
Time-dependent Models in Collaborative Filtering based Recommender System

Liang Xiang

Chinese Academy of Sciences
Institute of Automation

National Laboratory of Pattern Recognition
Beijing, China

xlvector@gmail.com

Qing Yang

Chinese Academy of Sciences
Institute of Automation

National Laboratory of Pattern Recognition
Beijing, China

qyang@nlpr.ia.ac.cn

Abstract—In recent years, time information is more and
more important in collaborative filtering (CF) based recom-
mender system because many systems have collected rating
data for a long time, and time effects in user preference is
stronger. In this paper, we focus on modeling time effects in
CF and analyze how temporal features influence CF. There are
four main types of time effects in CF: (1) time bias, the interest
of whole society changes with time; (2) user bias shifting,
a user may change his/her rating habit over time; (3) item
bias shifting, the popularity of items changes with time; (4)
user preference shifting, a user may change his/her attitude to
some types of items. In this work, these four time effects are
used by factorized model, which is called TimeSVD. Moreover,
many other time effects are used by simple methods. Our time-
dependent models are tested on Netflix data from Nov. 1999 to
Dec. 2005. Experimental results show that prediction accuracy
in CF can be improved significantly by using time information.

Keywords-time-dependent models; temporal effects; collabo-
rative filtering; Netflix

I. INTRODUCTION

Recommender systems are programs that help us find

new information and filter useless information. Collaborative

filtering (CF) is an important technology [1] in recommender

system that provides personalized recommendations by an-

alyzing historical data of user preferences. In recent years,

rapid growth of e-commerce brings an increasing interest in

CF and many larger e-commerce web sites have used CF as

an important tool in their recommender systems. Examples

of these web sites include recommending books at Amazon

[2], news at Google [3], movies at Yahoo [4], and CDs at

Netflix [5].

In the last two decades, various methods have been devel-

oped for CF. Neighborhood methods, also known as kNN,

are the first type of algorithms widely used in CF and they

include two main types of algorithms: user-based algorithms

[6][7] and item-based algorithms [8][9]. The key idea of

user-based algorithms is that a user will prefer those items

that like-minded users prefer, or dissimilar users don’t prefer.

Item-Based algorithms assume that a user will prefer similar

items that he/she prefer previously. Therefore, the main step

in neighborhood method is calculating user-user similarity

and item-item similarity. Neighborhood methods are easy to

implement and widely used in many recommender systems

[2][5][6].

Another type of method often used in CF is matrix

factorization, which is also known as latent class model

[10][11]. Its key idea is using a low rank matrix to ap-

proximate real rating matrix. Singular Value Decomposition

(SVD) [12][13][14] is often used to calculate low rank rating

matrix, thus these factorized methods are often called SVD.

Many researches about CF show factorization based methods

can produce more accurate predictions than neighborhood

based methods.

Nowadays, many recommender system have collected

user preference data for a long time and time information is

more and more important in making recommendation. Time

information influences CF from four different ways. Firstly,

the interest of whole society changes with time. Secondly,

rating habit of users change with time. For example, a man

may firstly give 5 stars to those items he likes, but after

a period of time, he will give no more than 4 stars to

those items he enjoys. This means, he is pickier when time

goes on. Thirdly, the items’ popularity changes with time.

A movie may lost popularity because it is too old or get

popularity because it wins some awards or its actor becomes

popular. The last time effect is, users may change their

preferences with time. Many events can cause a user changes

his/her preferences. For example, a boy likes watching

cartoon when he is young, but he enjoys war films when

he grows up. These four time effects are the most important

time effects in CF because they represent the main change

patterns of users’ rating behavior.

Beside four time effects above, there are many other time

effects. For example, a user’s rating habit is different in

different months because of season or festival. Old users and

fresh users may have different rating behavior. New movies

and old movies may get different ratings. There are many

such examples in recommender system. All of these time

effects will be used by a simple model in our predictor and

they are denoted by STE (simple time effects).

The main problem is how to use these time effects

to build a time-dependent predictor. Previous studies have

2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology

978-0-7695-3801-3/09 $26.00 © 2009 IEEE

DOI 10.1109/WI-IAT.2009.78

450

2009 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology - Workshops

978-0-7695-3801-3/09 $26.00 © 2009 IEEE

DOI 10.1109/WI-IAT.2009.78

450

proposed many ways to use time effects. One approach

[15] views these time effects as global effects and uses

these effects by simple models, such as linear regression.

Another approach [16] is based on neighborhood methods.

This approach assumes that recent data is more important to

predict users’ future preferences than old data. Thus, when

calculating item-item similarity, recent rated items will be

over-weighted. Moreover, Koren [17][18] have proposed an

alternative method which divides rating data into bins by

time and trains latent factor model in every bin.

In this paper, four main time effects are modeled by

factorization and STE are used as global effects. Our ex-

periments are done on Netflix data [5] which is released

by Netflix Prize. It contains more than 100 million movie

ratings, and for every rating, it also provides the date when

this rating is assigned. Therefore, this data set can be

used to evaluate time effects in CF. Our experiment results

show, prediction accuracy can be improved by using time-

dependent predictors and time effects play important roles

in CF.

The remainder of the paper is organized as follows.

Section 2 briefly gives some definitions and description

of Netflix data. In section 3, we propose our factorized

time-dependent model (TimeSVD). Many other time effects

will be discussed in Section 4. Section 5 presents our

experimental work, analyzes time information in Netflix

data, and compares result of temporal models with non-

temporal models. In the final section, we make a conclusion

and point out directions for future work.

II. PRELIMINARIES

We are given ratings about m users and n items. The user

set is denoted by U and item set is denoted by I. tu denotes

the first time when user u assign ratings to items and ti is the

first time when item i is rated. R(u) is the number of items

user u has rated and R(i) is the number of users who have

rated item i. A rating rui indicates the preference of user u
for item i, where high values mean strong preference. Netflix

data uses 5 stars rating system where 1 star indicating no

interest and 5 stars means strong interest. Given a user-item

pair (u, i), tui is the date when user u rated item i and the

prediction of u’s preference on i is denoted by r̂ui. Most of

ratings in CF are not known and the observed rating set is

defined by K = {(u, i)|rui is known}.

A. Factorized Models

Factorized models, also known as latent factor models

[19] and latent class models [10][11], are widely used in

CF. Given a rating matrix R ∈ R
m×n, where R[u][i] = rui,

the main idea of factorized models is using a low rank

matrix to approximate R. That means, finding two matri-

ces Um×f , Vn×f which can minimize the Frobenius norm

||R − UV T ||F . In classical methods, low rank matrix are

always found by doing SVD [12][13] or PCA [20] on matrix

R. However, applying SVD directly raises difficulties due

to the high portion of missing ratings. Previous approaches

[13] rely on imputation to fill in missing ratings and make

the rating matrix dense. However, imputation can be very

expensive as it significantly increases the amount of data.

In addition, the data may be considerably distorted due to

inaccurate imputation. Hence, more recent works suggested

modeling directly on the observed ratings, while avoid over-

fitting through a regularized model.

Our time-dependent model is based on a regularized

SVD model with bias proposed in [19]. In this model, the

prediction of user u’s preference on item i is made by:

r̂ui = μ + bu + bi + pT
u qi (1)

where μ is average rating of all knowing ratings, bu is user

bias, bi is item bias, pu ∈ R
f is user factor vector and

qi ∈ R
f is item-factor vector. This model is trained by

minimizing following cost function on observed ratings:

min
b∗,p∗,q∗

∑

(u,i)∈K
(rui − μ − bu − bi − pT

u qi)2+

λ(
∑

u

b2
u +

∑

i

b2
i +

∑

u

||pu||2 +
∑

i

||qi||2)
(2)

where the second term is regularizing term and λ is a

regularization parameter to avoid over-fitting. This optimiza-

tion problem can be solved by simple gradient descent

method [21]. In the following sections, the model defined

in Equation 1 is denoted by RSVD.

B. The Netflix Data

Our algorithms will be tested on the Netflix data 1 which

contains 100,480,507 ratings on a scale 1 to 5 for 17,770

movies and 480,189 users. The total average rating of this

data set is 3.6, this means most of users tend to rate these

movies they enjoy. This data set not only provides ratings

of different movies by different users, but also provides the

date when these ratings are assigned. Hence, this data set can

help us evaluate time effects in CF. The data contains rating

from Nov 11, 1999 to Dec 31, 2005 and the distribution of

rating number in different years are shown in Figure 1.

In order to test algorithms, Netflix has provided two test

sets. One is Probe test set (Probe) and the other is Qualifying

test set (Quiz). Probe test set contains 1.4 million user-movie

pairs, for which the ratings are known. Qualifying test set

contains 2.8 million user-movie pairs, for which the ratings

are missing. Both of the two sets contain many ratings by

users that do not rate much and are hard to predict. The

quality of results is measured by root mean squared error

(RMSE):

RMSE =

∑
(u,i)∈TestSet(rui − r̂ui)2

|TestSet|
1http://www.netflixprize.com/

451451

Figure 1. Rating number per year in Netflix data.

Figure 2. Distribution of r̄t in Netflix data.

III. FACTORIZED TIME-DEPENDENT MODEL

In recent years, many researchers focused on time effects

in CF and provided many ways to use time information.

Ding et al [16] thought a user’s recent ratings are more im-

portant to predict this user’s future preferences than his/her

old ratings. Therefore, they used a time-weighted Pearson

correlation to measure item-item similarity which will decay

the influence of old ratings. Töscher et al [22] pointed

out that prediction accuracy can be improved by shrinking

rating toward recent ratings. Koren et al [18] introduced

three main time effects and used different methods to model

these effects. In the following sections, we will give detailed

description of our methods.

A. Time Bias

The interest and habit of the whole society change with

time. At different ages, peoples enjoy different things. In

a recommender system, average rating of all items changes

with time. The average rating of all items in time t is denoted

by r̄t and its distribution in Netflix data is shown in Figure

2.

Figure 2 shows r̄t varies between 3.2 and 3.8. However,

it is obvious to see, r̄t varies between 3.25 and 3.5 before

March 2004 and r̄t varies between 3.55 and 3.75 after March

2004. Many reasons can cause this effect. For example,

movies quality is improved after March 2004 or peoples

user id rated items number

305344 17653
387418 17436
2439493 16565

Table I
BASIC INFORMATION OF THREE USERS.

Figure 3. Distribution of r̄ut in Netflix data.

like those movies released after March 2004. This effect is

called time bias and in time-dependent model, it is used by

adding a scalar bt to Equation 1:

r̂ui = μ + bu + bi + bt + pT
u qi (3)

where t = tui.

B. User Bias Shifting

Users may change their rating habit with time. For

example, a user may rate items they like in a period of

time and rate items they dislike in another period of time.

Furthermore, some users may firstly tend to give no more

than 4 stars to the items they enjoy, but after a period of time,

they tend to give 5 stars to the items they like. This time

effect is called user bias shifting. In order to analyze this

time effect, we study how average ratings of users change

with time. The average rating of user u at time t is denoted

by r̄ut. In Netflix data, distribution of r̄ut is shown in Figure

3. There are 400K users in Netflix data and only three users

who have rated more than 15K items are selected. The basic

information of three users is listed in Table I. Figure 3 shows

user bias is shifting obviously with time. For example, user

305344 tends to give high score to items before 2003 but

give low score to items after 2003.

In order to model this time effect, the user bias vector bu

in Equation 3 is replaced by a time-dependent function buτ :

buτ = bu + xT
u zτ (4)

where τ = τui = tui − tu is the number of days after u
enters the recommender system and xu, zτ ∈ R

f are two

latent factor vectors for user u and time τ .

452452

Figure 4. Distribution of r̄it in Netflix data.

In this way, the RSVD model becomes:

r̂ui = μ + bu + bi + bt + pT
u qi + xT

u zτ (5)

C. Item Biases Shifting

The popularity of items change with time. Several events

can cause an item to become more or less favorable. For

example, if an actor wins Oscar’s best actor award, his

previous movies may become more favorable. However,

movies will loss popularity when time goes on generally.

The average rating of item i at time t is denoted by r̄it.

In Netflix data, the distribution of r̄it is shown in Figure 4.

There are 17K movies in Netflix data and only three movies

of them are selected, they are, The Titanic, Schindler’s List,

Gange of New York.

In Figure 4, there is an interesting phenomenon. For every

movie, in the first few months, its average rating changes

severely, but after a period of time, its average rating is

nearly static. This means, users attitude to an item will be

fixed after a period of time.

In this way, the item bias bi is also a function that changes

with time. It is easier to capture the time effect in item bias

by using a time-dependent item bias model:

biω = bi + sT
i yω (6)

where ω = ωui = tui−ti is the number of days after item i’s
first rating was assigned. si, yω ∈ R

f are two latent factor

vectors for item i and time ω. Here, sT
i yω represents the

fluctuation of item i’s popularity with time ω.

After adding item bias shifting model into Equation 5, the

time-dependent model becomes:

r̂ui = μ + bu + bi + bt + pT
u qi + xT

u zτ + sT
i yω

D. User Preference Shifting

Users change their preferences with time. For example, a

boy likes cartoon when he is young and rates a cartoon ”Toy

Story”, released in 1995, the highest score 5 stars in 1998.

However, when he grows up, he does not like cartoon and

Algorithm 1: TimeSVD model training algorithm

Input: observed rating set K, latent factor number f ,

iteration times #Iter

Output: TimeSVD model parameters

for count = 0; count < #Iter; + + count do
foreach (u, i) ∈ K do

eui = rui − r̂ui;

t = tui;

τ = tui − tu;

ω = tui − ti;
bu = bu + η · (eui − λbu);
bi = bi + η · (eui − λbi);
bt = bt + η · (eui − λbt);
for k = 0; k < f ; + + k do

pu,k = pu,k + η · (eui · qi,k − λpu,k);
qi,k = qi,k + η · (eui · pu,k − λqi,k);
xu,k = xu,k + η · (eui · zτ,k − λxu,k);
zτ,k = zτ,k + η · (eui · xu,k − λzτ,k);
si,k = si,k + η · (eui · yω,k − λsi,k);
yω,k = yω,k + η · (eui · si,k − λyω,k);
pu,k = gu,k + η · (eui · li,k · hτ,k − λgu,k);
qi,k = li,k + η · (eui · gu,k · hτ,k − λli,k);
hτ,k = hτ,k + η · (eui · gu,k · li,k − λhτ,k);

η = 0.9η;

rates another cartoon ”The Incredibles”, released in 2004, the

low score 2 stars in 2005. Furthermore, users may change

their attitude toward actors and directors. This time effect

is called user preference shifting. In RSVD model, pT
u qi

represents the preference of user u on item i. However, this

model is time-independent. Therefore, in order to model user

preference shifting, pT
u qi is replaced by a time related model:

preference(u, i) = pT
u qi +

f∑

k=1

gu,k · ll,k · hτ,k

where gu, li, hτ ∈ R
f are three latent factors for user u,

item i and time τ . A similar model is used by Takács et al

[23].

In this way, the time-dependent RSVD model becomes:

r̂ui = μ + bu + bi + bt + pT
u qi + xT

u zτ + sT
i yω

+
∑

k

gu,k · li,k · hτ,k
(7)

This is the final model and is called TimeSVD.

TimeSVD has integrated four main time effects: time bias,

user bias shifting, item bias shifting and user preference

shifting. This model is trained by minimizing the following

453453

regularized cost function:
∑

(u,i)∈K

{
(rui − r̂ui)2 + λ(b2

u + b2
i + b2

t + ||pu||2 + ||qi||2

+||xu||2 + ||zτ ||2 + ||si||2 + ||yω||2
+||gu||2 + ||li||2 + ||hτ ||2)

}

where λ is regularization parameter which is chosen by

cross-validation. In order to solve this optimization problem,

we apply a simple gradient descent method which is often

used in other studies [23][19][24]. Model parameters are

estimated and updated by Algorithm 1. In this algorithm,

all parameters are initialize randomly following Gaussian

distribution N(0, σ2) and updated by gradient method.

IV. SIMPLE TIME EFFECTS

In this section, many other time effects are proposed. They

are called simple time effects (STE) because they are used

by simple models instead of factorized model. All models in

this section are used as post-processor of a given predictor.

A. Year, Month Effect

In previous discussion, three types of time metric are used

for a user-item pair (u, i):
• absolute time tui : number of days since Nov 11, 1999

(This is the date when first rating is assigned in Netflix

data).

• user time τui : τui = tui − tu is number of days since

user u’s first rating. This time metric is used when

modeling user behavior shifting.

• item time ωui : ωui = tui − ti is number of days

since item i’s first rating. This time metric is used when

modeling items’ popularity shifting.

However, there are many other time metrics, such as year,

month, week and so on. All of these time metrics can cause

different time effects. For example, in China, some types of

movies, such as new year’s film, is very popular in January

and February because of Chinese spring festival. Year 2005

is 60th anniversary of World War II victory and movies about

world war II are popular in that year. Moreover, user bias

also changes with these time metric. For example, users

enjoy watching different types of movies in weekday and

weekend. There are many examples about such time effects

and all of these effects are used by a simple method.

We take item-month effect for example to analyze how

to use this effect. Given a user-item pair (u, i), tm(u, i) ∈
[1, 12] is the month when this rating is assigned. Then, the

average prediction error avei,tm
of item i at month tm is

defined by:

avei,tm
=

∑
(u,i)∈K,tm(u,i)=t eui

ni,tm

where eui = rui − r̂ui is residual of pervious predictors and

ni,tm
is number of ratings of item i in month tm. In order

to avoid over-fitting, avei,tm
is shrank toward zero by:

avei,tm
=

avei,tm
· ni,tm

ni,tm
+ α

where α is shrinking parameter which is chosen by cross

validation. This shrinking method is proposed by Koren et

al to use global effects. Detailed discussion of shrinking can

be found in [15]. Then, predictor r̂ is updated by:

r̂ui ← r̂ui + avei,tm(u,i)

Three other time effects similar to item-month effect are

used in this work. They are :

• item-year effect: This effect represents the item-bias in

different years.

• user-month effect: A user has different rating habit

in different month. Season, festival, and many other

reasons may cause a user changes his/her rating bias.

• user-year effect: This effect represents the user-bias in

different years.

B. Loyalty, Activity and Popularity Effect

Beside four time effects above, another three time related

effects are used in time-dependent model:

• user loyalty: a user u’s loyalty τu = max{tui − tu}
measures how long this user is active in the recom-

mender system. This metric can distinguish old users

from fresh users. Old users and fresh users play dif-

ferent roles in recommender system and their rating

behavior is also different. Old users have fixed rating

habit and their preferences are easy to capture while

fresh users only rate few movies and their preference

is hard to predict. The average user loyalty of Netflix

data is 36 days and distribution of user loyalty in Netflix

data is shown in Figure 5. Figure 5 shows old users are

very few and most of users’ loyalty is less than a month.

• user activity: this metric measures the activity of users

in a recommender system. Given a user u, his/her

activity is defined by
R(u)
τu

, where R(u) is the number

of ratings u has assigned. It’s obvious to see, this metric

measures users activity by their average rating number

every day. In Netflix data, a user rate 3.5 movies per

day on average.

• item popularity: If an item is rated by many people, it is

popular. However, this metric is not accurate because

old items will receive more ratings than new items.

Therefore, the popularity of an item i is defined as
R(i)
ωi

,

that is the average rated times of item i every day. In

Netflix data, a movie is rated by 5 users per day on

average.

We take user activity effect as example to show how to

use three effects above. Firstly, users are sorted by their

activity. Secondly, they are divided into 100 bins where

every bin contains nearly the same number of users. Then,

we calculate average prediction error of every bin on the

454454

Figure 5. Distribution of user loyalty in Netflix data

residual of previous predictions. For example, given a bin

bink, avei,k is calculated by:

avei,k =

∑
(u,i)∈K,u∈bink

(rui − r̂ui)

ni,k

where ni,k = |{(u, j) ∈ K : j = i, u ∈ bink}|. In order to

avoid over-fitting, avei,k is shrank toward zero by:

avei,k = avei,k
ni,k

ni,k + α

where α is shrinking parameter which can be estimated by

cross-validation. At last, predictor is updated by:

r̂ui ← r̂ui + avei,k

where k is the bin user u belongs to.

In the experiment, TimeSVD is applied firstly, and then,

at every step, one ”effect” is estimated on the residuals of

previous predictions.

V. EXPERIMENTS

In this section, TimeSVD model is tested firstly and

STE are applied on the residuals of TimeSVD predictor.

Then time-dependent models are also tested on Quiz set.

Finally, we test TimeSVD model on another famous data

set MovieLens in order to show its effectiveness on different

data set.

A. Result of TimeSVD Model

Firstly, experiments are done to compare TimeSVD model

and RSVD model. Results are listed in Table II. Table II

shows that prediction accuracy of both RSVD and TimeSVD

are improved when latent factors increased and TimeSVD

can produce more accurate predictions than RSVD. The

improvement of TimeSVD is also increased when lantent

factors increased. TimeSVD can reduce the RMSE of RSVD

by 0.0036 when f = 20 while it can reduce the RMSE of

RSVD by 0.0055 when f = 100. TimeSVD is implemented

by algorithm described in Algorithm 1 with learning rate

η = 0.007 and regularization parameter λ = 0.0127. The

algorithm will converge after 30 iterations.

TimeSVD can provide better predictions than RSVD.

However, what type of users are benefit from TimeSVD?

latent factors f TimeSVD RSVD Improvement

20 0.9092 0.9128 0.0036
60 0.9028 0.9073 0.0045
100 0.9013 0.9068 0.0055

Table II
RESULTS OF TIMESVD MODEL AND RSVD MODEL RMSE ON PROBE

WITH DIFFERENT LATENT FACTORS NUMBER

I II III

RSVD 0.9360 0.9341 0.8930
TimeSVD 0.9322 0.9277 0.8892

Imporvement 0.0038 0.0064 0.0038

Table III
RESULTS OF TIMESVD MODEL AND RSVD MODEL ON PROBE FOR

USERS WITH DIFFERENT LOYALTY

Many people think TimeSVD can produce more accurate

predictions for old users (with high loyalty) than fresh users

(with low loyalty). An experiment is done to verify this

conclusion. Users are divided into three groups by their

loyalty. The first group (I) contains users whose loyalty is

less than 30 days, the second group (II) contains users whose

loyalty is more than 30 days but less than 180 days, and the

third group (III) contains users whose loyalty is more than

180 days. Then we apply RSVD and TimeSVD on Netflix,

and calculate RMSE of three groups of users on Probe.

The result is shown in Table III. Table III shows, TimeSVD

produce more accurate predictions for users in group II than

users in group I,III. This because, users in group III have

rated a lot of movies that both RSVD and TimeSVD can also

make good predictions for them, users in group I have rated

few movies that both RSVD and TimeSVD can not make

good predictions for them. Only users in group II have rated

many movies for a period of time that TimeSVD can make

better prediction for them than RSVD.

B. Result of Simple Time Effects

After applying TimeSVD, we use simple time effects

(STE) on the residual of TimeSVD predictions. At every

step, only one effect is used. Results are listed in Table

IV. The order of the time effects may influences the final

result, so if one applies them in a different order, the

result will be different at all. However, we only test the

ordering in Table IV. In Table IV, some time effects only

make small improvement. However, if all of the effects are

used together, they can make significant improvement on

prediction accuracy of TimeSVD predictor.

C. Result on Quiz

Furthermore, some of algorithms proposed in this paper

are tested on Quiz set which is a test set used by Netflix Prize

to evaluate the performance of predictors. Three models,

455455

Method α
60 factors 100 factors

RMSE on Probe Improvement RMSE on Probe Improvement

RSVD – 0.90735 – 0.90685 –
TimeSVD – 0.90289 0.00446 0.90127 0.00558

Item Year Effect 80 0.90216 0.00073 0.90051 0.00076
Item Month Effect 350 0.90174 0.00042 0.90007 0.00044
User Year Effect 50 0.90148 0.00026 0.89983 0.00024

User Month Effect 150 0.90142 0.00006 0.89979 0.00004
User Loyalty 700 0.90131 0.00011 0.89969 0.00010
User Activity 100 0.90112 0.00019 0.89952 0.00017

Item Popularity 500 0.90110 0.00002 0.89950 0.00002
User Recent 700 0.90100 0.00010 0.89941 0.00009

Table IV
RESULTS OF SIMPLE TIME EFFECTS ON PROBE

Method (60 factors) RMSE on Quiz

RSVD 0.9090
TimeSVD 0.9045

TimeSVD + STE 0.9027

Table V
RESULTS OF TIMESVD MODEL AND RSVD MODEL ON QUIZ

RSVD, TimeSVD, TimeSVD+STE, are used to predict rat-

ings in Quiz and results are listed in Table V. Results show,

RSVD get RMSE=0.909 on Quiz while time-dependent

models get RMSE=0.9027 on Quiz, which reduce the RMSE

of RSVD by 0.0063. This is a significant improvement which

indicates the importance of time information.

D. Result of Blending Method

In Netflix Prize, it is difficult to get very low RMSE by a

single models. Most of researchers blend different methods

together to get a good result. There are many blending

methods, such as linear regression [25], NNblend [22]. We

use a factorized linear regression blending method which

get RMSE=0.8754 on Quiz by blending 35 models together.

Among 35 models, 8 of them are time-dependent models

(some of them are TimeSVD with different latent factor

numbers, and others are models that only consider one of the

four time-effects proposed in Section 3). In order to see how

time information influences recommendation quality, these 8

predictors are removed form predictor set and the blending

model of the rest 27 predictors get RMSE=0.8788 on Quiz.

This result also indicates the importance of time effects and

temporal features.

E. Result of TimeSVD on MovieLens data

Previous discussions about time effects in CF are based

on Netflix data. However, MovieLens data is also used

in our experiments. MovieLens is a web-based research

recommender system that debuted in Fall 1997. MovieLens

data set contains 1 million ratings for 3900 movies by 6040

users on scale 1 to 5 from 2000 to 2003. This data set

is denser than Netflix data. The sparsity level of a data

set is defined as 1 − |K|
|U||I| [8]. Then, the sparsity level of

MovieLens data is 0.9575 while the sparsity level of Netflix

data is 0.9882. In order to test time-dependent models,

MovieLens data is divided into two parts where 90 percent

of ratings are training set and 10 percent of ratings are test

set.

latent factors f TimeSVD RSVD Improvement

20 0.8407 0.8451 0.0044
40 0.8377 0.8420 0.0043
60 0.8364 0.8405 0.0041

Table VI
RESULTS OF TIMESVD MODEL AND RSVD MODEL RMSE ON

MOVIELENS DATA

Then, TimeSVD model is tested on MovieLens data.

Results are listed in Table VI. In RSVD model, we choose

learning rating η = 0.02 and regularization parameter

λ = 0.025. In TimeSVD model, we choose learning rating

η = 0.02 and regularization parameter λ = 0.035. Results of

MovieLens data also indicate the effectiveness of TimeSVD

model.

VI. CONCLUSION AND FUTURE WORK

In this work, we focus on how to use time information

to make accurate predictions in CF based recommender

system. Four main types of time effect (time bias, user

bias shifting, item bias shifting, user preference shifting)

are proposed and modeled by factorized model which is

called TimeSVD. Experiment results show that TimeSVD

can make more accurate predictions than RSVD, which is

a time-independent model widely used in CF. Furthermore,

many other time effects, such as year effect, month effect,

user loyalty effect, user activity effect and item popularity

effect are used in final time-dependent model. All of these

effects contribute to the final improvement of prediction

accuracy.

456456

However, we do not consider neighborhood methods in

this paper. Some researchers have proposed methods to use

time information in item-based kNN method [16]. However,

factorized model always perform better than kNN. In the

future, we will focus on how to model time effect between

items or users in factorized neighborhood methods.

REFERENCES

[1] “Toward the next generation of recommender systems: A
survey of the state-of-the-art and possible extensions,” IEEE
Trans. on Knowl. and Data Eng., vol. 17, no. 6, pp. 734–
749, 2005, member-Adomavicius,, Gediminas and Member-
Tuzhilin,, Alexander.

[2] G. Linden, B. Smith, and J. York, “Amazon.com recommen-
dations: item-to-item collaborative filtering,” Internet Com-
puting, IEEE, vol. 7, no. 1, pp. 76–80, Jan/Feb 2003.

[3] A. S. Das, M. Datar, A. Garg, and S. Rajaram, “Google
news personalization: scalable online collaborative filtering,”
WWW ’07: Proceedings of the 16th international conference
on World Wide Web, pp. 271–280, 2007.

[4] S.-T. Park and D. M. Pennock, “Applying collaborative fil-
tering techniques to movie search for better ranking and
browsing,” KDD ’07: Proceedings of the 13th ACM SIGKDD
international conference on Knowledge discovery and data
mining, pp. 550–559, 2007.

[5] J. Bennet and S. Lanning, “The netflix prize,” KDD Cup and
Workshop, 2007.

[6] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl,
“Grouplens: an open architecture for collaborative filtering
of netnews,” CSCW ’94: Proceedings of the 1994 ACM
conference on Computer supported cooperative work, pp.
175–186, 1994.

[7] J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker, L. R.
Gordon, and J. Riedl, “Grouplens: applying collaborative
filtering to usenet news,” Commun. ACM, vol. 40, no. 3, pp.
77–87, 1997.

[8] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl, “Item-based
collaborative filtering recommendation algorithms,” WWW
’01: Proceedings of the 10th international conference on
World Wide Web, pp. 285–295, 2001.

[9] M. Deshpande and G. Karypis, “Item-based top-n recommen-
dation algorithms,” ACM Trans. Inf. Syst., vol. 22, no. 1, pp.
143–177, 2004.

[10] T. Hofmann and J. Puzicha, “Latent class models for col-
laborative filtering,” IJCAI ’99: Proceedings of the Sixteenth
International Joint Conference on Artificial Intelligence, pp.
688–693, 1999.

[11] T. Hofmann, “Latent semantic models for collaborative fil-
tering,” ACM Trans. Inf. Syst., vol. 22, no. 1, pp. 89–115,
2004.

[12] B. Mehta, T. Hofmann, and W. Nejdl, “Robust collaborative
filtering,” RecSys ’07: Proceedings of the 2007 ACM confer-
ence on Recommender systems, pp. 49–56, 2007.

[13] J. D. M. Rennie and N. Srebro, “Fast maximum margin
matrix factorization for collaborative prediction,” ICML ’05:
Proceedings of the 22nd international conference on Machine
learning, pp. 713–719, 2005.

[14] N. Srebro and T. Jaakkola, “Weighted low rank approxima-
tion,” 20th International Conference on Machine Learning,
2003.

[15] R. M. Bell and Y. Koren, “Scalable collaborative filtering with
jointly derived neighborhood interpolation weights,” ICDM
’07: Proceedings of the 2007 Seventh IEEE International
Conference on Data Mining, pp. 43–52, 2007.

[16] Y. Ding and X. Li, “Time weight collaborative filtering,” pp.
485–492, 2005.

[17] R. Bell, Y. Koren, and C. Volinsky, “The bellkor solution to
the netflix prize,” Technical report, AT&T Labs, 2007.

[18] Y. K. C. V. Robert Bell, “The bellkor 2008 solution to the
netflix prize,” Technical report, AT&T Labs, 2008.

[19] Y. Koren, “Factorization meets the neighborhood: a multi-
faceted collaborative filtering model,” KDD ’08: Proceed-
ing of the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 426–434, 2008.

[20] D. G. Ken Goldberg, Theresa Roeder and C. Perkins, “Eigen-
taste: A constant time collaborative filtering algorithm,” In-
formation Retrieval.

[21] G. Takács, I. Pilászy, B. Németh, and D. Tikk, “Major
components of the gravity recommendation system,” SIGKDD
Explor. Newsl., vol. 9, no. 2, pp. 80–83, 2007.

[22] A. Töscher and M. Jahrer, “The bigchaos solution to the
netflix prize 2008,” 2008.

[23] G. Takács, I. Pilászy, B. Németh, and D. Tikk, “On the gravity
recommendation system.”

[24] Y. Koren, “Factor in the neighbors : Scalable and accurate
collaborative filtering,” 2008.

[25] A. Paterek, “Improving regularized singular value decompo-
sition for collaborative filtering,” 2007, pp. 39–42.

457457

