Approach to Multipro-
gramming ". Information Science, California
Institute of Technology, Pasadena, March 1973.

Cerf, V.G. and R.E. Kahn "A Protocol for
Packet Network Intercommunication". IEEE
Transactions on Communications, Vol. COM-22,
No. 5, May 1974.

Crocker, S.D,, J. Heafner, J. Metcalfe and
J. Postel "Function-oriented protocols for
the ARPA computer network". Proc. SJCC, Vol.
40, 1972.

Danthine, A. and J. Bremer "DEfinition,
ReprEsentation et Simulation de Protocols dans
un Contexte R4seaux". Journ. Intern. Mini-
ordinateurs et Trans. de donnEes, AIM, Liege,
January 1975.

Goos, G. "Communication in process structures"
Technical University of Munich, 1972.

Haberman, N. and A. Jones "Interprocess Com-
munication Mechanism". Network Memo, Depart-
ment of Computer Science, Carnegle-Mellon
University.

Metcalfe, R.M. "Strategies for Interprocess
Communication in a Distr~uted Computer System"
Proceedings of ~he S~rmposium on Computer Com-
munications and Teletrafflc, Polytechnic
Institute of Brooklyn, April 1972.

Walden, D. Private Communication, 1973.

Walden, D. "A System for Interprocess Communi-
cation in a Resource Sharing Computer Network"
CACM, 15, 4 (April 1972).

74

