
MagicalRecord ❤
Swift
Saul Mora

@casademora

Data

Data is the heart of your application. Or in apple terms, is the Core…

Mainframes only
worked on data

Data is the workhorse..the place where actual ideas and business logic happens in your app!

But users they want all the new shiny apps and are well designed and polished and lickable…but they don’t realize
that

Modern Tools

Data is what makes their likable app something they want to use.

Without data, this app is useless….it’s just a bunch of shiny pixels but not useful for much else

+

So, as iOS developers we need a way to handle data and make it work well together with our gorgeous user
interfaces…that’s where a data framework comes in…

As you start working, you find you're most often working in objects. But you store your data in tables and
relations. You make a lot of glue code for this…

Data Code
- Glue code
- DAOs. Yuck
- Can easily mix the “database” code with “business model” code

When it comes to writing code for that data, it can become messy quite quickly. When you mix two different
languages together, boundaries begin to blur, and “data logic” melds with “business logic”.

Core Data+

But what exactly is Core Data?
Core Data is what you would build if you wrote this framework yourself. The API certainly is cause for many
questions and confusion, but I’ve come to realize that Core Data is a framework, or the lowest level of abstraction
Apple is comfortable in providing you in order to keep the object oriented ideals in tact.

ORM

Eventually, you build an ORM. ORMs have a few shortcomings of their own:
- Abstractions SQL leak into your object code

ORMs are a leaky abstraction.
CoreData is less leaky, but still there are a few places where those boundaries appear. The bottom line is, while
CoreData is not an ORM, it’s an Object Graph Persistence Framework, it is something you would write anyway.

Core Data ORM

CoreData is an Object Graph Persistence Framework…

NSPersistentStore

NSPersistentStore

NSPersistentStoreCoordinator

NSPersistentStore

NSPersistentStoreCoordinator

NSManagedObjectModel

NSPersistentStore

NSPersistentStoreCoordinator NSManagedObjectModel

NSManagedObjectContext

NSPersistentStore

NSPersistentStoreCoordinator NSManagedObjectModel

NSManagedObjectNSManagedObjectNSManagedObjectNSManagedObjectNSManagedObjectNSManagedObjectNSManagedObjectNSManagedObjectContext

NSPersistentStore

NSPersistentStoreCoordinator NSManagedObjectModel

NSManagedObjectContext

NSManagedObject

NSManagedObject

NSManagedObject

NSManagedObject
NSManagedObject

NSManagedObject

NSManagedObject

NSPersistentStore

NSPersistentStoreCoordinator NSManagedObjectModel

NSManagedObjectContext

NSManagedObject

NSManagedObject

NSManagedObject

NSManagedObject

NSManagedObject

NSManagedObject
NSManagedObject

NSManagedObjectContext *moc = [self
managedObjectContext];

NSEntityDescription *entityDescription =
[NSEntityDescription

 entityForName:@"Person"
inManagedObjectContext:moc];

Creating new NSManagedObjects from another container object

NSManagedObjectContext *moc = [self managedObjectContext];
NSEntityDescription *entityDescription = [NSEntityDescription
 entityForName:@" " inManagedObjectContext:moc];

NSFetchRequest *request = [[[NSFetchRequest alloc] init] autorelease];
[request setEntity:entityDescription];

// Set example predicate and sort orderings...
NSNumber *minimumSalary = ...;
NSPredicate *predicate =

;

[request setPredicate:predicate];

NSSortDescriptor *sortDescriptor = [[NSSortDescriptor alloc]
 initWithKey:@" " ascending:];

[request setSortDescriptors:[NSArray arrayWithObject:sortDescriptor]];
[sortDescriptor release];

NSError *error;
NSArray *array = [moc executeFetchRequest:request error:&error];

if (array == nil)
{
 // Deal with error...
}

Employee

firstName

 [NSPredicate predicateWithFormat:
 @"(lastName LIKE[c] 'Worsley') AND (salary > %@)",
 minimumSalary]

YES

Fetch requests usually take a lot of code
Favorite part of the Apple Sample fetch request:
- Deal with error

NSManagedObjectContext *moc = [self managedObjectContext];
[moc performBlock:^{
 NSManagedObject *originalCustomer = //found this from a previous fetch

 NSManagedObject *customer = [moc objectWithID: [originalCustomer objectID]];

 [customer setValue:@”John Appleseed” forKey:@“name”];
 //set more properties

 NSError *error = nil;
 BOOL saved = [moc save:&error];
 if (!saved) {
 // deal with save issue
 }
}];

Saving changes in code

Notice that we set values for keys, so a very dynamic, Key Value coding approach to saving data. Core Data is dynamic and
can adapt to whatever data comes through

Adding new properties

Whenever you add a new property to an entity, you’ll need to:

1) Find your entity in code

2) Manually enter your new property with the correct type information

3) make sure you don’t overwrite the old implementation of entity/business logic code by mistake.

Adding new properties

Whenever you add a new property to an entity, you’ll need to:

1) Find your entity in code

2) Manually enter your new property with the correct type information

3) make sure you don’t overwrite the old implementation of entity/business logic code by mistake.

We have the technology to make this better

mogenerator implements the Generation Gap pattern

Generation Gap Pattern

mogenerator implements the Generation Gap pattern

Base Class

mogenerator implements the Generation Gap pattern

Base Class

Generated Subclass

mogenerator implements the Generation Gap pattern

Base Class

Generated Subclass

Hand coded Subclass

mogenerator implements the Generation Gap pattern

github.com/rentzsch/mogenerator

mogenerator implements the Generation Gap pattern

http://github.com/rentzsch/mogenerator

Click the plus button to Add a New Run Script Phase to your project

Move it to complete just prior to your Compile Sources phase.

Now al your generated code will be up to date on every compile!

Script source: https://gist.github.com/casademora/f115102b2e6530e2554c

MAGICALRECORD

3.0

@implementation SampleAppDelegate

- (BOOL) application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary
*)options

{
 [SQLiteMagicalRecordStack

stackWithStoreNamed:@“MainStore.sqlite”];
 return YES;

}

@end

setting up a simple sqlite stack

NSManagedObjectContext *moc = [self managedObjectContext];
NSEntityDescription *entityDescription = [NSEntityDescription
 entityForName:@" " inManagedObjectContext:moc];

NSFetchRequest *request = [[[NSFetchRequest alloc] init] autorelease];
[request setEntity:entityDescription];

// Set example predicate and sort orderings...
NSNumber *minimumSalary = ...;
NSPredicate *predicate =

;

[request setPredicate:predicate];

NSSortDescriptor *sortDescriptor = [[NSSortDescriptor alloc]
 initWithKey:@" " ascending:];

[request setSortDescriptors:[NSArray arrayWithObject:sortDescriptor]];
[sortDescriptor release];

NSError *error;
NSArray *array = [moc executeFetchRequest:request error:&error];

if (array == nil)
{
 // Deal with error...
}

Employee

firstName

 [NSPredicate predicateWithFormat:
 @"(lastName LIKE[c] 'Worsley') AND (salary > %@)",
 minimumSalary]

YES

Fetch requests usually take a lot of code
There is a pretty clear pattern here, and a lot of repeated boilerplate code…
Let’s see exactly what is unique about this fetch request as opposed to others

NSManagedObjectContext *moc = [self managedObjectContext];
NSEntityDescription *entityDescription = [NSEntityDescription
 entityForName:@" " inManagedObjectContext:moc];

NSFetchRequest *request = [[[NSFetchRequest alloc] init] autorelease];
[request setEntity:entityDescription];

// Set example predicate and sort orderings...
NSNumber *minimumSalary = ...;
NSPredicate *predicate =

;

[request setPredicate:predicate];

NSSortDescriptor *sortDescriptor = [[NSSortDescriptor alloc]
 initWithKey:@" " ascending:];

[request setSortDescriptors:[NSArray arrayWithObject:sortDescriptor]];
[sortDescriptor release];

NSError *error;
NSArray *array = [moc executeFetchRequest:request error:&error];

if (array == nil)
{
 // Deal with error...
}

Employee

firstName

 [NSPredicate predicateWithFormat:
 @"(lastName LIKE[c] 'Worsley') AND (salary > %@)",
 minimumSalary]

YES

What we want is a way to make this code less boilerplate...we want our code to express the intent of this fetch
request...

[MR_findAllWithPredicate:

 sortedBy:@" "
 ascending:
 inContext:moc];

Employee [NSPredicate predicateWithFormat:
 @"(lastName LIKE[c] 'Worsley') AND (salary > %@)",
 minimumSalary]

firstName
YES

PlaylistItem *item = ...;
MagicalRecordStack *stack = ...;

[stack saveWithBlock:^(NSManagedObjectContext *localContext) {

PlaylistItem *localItem = [item MR_inContext:localContext];

[localItem setTitle:@”New Title”];
[localItem setArtist:@”Some Dude off the Street”];

} completion:^{

self.playlist = [PlaylistItem MR_findAllOrderedBy:@”title”
ascending:YES];
[self.tableView reloadData];

}];

What if you had a UIView animation style completion handler so that when your data is saved, you get a callback to update your
UI! MagicalRecord does that for you!

PlaylistItem *item = ...;
MagicalRecordStack *stack = ...;

[stack saveWithBlock:^(NSManagedObjectContext *localContext) {

PlaylistItem *localItem = [item MR_inContext:localContext];

[localItem setTitle:@”New Title”];
[localItem setArtist:@”Some Dude off the Street”];

} completion:^{

self.playlist = [PlaylistItem MR_findAllOrderedBy:@”title”
ascending:YES];
[self.tableView reloadData];

}];

What if you had a UIView animation style completion handler so that when your data is saved, you get a callback to update your
UI! MagicalRecord does that for you!

NSPersistentStore

NSPersistentStoreCoordinator NSManagedObjectModel

NSManagedObjectContext
MagicalRecordStack

Let’s talk about how to configure Core Data differently

NSPersistentStore

NSPersistentStoreCoordinator NSManagedObjectModel

NSManagedObjectContext
MagicalRecordStack

NSManagedObjectContext

The second context is for saving in the background using a private queue context

NSPersistentStore

NSPersistentStoreCoordinator NSManagedObjectModel

NSManagedObjectContext
MagicalRecordStack

NSPersistentStore

NSPersistentStoreCoordinator NSManagedObjectModel

NSManagedObjectContext
MagicalRecordStack

NSPersistentStoreNSPersistentStoreNSPersistentStoreNSPersistentStoreNSPersistentStore

Multiple Persistent Stores is great for having separate “documents”

NSPersistentStore

NSPersistentStoreCoordinator NSManagedObjectModel

NSManagedObjectContext
MagicalRecordStack

NSPersistentStore

NSPersistentStoreCoordinator

NSManagedObjectModel

NSManagedObjectContext
MagicalRecordStack

NSPersistentStore

NSPersistentStoreCoordinator

NSManagedObjectContext

NSPersistentStore

NSPersistentStoreCoordinator

NSManagedObjectModel

NSManagedObjectContext
MagicalRecordStack

NSPersistentStore

NSPersistentStoreCoordinator

NSManagedObjectContext

@implementation SampleAppDelegate

- (BOOL) application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary
*)options

{
 [MagicalRecord setupSQLiteStack];
 return YES;

}

@end

setting up a simple sqlite stack

@implementation SampleAppDelegate

- (BOOL) application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary
*)options

{
 [MagicalRecord setupStackWithInMemoryStore];
 return YES;

}

@end

setting up an in memory stack

@implementation SampleAppDelegate

- (BOOL) application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary
*)options

{
 [MagicalRecord setupAutoMigratingStack];
 return YES;

}

@end

setting up an auto migrating sqlite stack

@implementation SampleAppDelegate

- (BOOL) application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)options

{
 [MagicalRecord setupAutoMigratingStackWithSQLiteStoreNamed:

@“MyDataStore”];
 return YES;

}

@end

setting up an auto migrating sqlite stack with a custom store name

MagicalRecord is
OpenSource

http://magicalrecord.com

MagicalRecord is open source

http://magicalrecord.com

+

But what about swift? This whole presentation has been showing you code in Objective C..

Objective C had a huge influence on the MagicalRecord API design. Making MagicalRecord fit into swift isn’t just simply a
rewrite/reimplement operation.

- Logging Macros

- Data import library

- fetching method naming conventin

[MR_findAllWithPredicate:

 sortedBy:@" "
 ascending:
 inContext:moc];

Employee [NSPredicate predicateWithFormat:
 @"(lastName LIKE[c] 'Worsley') AND (salary > %@)",
 minimumSalary]

firstName
YES

- MR_ prefix naming convention is due to the nature of categories in ObjC…

Some Code Reads Strangely

Examples like the MR_ prefix. It was a hack in ObjC, and carried over to Swift it makes some APIs feel like they don’t fit in

MagicalRecord is
Large

https://flic.kr/p/5kLeqW

Magical Record is LARGE. It’s more than just a collection of simple helper methods around CoreData now…

MR has a lot of useful features.

- Stack management

- Thread/Queue/Context management

- Request helpers

- Logging

- Simple Data Importing

Swift moves fast

Betas

June 2014 Jan 2015 June 2015

Announced

1.0 Released

1.2 Released

1.1 Released

2.0 Released

Betas

Betas

The Swift Language has moved super fast…

<Show timeline of swift releases with features and breaking changes>

Announced June 2, 2014

1.0 - Sept 9, 2014

1.1 - Oct 2, 2014 (failable initializers)

1.2 - Feb 9, 2105 (compiler improvements, as!, nullability for ObjC code, compound if let statements)

2.0 - June 2015 (guard, protocol extensions)

2.1 - already on the horizon with Xcode 7.1 beta2

Less Dynamic

Swift has started as a less dynamic language despite being implemented on the ObjC runtime. Swift calls have been
optimized to remove the dynamic dispatch calls that made ObjC flexible…but also more easier to write bad bugs.

MagicalRecord has taken advantage of the dynamic nature of ObjC.

Dynamic Programming
can be useful…

Some solutions are just more simple to implement using Dynamic Runtime Programming. Like the data import library
callbacks…

Simpler is relative because you still need to make it work. But as far as code goes, the amount of effort to dynamically call a
method based on a property name is far simpler to write and consume using dynamic programming.

+ (NSString *) MR_entityName;
{
 NSString *entityName;

 if ([self respondsToSelector:@selector(entityName)])
 {
 entityName = [self performSelector:@selector(entityName)];
 }

 if ([entityName length] == 0)
 {
 entityName = NSStringFromClass(self);
 }

 return entityName;
}

The mapping between the entity name and the class name is a simple solution in MagicalRecord.

@protocol MagicalRecordDataImportProtocol <NSObject>

@optional
- (BOOL) shouldImport:(id)data;
- (void) willImport:(id)data;
- (void) didImport:(id)data;

@end

When importing data, we can create a simple protocol to call back a the client that triggered the import at the proper time.
This protocol can be implemented and triggered using swift. So it doesn’t matter if it’s written in ObjC or Swift. It’s protocol
oriented

- (BOOL) MR_importValue:(id)value forKey:(NSString *)key
{
 NSString *selectorString = [NSString stringWithFormat:@"import%@:",

[key MR_capitalizedFirstCharacterString]];
 SEL selector = NSSelectorFromString(selectorString);

 if ([self respondsToSelector:selector])
 {
 NSInvocation *invocation =

[NSInvocation invocationWithMethodSignature:
[self methodSignatureForSelector:selector]];

 [invocation setTarget:self];
 [invocation setSelector:selector];
 [invocation setArgument:&value atIndex:2];
 [invocation invoke];

 BOOL returnValue = YES;
 [invocation getReturnValue:&returnValue];
 return returnValue;
 }

 return NO;
}

Category on NSManagedObject to import a single value

This is where dynamic programming is useful. There is a convention on the NSManagedObjects so that if you have custom
import logic, you can implement it one attribute at a time and the import method is named for the attribute. You can see an
example of how this is useful here…

- (BOOL) importName:(id)name;
{
 NSArray *components = [name componentsSeparatedByString:@"/"];
 self.name = [components lastObject];
 self.fullName = name;
 if ([components count] > 1)
 {
 self.owner = [components firstObject];
 }
 return self.name != nil;
}

Custom import logic to read a persons name from a Bitbucket Repository

SugarRecord
https://github.com/SugarTeam/SugarRecord

SugarRecord came out with a good fresh start

QueryKit
https://github.com/QueryKit/QueryKit

QueryKit resembles something like Linq. The approach feels like a Domain Specific Language.

Rewrite

Decided not to rewrite the codebase!

Instead we will move forward with some Swift only extensions that will not be visible to ObjC code.

Discuss API design decisions here.

Trying to be a pragmatic programmer myself, I didn’t want to rewrite what wasn't broken. MagicalRecord is great for
CoreData. Remember CoreData is a very dynamic, and key value based approach to reading and writing data.

Interoperability

Apple spent a lot of time and effort in WWDC 2014 to promote Swift/ObjC interoperability. In fact, it works amazingly well
because of the architecture of the language implementation being built on top of the Objective C runtime. In this case, there
isn’t a strong need to rewrite, since the codebase still works. What is needed is a way to fit the library into the new language
paradigm without breaking backward compatibility with old code.

extension NSManagedObject {
 public func saveWithBlock(block: (NSManagedObjectContext!) -> Void)

public class func MR_findAllSortedBy(sortTerm: String!,
ascending: Bool, inContext context: NSManagedObjectContext!) -> [AnyObject]!

}

But, one of the problems with the first attempts at interoperability was all the crash operators being placed by default.

NS_ASSUME_NONNULL_BEGIN

NS_ASSUME_NONNULL_END

@interface MagicalRecord (Setup)

+ (MagicalRecordStack *) setupSQLiteStack;
+ (MagicalRecordStack *)
setupSQLiteStackWithStoreAtURL:(NSURL *)url;
+ (MagicalRecordStack *)
setupSQLiteStackWithStoreNamed:(NSString
*)storeName;

- (instancetype) findWithPredicate:
(NSPredicate * __nullable)searchTerm;

@end

NS_ASSUME_NONNULL_BEGIN

NS_ASSUME_NONNULL_END

extension NSManagedObject {
 public func saveWithBlock(block: (NSManagedObjectContext) -> Void)

public class func MR_findAllSortedBy(sortTerm: String,
ascending: Bool, inContext context: NSManagedObjectContext) -> [AnyObject]

}

Now, we don’t have those crash operators in our generated swift compatibility headers.

extensions

Being pragmatic, I decided that it’s still important to support the Objective C APIs. At the same time, the Swift compatibility
layer with ObjC means I can write extensions in Swift only and not expose them to Objective C, and still have the Swift layer
use code that is proven to still work, and work well for the key/value storage paradigm

Category Prefixes

extension MagicalRecordStack {

 func find<T: NSManagedObject>(type: T.Type)

(predicate: NSPredicate, orderBy: String, ascending: Bool) -> [T] {

 let finder = find(using: MagicalRecordStack.defaultStack().context)(type: type)
 return finder(predicate: predicate, orderBy: orderBy, ascending: ascending)
 }

 func find<T: NSManagedObject>(using context: NSManagedObjectContext)

(type: T.Type)
(predicate: NSPredicate, orderBy: String, ascending: Bool) -> [T] {

 return type.MR_findAllSortedBy(orderBy, ascending: ascending, inContext:
context) as? [T] ?? []
 }

}

Curried functions for partially applying a method

let find = stack.find(using: someContext)
let titleIsValid = NSPredicate(format: “title.length > 0”)

let findBooks = find(Book.self)

let validBooks = findBooks(predicate: titleIsValid,
orderBy: “title”, ascending: true)

Curried functions let you have functions that return functions with simple syntax.

let originalObject: NSManagedObject = …

stack.save { usingContext in
 let localObject = other.inContext(usingContext)

 localObject.firstName = “Saul”
 localObject.lastName = “Mora”
}

And since MagicalRecord isn’t going to be a rewrite, some of the previous compatibility and call back conventions still work.
Mogenerator still works, as does the importing. This is because Swift and ObjC are running on the same runtime, albeit with
some optimizations for the Swift language

http://www.raywenderlich.com/store/core-data-by-tutorials

