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Exploring Nearest Neighbor Approaches for
Image Captioning

Jacob Devlin, Saurabh Gupta, Ross Girshick, Margaret Mitchell, C. Lawrence Zitnick

Abstract—We explore a variety of nearest neighbor baseline approaches for image captioning. These approaches find a set of nearest
neighbor images in the training set from which a caption may be borrowed for the query image. We select a caption for the query image
by finding the caption that best represents the “consensus” of the set of candidate captions gathered from the nearest neighbor images.
When measured by automatic evaluation metrics on the MS COCO caption evaluation server, these approaches perform as well as
many recent approaches that generate novel captions. However, human studies show that a method that generates novel captions is

still preferred over the nearest neighbor approach.

1 INTRODUCTION

The automatic generation of captions for images has recently
received significant attention [18], [26], [35], [16], [19], [6],
[81, [2], [23], [22], [21], [36]. This surge in research is due
in part to the creation of large caption datasets [11], [29],
[13], [37], [1], [24], and new learning techniques [20], [12].
Recently proposed methods for caption generation share many
similarities, including the use of deep learned image features
[20], [14], [32], and language models using maximum entropy
[8], recurrent neural networks [2], [16], and LSTMs [35], [6].
An integral feature of all these methods is their ability to
generate novel captions.

We seek to better understand how important the generation
of novel captions is for the task of automatic image captioning
when using the benchmark MS COCO dataset [24]. Previously,
several papers proposed producing image captions by first
finding similar images, and then copying their captions [9],
[29], [13]. Given larger caption datasets such as the MS
COCO [24] dataset, which contains 100,000s of captions,
the chances of finding an appropriate caption may increase,
making such approaches more useful. Vinyals et al. [35]
found that up to 80% of the captions generated by their
approach were identical to captions in the MS COCO training
dataset, while still achieving near state-of-the-art results. This
provides evidence that copying captions may indeed achieve
good results. However, if the images in the MS COCO dataset
contain too much diversity, or capture many rare occurrences,
approaches that copy captions directly may not perform as well
as those those that can additionally generate novel captions.

In this paper we expand on [5] by providing a detailed
exploration into nearest neighbor (NN) approaches for image
captioning. Nearest neighbor approaches have a rich history
in work on predicting words given images, used in face
recognition [31] as well as recent work in retrieval-based
caption generation [9], [27]. We focus on nearest neighbor
approaches to gain further insight into the limitations of the
captioning task, and to explore the properties of the largest
captioning dataset to date, the MS COCO dataset. We hope to
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Fig. 1: Example of the set of candidate captions for an image,
the highest scoring m captions (green) and the consensus caption
(orange). This is a real example visualized in two dimensions.

provide context for the recent advances in this area [18], [26],
[35], [16], [19], [6], [8], [2], [23], [22], [21], [36].

Our nearest neighbor approach finds a set of k& nearest
images. Which images are “nearest” can be defined in several
ways, and we examine using GIST [28], pre-trained deep
features [32], and deep features fine-tuned for the task of
caption generation [8]. Once a set of k& NN images are found,
the captions describing these images are combined into a set
of candidate captions from which the final caption is selected,
Figure 1. We select the best candidate caption by finding the
one that scores highest with respect to the other candidate
captions. We refer to this as the “consensus” caption. The
scores between pairs of captions are computed using either
the CIDEr [34] or BLEU [30] metric.

Surprisingly, we find that this simple NN approach out-
performs many novel caption generation approaches as mea-
sured by BLEU [30], METEOR [4] and CIDEr [34] on the
MS COCO testing [24] dataset. We find that using simple
features for finding nearest neighbors such as GIST [28] do
not perform well. However, deep features, especially those
fine-tuned specifically for caption generation [8] are very
effective at finding images from which high-scoring captions
may be borrowed. While the NN approaches perform well



when evaluated using automatic metrics, a crowdsourced study
shows that humans still prefer a system that generates novel
captions [8] by a significant margin. Further human studies still
need to be performed to see how the NN approaches compare
to other generation-based approaches.

2 RELATED WORK

Several early papers proposed producing image captions by
copying captions from other images [9], [29], [13], [15].
[9] use nearest neighbors to define image and caption fea-
tures, capturing information about objects, actions, and scenes,
where [29] use a combination of object, stuff, people and scene
information. [27] use GIST nearest neighbors to the query
image. [13] use Kernel Canonical Correlation Analysis to map
images and captions to a common space where the nearest
caption can be found. While not using explicit captions, [15]
explores the task of captioning images using surrounding text
on webpages.

Hodosh et al. [13] popularized the task of image and caption
ranking. That is, given an image, rank a set of captions
based on which are most relevant. They argued that this task
was more correlated with human judgment than the task of
novel caption generation measured using automatic metrics.
Numerous papers have explored the task of caption ranking
[26], [33], [10], [17], [2], [25]. These approaches could also
be used to rank the set of training captions, and used to select
the one that is most relevant. As far as we are aware, how well
such an approach would perform on the MS COCO caption
dataset for generation is still an open question. In this paper,
we only explore a simple nearest neighbor baseline approach.

3 APPROACH

In this section, we describe our set of approaches for image
captioning. We assume a dataset of training images with a set
of corresponding captions. We use the MS COCO [24] training
dataset containing 82, 783 images with 5 captions each, for a
total of 413,915 captions. In our approach [5] we first find
a set of £ NN images in the training dataset. The consensus
caption returned by our approach is selected from the set of
candidate captions describing the set of £ NN training images.

3.1

Our first task is to find a set of k nearest training images for

each query image based on visual similarity.! We find the %

NNs using cosine similarity with the following feature spaces:

o GIST: We use the popular approach of [28] to compute

a set of global image features based on the summation

of low-level image features, such as contours or textures.

GIST is computed on images resized to 32 x 32 pixels.

e fc7: Our first set of deep features are computed using

the fc7 layer of the VGG16 Net [32]. The network

was trained using the 1,000 ImageNet classification task

[3]. The features are computed using a single window

with resolution 224 x 224. Images are rescaled to make

the longer side 224 pixels. Empty image regions were
replaced by the mean image.

Nearest Neighbor Images

1. The value of k is chosen optimally for each feature set, and typically
ranges from 50-200.

o fc7-fine: These features are computed in the same manner
as £c7. However, the weights of the VGG16 network are
fine-tuned for the image captioning task. Specifically, its
weights are initialized using the ImageNet task, and the
weights are fine-tuned on the task of classifying the 1,000
most commonly occurring words in image captions [8].

The image features are computed for every image in the
training dataset. The neighbor images are found by exhaus-
tively computing the cosine similarly between the query image
and the training images. In Figure 2, we show several examples
of NN matches using different feature spaces. Notice how the
NNs found using deep features are more semantically similar.

3.2 Consensus Caption

Given k nearest training images for a given test image, we take
the union of their captions to create a set C' of n candidate
captions. Our task is to select the “best” or consensus caption
from the set C, as seen in Figure 1. There are five captions
per image in the MS COCO dataset, so n = 5k. We define the
consensus caption ¢* as the one that has the highest average
lexical similarity to the the other captions in C'. This scoring
function is:

c* = argmax Z Sim(c, '), ()
cel ceC

where Sim(c,c’) is the similarity score between two captions
c and ¢/. We explore two similarity functions: BLEU [30],
which measures 1-to-4-gram overlap, and CIDEr [34], which
measures tf-idf weighted 1-to-4-gram overlap. Intuitively, this
tf-idf weighting means that CIDEr pays more attention to
rarer, more descriptive phrases. We use the CIDEr-D variant
of CIDEr.

Some of the candidate captions in C' might be outliers and
add noise to the computation of Equation (1). A solution to
this problem is to compute Equation (1) only over a subset
M of C, where the number m of captions in M is less than
n. This can be thought of as finding the centroid of a large
cluster of captions, as demonstrated in Figure 1. Using M,
our final consensus caption is:

¢* = argmax max Z Sim(c,c’). (2)
cec McC ;
ceM

The inner maximization is over all size-m subsets M of C.

Intuitively, the consensus caption is a single caption from
the training data that can be used to describe many images
that are visually similar to the test image. Ideally, then, this
caption is likely to also be an adequate description of the test
image.

If the NN images are diverse, one would expect the chosen
caption to be more generic, while if the NN images are quite
similar, the selected caption may be specific. The reason is
that the descriptiveness of captions is a basic risk vs. reward
trade-off: a red car is a better description than a car
if the car is red, but a significantly worse description when
the car is actually blue. As a result, the caption’s detail is
directly dependent on the diversity of the dataset used to gather
candidate captions.

In Figure, 6 we show several examples of consensus cap-
tions using both CIDEr and BLEU. Subjectively, we can see
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Fig. 2: Example nearest neighbor matches using different feature spaces.

that the CIDEr-tuned captions tend to be more descriptive
than the BLEU-tuned captions, which is likely due to CIDEr’s
preference for rarer n-grams.

4 RESULTS

In this section, we provide results for several variants of the
NN approach. For all our experiments, we use 82,783 MS
COCO training images for training, and split 40,504 valida-
tion set into two halves: a “tuning” set for hyperparameter
optimization, and a “testval” set for reporting results.

We begin by exploring the effect of & and m on the final
accuracy. Next, we explore the different feature spaces that
may be used to find NN images. Finally, we perform human
studies to evaluate how well NN approaches perform as judged
by humans, and report results on the MS COCO testing set.

4.1 The Number of Nearest Neighbors

How important is the selection of k, the number of nearest
neighbor images used to create the candidate caption set C'?
In Figure 3, we show BLEU scores [30] as we vary k. Notice
that for k£ < 20, significantly worse results are achieved.
For reference, if only one image is selected and a caption
is randomly chosen, the BLEU score is 11.2 [6]. For £ > 60
the BLEU scores are roughly similar.

In Figure 4, we show results when we vary m, the number
of candidate captions used to select the consensus caption
(Equation 2). High scores are achieved for a variety of values
for m ranging between 50 and 200. If m = n, worse results
are achieved, supporting our hypothesis that outlier captions
should be removed.

As shown in Table 2, finding the best caption in Equation
(2) is slightly better using CIDEr (fc7-fine (CIDEr))
than BLEU (fc7-fine (BLEU)). CIDEr performs better as
measured by both CIDEr and METEOR. Not surprisingly,
optimizing using BLEU preforms better when measured by
BLEU.

4.2 Different Feature Spaces

We now explore the effect of using different feature spaces. For
these experiments, we use the values of k£ and m that produced
the highest BLEU/CIDEr scores on the tuning half of the
validation set. Results on the testval half of the validation set
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Fig. 3: Resulting BLEU scores when varying number of NN images,
k. The optimal m for each k is shown in parentheses.
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Fig. 4: Resulting BLEU scores when varying the number of captions
m used to compute the consensus score. k is held constant at 90.

are shown in Table 2.2 GIST performs poorly since it doesn’t
capture the high-level semantics of the scenes as shown in
Figure 2. The deeply learned features fc7 and fc7-fine
do significantly better. For comparison, we show the results of
[8] (ME+DMSM) using a Maximum Entropy (ME) language
model and a Deep Multimodal Similarity Model (DMSM).
Interestingly, the fc7-fine (BLEU) performs comparably
to the ME+DMSM approach [8] as measured by BLEU.
How do these methods perform on query images that are
not visually similar to the training data, versus images that
are visually similar? To gain insight into this question, we

2. Results were computed on 4 references rather than 5 for consistency
with [8].



¢S5 c40
Method BLEU 4 CIDEr METEOR BLEU 4 CIDEr METEOR
ME + DMSM [8] 29.1 0.912 24.7 56.7 0.925 33.1
LRCN [6] 27.7 0.869 24.2 53.4 0.891 322
Vinyals et al. [35] 27.2 0.834 23.6 53.8 0.842 32.7
Xu et al. [36] 26.8 0.850 24.3 52.3 0.878 323
m-RNN [25] 27.9 0.819 229 54.3 0.828 31.2
MLBL [18], [19] 26.0 0.740 21.9 51.7 0.752 29.4
NeuralTalk [16] 224 0.674 21.0 44.6 0.692 28.0
fc7-fine (CIDEr) 279 (2) 0.886 (2) 23.7 (3) 542 (2) 0916 (2) 31.8 (5)
Human 21.7 0.854 25.2 47.1 0.910 33.5

TABLE 1: Results on the MS COCO test set for c5 (left) and c40 (right). Best scores are shown in bold. Results on fc7-fine (CIDEr) are
shown, with its relative ranking compared to the automatic approaches shown in parentheses. For comparison, results using captions written

by humans are also shown.

Features k m BLEU CIDEr METEOR
GIST 80 100 9.0 0.23 12.2
fc7 130 150 22.3 0.72 20.3
fc7-fine (BLEU) 90 125 26.0 0.85 22.5
fc7-fine (CIDEr) 80 200 25.1 0.90 22.8
ME + DMSM (8] 25.7 0.92 23.6

TABLE 2: BLEU [30], METEOR [4] and CIDEr [34] scores on
testval for NN approaches using different feature spaces. See text
for descriptions of the feature spaces.

BLEU vs. NN Similarity
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Fig. 5: BLEU scores for various approaches when the testval images
are split into 10 equally sized bins based on visual similarity to the
training data. The bins are arranged from those with fewer close NNs
(left), to those with more NNs images (right).

== GIST == fc7-fine == VIE-DMSM

compute the mean distance of the testval images to their 50
nearest training images based on fc7-fine cosine distance.
We then sort the mean distances and place the query testval
images into ten bins, ranging from those with the closest NN
images to those with the furthest.

The BLEU scores for each of these bins are shown in
Figure 5. Unsurprisingly, the images that are most visually
similar to the training achieve the highest BLEU scores across
all approaches. However, compared to the generation-based
approach of [8], the nearest neighbor approaches perform
better for highly similar images, but worse for highly dissim-
ilar images. This suggests that the generation-based approach
generalizes better to less common images, but doesn’t do as
well as borrowing captions for common images.

Approach Human Judgements BLEU
Better Equal  Better or Equal

k-NN fc7-fine (BLEU)  5.5%  22.1% 27.6% 26.0

k-NN fc7-fine (CIDEr) 63%  20.2% 26.5% 25.1

ME + DMSM [8] 7.8%  262% 34.0% 25.7

TABLE 3: Results when comparing produced captions to those
written by humans, as judged by humans. The percentage that are
better than, equal to, and better than or equal to the captions written
by humans are shown.

4.3 Human Evaluation

An interesting question is how the captions selected by the
NN approaches would perform when judged by humans. To
explore this, we use the same experimental setup as [8], in
which human subjects are asked to judge whether a caption
generated by a system is better than, worse than, or equal to
a caption written by a human for that image. Each caption is
evaluated 5 times and the majority is recorded. If a tie occurs
(2-2-1), each of the top choices are given half a vote. The
results are shown in Table 3. The generation-based approach of
[8] significantly outperforms the nearest neighbor approaches,
despite the similar BLEU scores. As a point of reference, a
baseline system from [8] that uses non-fine-tuned fc7 features
achieves 21.1 BLEU and 23.3% “Better or Equal to Human.”
Therefore, we believe that the 27.6% achieved by the k-NN
models is still relatively competitive with respect to the state-
of-the-art.

However, given the strong BLEU/CIDEr performance of the
nearest neighbor systems, this provides additional evidence
that automatic metrics may only be a rough estimate of human
judgments, as also noted in [7], [13], [34].

4.4 MS COCO Caption Test

In Table 1, we show results on fc7-fine (CIDEr) on
the MS COCO caption test set. Surprisingly, fc7-fine is
ranked second or third by most metrics. The METEOR metric
computed using 40 captions per image (c40) ranks fc7-fine
fifth. As stated before, further human studies are still needed to
gain a better understanding into how the captions produced by
NN approaches are perceived by humans relative to generative
approaches.

5 DISCUSSION

The success of nearest neighbor approaches to image caption-
ing draws attention to the need for better evaluation and testing
datasets. Ideally, we desire approaches that can generalize to



Selected
Caption (BLEU)

A bedroom with a

8 bed and a couch.

A train is stopped at

= atrain station.

A group of people
sitting around in a
living room.

A group of people
washing elephants in
the water.

M Two zebras and a

giraffe in a field.

A car parked in front
of a building.

A laptop computer
sitting on top of a
desk.

A clock sitting on
top of a table.

A baseball player
holding a bat on a
field.

A little boy sitting at
a table eating food.

Selected
Caption (CIDEr)

A hotel room with
two beds and a table.

A red and white train
parked in a train
station.

A group of people
sitting on a couch in a
living room.

An elephant is
swimming in the
water near the rocks.

Two zebras and a
giraffe in a field.

A motorcycle parked
in front of a brick
building.

A laptop computer
sitting on top of a
desk.

A white airplane
hanging from a
ceiling in a museum.

A baseball player
holding a bat on a
field.

A little boy sitting at
the table with food.

Image

Selected
Caption (BLEU)

A man riding a wave
on a surfboard.

A person flying a kite
in the sky.

A catsitting ina
bathroom sink.

A wooden bench in
front of a building.

A baby elephant is
standing in a field.

A cup of coffee on a
plate with a spoon.

A group of people
sitting at a table with
laptop computers.

A wooden bench in
front of a building.

A building with a
clock on the top.

§ The side of a

passenger train at a
train station.

Selected
Caption (CIDEr)

A man riding a wave
on a surfboard in the
ocean.

A person flying a kite
in the sky.

A black and white cat
sitting in a bathroom
sink.

A wooden bench in
front of a building.

An elephant is
walking through a
grassy field.

A plate of food and a
cup of coffee.

A group of people
sitting around a table
with laptops.

A window display on
the front of a building.

A clock tower on the
top of a building.

A bus that is on the
side of a road.

Fig. 6: Several examples of randomly selected images and their selected consensus captions. The consensus caption is shown using the
BLEU metric and CIDEr metric for scoring. Notice the chosen captions using CIDEr are more detailed.



images beyond those found in the training set. How can we
build a testing set that measures this ability? One obvious
approach is to measure the similarity of each testing image
with those in the training set, similar to Figure 5. We could
then examine how well approaches do on unusual or more
diverse images. Another option would be to collect a new
testing dataset using a different set of queries than those used
for the MS COCO dataset. This would ensure the distribution
of images in testing and training is different, and help us
measure how well our approaches generalize.

The success of recent approaches such as [18], [26], [35],
[16], [19], [6], [8], [2], [23], [22], [21] demonstrates another
problem with the task of image captioning. For each of
these approaches, we know that human generated captions are
typically preferred over the automatically generated captions.
However, for many automatic evaluation metrics, the human
captions have lower scores than the automatically generated
captions. This suggests that the advancement towards human-
like captions may not be properly benchmarked using auto-
matic approaches. Further research into automatic evaluation
metrics that are highly correlated with human judgment is
essential [7], [13], [34].

A further difficulty when performing human evaluations on
which caption is “best” is that we miss the nuances in the
similarities/differences between the systems when we ask for
humans’ overall preferences. For example, we know that all
of the NN captions are pretty fluent, while that may not be
true for novel generated captions. However, we’re not directly
measuring fluency, so it is possible that generation-focused
approaches are correctly capturing content, but are sometimes
not fluent. On the other hand, NN approaches may produce
very generic captions, causing them to not be preferred even
when technically correct. Hopefully future experiments will
shed light on these questions.

In this paper, we only explored very simple NN approaches
to provide a baseline for the image captioning community.
More sophisticated approaches that have been proposed for
the task of caption ranking [13], [26], [33], [10], [17], [2]
may generate even better results. It may also be interesting to
explore hybrid approaches that use NN approaches for query
images with many similar training images and generation-
based approaches for other images.
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