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Abstract

Model selection strategies for machine learning algorghwpically involve the numerical opti-
misation of an appropriate model selection criterion, mftased on an estimator of generalisation
performance, such dsfold cross-validation. The error of such an estimator carbioken down
into bias and variance components. While unbiasednesses ofted as a beneficial quality of a
model selection criterion, we demonstrate that a low vaeas at least as important, as a non-
negligible variance introduces the potential for overrgtin model selection as well as in training
the model. While this observation is in hindsight perhaplseabbvious, the degradation in perfor-
mance due to over-fitting the model selection criterion casurprisingly large, an observation that
appears to have received little attention in the machinmieg literature to date. In this paper, we
show that the effects of this form of over-fitting are oftencomparable magnitude to differences
in performance between learning algorithms, and thus ddmndgnored in empirical evaluation.
Furthermore, we show that some common performance evatuptactices are susceptible to a
form of selection bias as a result of this form of over-fittimgd hence are unreliable. We dis-
cuss methods to avoid over-fitting in model selection andsgbent selection bias in performance
evaluation, which we hope will be incorporated into bestpeca. While this study concentrates
on cross-validation based model selection, the findinggjaite general and apply to any model
selection practice involving the optimisation of a moddesgon criterion evaluated over a finite
sample of data, including maximisation of the Bayesian@wvi# and optimisation of performance
bounds.

Keywords: model selection, performance evaluation, bias-variarazietoff, selection bias, over-
fitting

1. Introduction

This paper is concerned with two closely related topics that form core coemp®of best practice in
both the real world application of machine learning methods and the develbpfm@vel machine
learning algorithms, namely model selection and performance evaluatiomdjbety of machine
learning algorithms are based on some form of multi-level inference, vthermodel is defined
by a set of model parameters and also a set of hyper-parametersn(@uaio, 2009), for example
in kernel learning methods the parameters correspond to the coefficfetis kernel expansion
and the hyper-parameters include the regularisation parameter, the oh&ieael function and
any associated kernel parameters. This division into parameters aadgggameters is typically
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performed for computational convenience; for instance in the caseroélkmachines, for fixed
values of the hyper-parameters, the parameters are normally given Ilsplthiieon of a convex
optimisation problem for which efficient algorithms are available. Thus it makese to take
advantage of this structure and fit the model iteratively using a pair ofchkgips, with the hyper-
parameters adjusted to optimise a model selection criterion in the outer loop (setetion) and
the parameters set to optimise a training criterion in the inner loop (model fittinggainin
our previous study (Cawley and Talbot, 2007), we noted that the variahthe model selection
criterion admitted the possibility of over-fitting during model selection as well @srthre familiar
form of over-fitting that occurs during training and demonstrated that thitkddoe ameliorated to
some extent by regularisation of the model selection criterion. The firsbp#ris paper discusses
the problem of over-fitting in model selection in more detail, providing illustragixamples, and
describes how to avoid this form of over-fitting in order to gain the best atténperformance,
desirable in practical applications, and required for fair comparison ohma learning algorithms.

Unbiased and robusperformance evaluation is undoubtedly the cornerstone of machine learn-
ing research; without a reliable indication of the relative performanceonfpeting algorithms,
across a wide range of learning tasks, we cannot have the clear p€tine strengths and weak-
nesses of current approaches required to set the direction foe figsearch. This topic is consid-
ered in the second part of the paper, specifically focusing on the ivablesoptimistic bias that
can arise due to over-fitting in model selection. This phenomenon is esseatiallygous to the
selection bias observed by Ambroise and McLachlan (2002) in microafesgification, due to
feature selection prior to performance evaluation, and shares a similiosolye show that some,
apparently quite benign, performance evaluation protocols in common uke byachine learning
community are susceptible to this form of bias, and thus potentially give spurdsults. In order
to avoid this bias, model selection must be treated as an integral part of tlefittowy process and
performed afresh every time a model is fitted to a new sample of data. Furtieerasahe differ-
ences in performance due to model selection are shown to be often of dnigmagnitude to the
difference in performance between learning algorithms, it seems no longeimgéul to evaluate
the performance of machine learning algorithms in isolation, and we shoulddsbenpare learn-
ing algorithm/model selection procedure combinations. However, this mean®iiest unbiased
performance evaluation is likely to require more rigorous and computation&digsive protocols,
such a nested cross-validation or “double cross” (Stone, 1974).

None of the methods or algorithms discussed in this paper are new; the guntebution
of this work is an empirical demonstration that over-fitting at the second teévielference (i.e.,
model selection) can have a very substantial deleterious effect onrieadjsation performance of
state-of-the-art machine learning algorithms. Furthermore the demonstitsicthis can lead to a
misleading optimistic bias in performance evaluation using evaluation protocatsrimon use in
the machine learning community is also novel. The paper is intended to be of siomia ttalue in
promoting best practice in model selection and performance evaluatioeybowe also hope that
the observation that over-fitting in model selection is a significant problemendburage much
needed algorithmic and theoretical development in this area.

The remainder of the paper is structured as follows: Section 2 providesfaterview of the
kernel ridge regression classifier used as the base classifier for jinétynaf the experimental work

1. The term “robust” is used here to imply insensitivity to irrelevant expenital factors, such as the sampling and par-
titioning of the data to form training, validation and test sets; this is normally eetiiey computationally expensive
resampling schemes, for example, cross-validation (Stone, 19@4hamootstrap (Efron and Tibshirani, 1994).
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and Section 3 describes the data sets used. Section 4 demonstrates thensepufrthe variance
of the model selection criterion, as it can lead to over-fitting in model selectsnjting in poor

generalisation performance. A number of methods to avoid over-fitting in Insetkction are also
discussed. Section 5 shows that over-fitting in model selection can resuiisad performance
evaluation if model selection is not viewed as an integral part of the modelfimgedure. Two

apparently benign and widely used performance evaluation protocohaven to be affected by
this problem. Finally, the work is summarised in Section 6.

2. Kernel Ridge Regression

In this section, we provide a brief overview of the Kernel Ridge Reipag&RR) classifier (Saun-
ders et al., 1998), also known as the Least-Squares Support Veatdrihé (Suykens et al., 2002),
Regularised Least Squares (Rifkin and Lippert, 2007), Regularissgbmork (Poggio and Girosi,
1990) etc., used as the base classifier in most of the empirical demonstratioesé@guel. Assume
we are given labeled training dat®,= {(xi,yi)}le, wherex; € X ¢ RYis a vector of input features
describing thé™ example and; € {—1,+1} is an indicator variable such thgt= +1 if the it"
example is drawn from the positive clagd!, andy; = —1 if from the negative clasg, . Further
let us assume there af€ positive examples anéi” = ¢/ — ¢* negative examples. The Kernel Ridge
Regression classifier aims to construct a linear md@el = w- @(x) + b in a fixed feature space,
@: X — F, thatis able to distinguish between examples drawn feomandC*, such that

ct iff(x)>0
xe{ C~ otherwise

However, rather than specifying the feature spa€edirectly, it is induced by a kernel function,
K : X x X = R, giving the inner product between the images of vectors in the featuce gpathat

is, K(x,X) = @(x) - @(X'). A common kernel function, used throughout this study, is the Gaussian
radial baS|s function (RBF) kernel

K(X,X’)ZGX}D{—I’]HX—X/HZ}, (1)

wherern is a kernel parameter controlling the sensitivity of the kernel function. édew the inter-
pretation of the kernel function as evaluating the inner product betwaatspn an implied feature
space is valid for any kernel for which the kernel maktix= [ki; = ?((xi,xj)]fj:l is positive definite
(Mercer, 1909), such that

alKa>0, Va#0.

The model parametelsv,b) are given by the minimum of a regularised (Tikhonov and Arsenin,
1977) least-squares loss function,

1
L=3|w?+ zl —w-@(x) —b]?, 2)

whereA is a regularisation parameter controlling the bias-variance trade-off (Getral., 1992).
The accuracy of the kernel machine on test data is critically dependeéiné @hoice of good values
for the hyper-parametersin this case\ andn. The search for the optimal values for such hyper-
parameters is a process knowmaadel selectionThe representer theorem (Kimeldorf and Wahba,
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1971) states that the solution to this optimisation problem can be written as amsexpaf the

form
¢

W= iai(p(xi) = f(x)= ,ZLG‘K(X"X) +b.

The dual parameters of the kernel machimeare then given by the solution of a system of linear

equations,
K+AL 1| [a| |y
P olls]-le ) g

wherey = (y1,¥2,...,Y¢)", which can be solved efficiently via Cholesky factorisatiorkof- Al,
with a computational complexity of(¢3) operations (Suykens et al., 2002). The simplicity and
efficiency of the kernel ridge regression classifier makes it an idealidate for relatively small-
scale empirical investigations of practical issues, such as model selection.

2.1 Efficient Leave-One-Out Cross-Validation

Cross-validation (e.g., Stone, 1974) provides a simple and effective mithbdth model selec-
tion and performance evaluation, widely employed by the machine learning coitymiwnder
k-fold cross-validation the data are randomly partitioned to fhisjoint subsets of approximately
equal size. In thé" fold of the cross-validation procedure, tH& subset is used to estimate the
generalisation performance of a model trained on the remaiing subsets. The average of
the generalisation performance observed ovek #lds provides an estimate (with a slightly pes-
simistic bias) of the generalisation performance of a model trained on the satimgle. The most
extreme form of cross-validation, in which each subset contains onlygtegiattern is known as
leave-one-out cross-validation (Lachenbruch and Mickey, 19684 and Brailovsky, 1969). An
attractive feature of kernel ridge regression is that it is possible t@imerfeave-one-out cross-
validation in closed form, with minimal cost as a by-product of the training &lyor(Cawley and
Talbot, 2003). Le€C represent the matrix on the left hand side of (3), then the residualferrtire

it training pattern in thé" fold of the leave-one-out process is given by,

where f*” is the output of the kernel ridge regression machine foith@bservation in thg™" fold

of the leave-one-out procedure aﬁgl is thei" element of the principal diagonal of the inverse
of the matrixC. Similar methods have been used in least-squares linear regression foyeaas,
(e.g., Stone, 1974; Weisberg, 1985). While the optimal model parameténs &krnel machine
are given by the solution of a simple system of linear equations, (3), sameofomodel selection
is required to determine good values for tgper-parametersd = (A,n), in order to maximise
generalisation performance. The analytic leave-one-out crossiatigaocedure described here
can easily be adapted to form the basis of an efficient model selectiorggt(afeChapelle et al.,
2002; Cawley and Talbot, 2003; Bo et al., 2006). In order to obtain #ragyus model selection
criterion, we adopt Allen’s Predicted REsidual Sum-of-Squares (FFRE&tistic (Allen, 1974),

14

PRES$0) = Zl [ri(*”} :
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The PRESS criterion can be optimised efficiently using scaled conjugategrddscent (Williams,
1991) or Nelder-Mead simplex (Nelder and Mead, 1965) proceddesfull details of the train-
ing and model selection procedures for the kernel ridge regressissifda see Cawley (2006).
A public domain MATLAB implementation of the kernel ridge regression classifieluding au-
tomated model selection, is provided by the Generalised Kernel Machin®f@&Bawley et al.,
2007) toolbox

3. Data Sets used in Empirical Demonstrations

In this section, we describe the benchmark data sets used in this study tot#ukeggoroblem
of over-fitting in model selection and to demonstrate the bias this can introdiacparformance
evaluation.

3.1 A Synthetic Benchmark

A synthetic benchmark, based on that introduced by Ripley (1996), i widely in the next
section to illustrate the nature of over-fitting in model selection. The data awendirom four
spherical bivariate Gaussian distributions, with equal probability. Alt fBaussians have a com-
mon varianceg? = 0.04. Patterns belonging to the positive classes are drawn from Gaussians
centered orj+0.4,+0.7] and[—0.3,4-0.7]; the negative patterns are drawn from Gaussians cen-
tered on[—0.7,+0.3] and[+0.3,+0.3]. Figure 1 shows a realisation of the synthetic benchmark,
consisting of 256 patterns, showing the Bayes-optimal decision bouaddrgontours representing
an a-posteriori probability of belonging to the positive class .af @nd 09. The Bayes error for
this benchmark is approximately 12.38%. This benchmark is useful firstlyeaBdlges optimal
decision boundary is known, but also because it provides an inetithlausupply of data, allowing

the numerical approximation of various expectations.

3.2 A Suite of Benchmarks for Robust Performance Evaluation

In addition to illustrating the nature of over-fitting in model selection, we neeemochstrate that
it is a serious concern in practical applications and show that it can liasbithsed performance
evaluation if not taken into consideration. Table 1 gives the details of a duhéteen benchmark
data sets, introduced byasch et al. (2001). Each benchmark is based on a data set from the
UCI machine learning repository, augmented by a set of 100 pre-defaréiions to form multiple
realisations of the training and test sets (20 in the case of the largge andsplice data sets).
The use of multiple benchmarks means that the evaluation is more robust &ieitten of data
sets that provide a good match to the inductive bias of a particular classfiermes less likely.
Likewise, the use of multiple partitions provides robustness against sépditithe sampling of
data to form training and test sets. Results on this suite of benchmarks twidgsra reasonable
indication of the magnitude of the effects of over-fitting in model selection tleatnight expect to
see in practice.

2. Toolbox can be found &ttp://theoval.cmp.uea.ac.uk/ ~ gcc/projects/gkm
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Figure 1: Realisation of the Synthetic benchmark data set, with Bayes optiialosiebound-
ary (a) and kernel ridge regression classifier with an automatic relevdgtermination
(ARD) kernel where the hyper-parameters are tuned so as to minimise ¢testUMSE

(b).
Training | Testing | Number of Input
Data Set Patterns | Patterns | Replications | Features
banana 400 4900 100 2
breast cancer 200 77 100 9
diabetis 468 300 100 8
flare solar 666 400 100 9
german 700 300 100 20
heart 170 100 100 13
image 1300 1010 20 18
ringnorm 400 7000 100 20
splice 1000 2175 20 60
thyroid 140 75 100 5
titanic 150 2051 100 3
twonorm 400 7000 100 20
waveform 400 4600 100 21

Table 1: Details of data sets used in empirical comparison.

4. Over-fitting in Model Selection

We begin by demonstrating that it is possible to over-fit a model selectionienteased on a finite
sample of data, using the synthetic benchmark problem, where ground tahilsble. Here we
use “over-fitting in model selection” to mean minimisation of the model selectionioritéeyond

the point at which generalisation performance ceases to improve arebsnsly begins to decline.
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Figure 1 (b) shows the output of a kernel ridge regression classifieghé synthetic problem, with
the Automatic Relevance Determination (ARD) variant of the Gaussian raahia function kernel,

d
-{K(X7X/) = eXp{—_Z‘ﬂi(Xi _X{)Z} )

which has a separate scaling parameatgrfor each feature. A much larger training set of 4096
samples was used, and the hyper-parameters were tuned to minimise thettroeaesquared
errors (MSE). The performance of this model achieved an error fat2.60%, which suggests that
a model of this form is capable of approaching the Bayes error rate ifopthblem, at least in
principle, and so there is little concern of model mis-specification.
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Figure 2: Evolution of the expected four-fold cross-validation and trsientean squared error as a
function of the number of iterations (optimisation steps in the minimisation of the model
selection criterion) of the model selection process, for a kernel ridgession classifier
trained on thesynthetic  benchmark data set (a) and (b) the evolution of those statistics
for a particular realisation of the data set.

A further one thousand independent realisations of this benchmarlgeresated, each consist-
ing of 64 samples. A kernel ridge regression classifier, based on tbek&Rel, was constructed for
each realisation, with the hyper-parameters tuned so as to minimise a fourdetivalidation es-
timate of the mean squared error. The true generalisation performanaetofm®del was estimated
numerically using the underlying generative model of the data set. Fig@eshdws the expected
true test and cross-validation estimates of the mean squared erroreavexag all 1000 realisations
of the benchmark. As would be expected, the cross-validation estimate wicie squared error,
forming the model selection criterion, is monotonically decreasing. Howthesexpected value of
the true test MSE initially shows a decrease, as the hyper-parametersdifiednio a manner that
provides genuine improvements in generalisation, but after a relatively tiine (approximately
30-40 iterations), the test error begins to climb slowly once more as the-hgpmeters are tuned
in ways that exploit the meaningless statistical peculiarities of the sample. Tusqas a close
analog of the classic plot used to illustrate the nature of over-fitting in traifongxample, Figure
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9.7 of the book by Bishop (1995). Figure 2 (b) shows the same statistioaégrarticular realisation
of the data, demonstrating that the over-fitting can in some cases be quitentisbsclearly in this
case some form of early-stopping in the model selection process woutdrésuited in improved
generalisation. Having demonstrated that the classic signature of oveag-fitirimg training is also
apparent in the evolution of cross-validation and test errors during Insetiction, we discuss in
the next section the origin of this form of over-fitting in terms of ti@sandvarianceof the model
selection criterion.

4.1 Bias and Variance in Model Selection

Model selection criteria are generally based on an estimator of generalipatiormance evaluated
over a finite sample of data, this includes resampling methods, such as splie sestimators,
cross-validation (Stone, 1974) and bootstrap methods (Efron andirEibsH994), but also more
loosely, the Bayesian evidence (MacKay, 1992; Rasmussen and Willi&®6) and theoretical
performance bounds such as the radius-margin bound (Vapnik, . IB®8krror of an estimator can
be decomposed into two componeritigsandvariance Let G(8) represent the true generalisation
performance of a model with hyper-paramet8rsandg(6; D) be an estimate of generalisation
performance evaluated over a finite sampg,of n patterns. The expected squared error of the
estimator can then be written in the form (Geman et al., 1992; Duda et al.,,2001)

En {[0(6: D) - G(O)°} = [En{9(6:D) ~ G(8)}*+ En{ [0(6;D) - En {9(6:D)}]7},

whereEq{-} represents an expectation evaluated over independent safiplefssizen. The first
term, the squarekias, represents the difference between the expected value of the estinthtbean
unknown value of the true generalisation error. The second term, kaewinevariance reflects
the variability of the estimator around its expected value due to the sampling ofthebdon
which it is evaluated. Clearly if the expected squared error is low, we nasprably exped(-) to
perform well as a model selection criterion. However, in practice, thea®d squared error may
be significant, in which case, it is interesting to ask whether the bias or tlgarcomponent is
of greatest importance in reliably achieving optimal generalisation.

It is straightforward to demonstrate that leave-one-out cross-validptimrdes an almost un-
biased estimate of the true generalisation performance (Luntz and Braildv@89), and this is
often cited as being an advantageous property of the leave-onetiowates in the setting of model
selection (e.g., Vapnik, 1998; Chapelle et al., 2002). However, fordinggse of model selection,
rather than performance evaluation, unbiasedpesseis relatively unimportant, instead the pri-
mary requirement is merely for the minimum of the model selection criterion to pravieliable
indication of the minimum of the true test error in hyper-parameter space.pohisis illustrated
in Figure 3, which shows a hypothetical example of a model selection critivédiis unbiased (by
construction) (a) and another that is clearly biased (b). Unbiaseg@negsles the assurance that
the minimum of the expected value of the model selection critey{,g(6; D)} coincides with
the minimum of the test erro&(6). However, in practice, we have only a finite sample of déa,
over which to evaluate the model selection criterion, and so it is the minimgitBof;) that is of
interest. In Figure 3 (a), it can be seen that while the estimator is unbiasexd, & high variance,
and so there is a large spread in the value® aif which the minimum occurs for different samples
of data, and sg(6; D) is likely to provide a poor model selection criterion in practice. On the other
hand, Figure 3 (b) shows a criterion with lower variance, and hence isetter model selection
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criterion, despite being biased, as the minimay/¢6; ) for individual samples lie much closer
to the minimum of the true test error. This demonstrates that while unbiasedmesssuring, as
it means that the form of the model selection criterion is corogcaverage the variance of the
criterion is also vitally important as it is this that ensures that the minimum of thelipeleciterion
evaluated on a particular sample will provide good generalisation.

0.8r

o
<)
T
o
)
T

error rate
1
error rate

o
IS

0.4

0.2r B test error(| 0.2r test error |
! - - -Ep9(6:D) - - -E,g(6:D)
——9(6:D) —g(@®D)
0 . : 0 :
0 2 4 6 8 10 6 8 10
0 6
(a) (b)

Figure 3: Hypothetical example of an unbiased (a) and a biased (b) &ldetion criterion. Note
that the biased model selection criterion (b) is likely to provide the more eféeatodel
selection criterion as it has a lower variance, even though it is significaiased. For
clarity, the true error rate and the expected value of the model selectiamecaite shown
with vertical displacements 6f0.6 and—0.4 respectively.

4.2 The Effects of Over-fitting in Model Selection

In this section, we investigate the effect of the variance of the model selemti@rion using a
more realistic example, again based ondyrthetic  benchmark, where the underlying generative
model is known and so we are able to evaluate the true test error. It is deated that over-fitting

in model selection can cause both under-fitting and over-fitting of the trasangple. A fixed
training set of 256 patterns is generated and used to train a kernel egigession classifier, using
the simple RBF kernel (1), with hyper-parameter settings defining a finesgadning reasonable
values of the regularisation and kernel paramete@ndn respectively. The smoothed error rate
(Bo et al., 2006),

SER®) — 5. 5 [1-ytanh{yf ()}

is used as the statistic of interest, in order to improve the clarity of the figuresewls a param-
eter controlling the amount of smoothing appligd= 8 is used throughout, however the precise
value is not critical). Figure 4 (a) shows the true test smoothed errorgatéumction of the hyper-
parameters. As these are both scale parameters, a logarithmic represestasied for both axes.
The true test smoothed error rate is an approximately unimodal function bfyfie-parameters,
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with a single distinct minimum, indicating the hyper-parameter settings giving optiemarglisa-
tion.

-10

-8

-6

-4

-2

Iogzh
Iogzx

Figure 4: Plot of the true test smoothed error rate (a) and mean smootbecé over 100 random
validation sets of 64 samples (b), for a kernel ridge regression claisssfi@ function of
the hyper-parameters. In each case, the minimum is shown by a yellow-¢toss

In practical applications, however, the true test error is generally wnkyand so we must rely
on an estimator of some sort. The simplest estimator for use in model selectioriistheomputed
over an independent validation set, that is, the split-sample estimator. It eetinady reasonable
to expect the split-sample estimator to be unbiased. Figure 4 (b) shows &thletoean smoothed
error rate using the split-sample estimator, over 100 random validation aetspEwhich consists
of 64 patterns. Note that the same fixed training set is used in each cdseldths very similar
to the true smoothed error, shown in Figure 4 (a), demonstrating that theapigle estimator is
indeed approximately unbiased.

While the split-sample estimator is unbiased, it may have a high variance, digpagiia this
case the validation set is (intentionally) relatively small. Figure 5 shows pldtsea$plit-sample
estimate of the smoothed error rate for six selected realisations of a validatioh &4 patterns.
Clearly, the split-sample error estimate is no longer as smooth, or indeed uhinvbat® impor-
tantly, the hyper-parameter values selected by minimising the validation seterdaherefore the
true generalisation performance, depends on the particular sample efsgégtéo form the valida-
tion set. Figure 6 shows that the variance of the split-sample estimator cdrinesadels ranging
from severely under-fit (a) to severely over-fit (f), with variationbéiween these extremes.

Figure 7 (a) shows a scatter plot of the validation set and true errorfaat&ernel ridge re-
gression classifiers for the synthetic benchmark, with split-sample basesl sebelction using 100
random realisations of the validation set. Clearly, the split-sample based sabeletion procedure
normally performs well. However, there is also significant variation in perémce with different
samples forming the validation set. We can also see that the validation sesetrmngly biased,
having been directly minimised during model selection, and (of course)ldsimat be used for
performance estimation.
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Figure 5: Contour plot of the split-sample estimate of the smoothed error ragekiernel ridge
regression machine as a function of the hyper-parameters, for sigmarehlisations of
the validation set. The minimum is shown by a cress,

Note that in this section we have deliberately employed a split-sample based ratzatios
strategy with a relatively high variance, due to the limited size of the validatiorAsgtraightfor-
ward way to reduce the variance of the model selection criterion is simply teaserthe size of the
validation sample over which it is evaluated. Figure 8 shows the optimal Ipgrameter settings
obtained using 100 realisations of validation sets of 64 (a) and 256 (b)leanipcan be clearly
seen that the use of a larger validation set has resulted in a tighter clustétigger-parameter
values around the true optimum, note also that the hyper-parameters eedirated along the bot-
tom of a broad valley in hyper-parameter space, so even when the dalaltiies are different from
the optimal value, they still lie in positions giving good generalisation. This ihéurillustrated
in Figure 7 (b), where the true smoothed error rates are much more tightlyrelisteith fewer
outliers, for the larger validation sets than obtained using smaller validatigrsketsn in Figure 7
(a).

The variation in performance for different realisations of the benchmaggests that evaluation
of machine learning algorithms should always involve multiple partitions of thetddtam train-
ing/validation and test sets, as the sampling of data for a single partition ofténendght arbitrarily
favour one classifier over another. This is illustrated in Figure 9, whiotwslthe test error rates for
Gaussian Process and Kernel Logistic Regression classifiers (GPKL&respectively), for 100
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Figure 6: Kernel ridge regression models of the synthetic benchmarig hgper-parameters se-
lected according to the smoothed error rate over six random realisatitims edlidation
set (shown in Figure 5). The variance of the model selection criterioresautt in models
ranging from under-fit, (a) and (b), through well-fitting, (c) and (d)pver-fit (e) and (f).

random realisations of tHmnana benchmark data set used itch et al. (2001) (see Section 5.1
for details). On 64 realisations of the data GPC out-performs KLR, buttokLIR out-performs
GPC, even though the GPC is better on average (although the differemoestatistically signif-
icant in this case). If the classifiers had been evaluated on only one Iattee36 realisations, it
might incorrectly be concluded that the KLR classifier is superior to the GP@at benchmark.
However, it should also be noted that a difference in performance bativw algorithms is un-
likely to be of practical significance, even if it istatistically significant, if it is smaller than the
variation in performance due to the random sampling of the data, as it isheotbeat a greater
improvement in performance would be obtained by further data collection thaaléction of the
optimal classifier.

4.3 Is Over-fitting in Model Selection Really a Genuine Concern in Practice

In the preceding part of this section we have demonstrated the deleteffiects ef the variance
of the model selection criterion using a synthetic benchmark data set, hotlsvis not sufficient
to establish that over-fitting in model selection is actually a genuine concemadtiqal applica-
tions or in the development of machine learning algorithms. Table 2 showlssrebtained using
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Figure 7: Scatter plots of the true test smoothed error rate as a functiore ofatidation set
smoothed error rate for 100 randomly generated validation sets of (ajd4ba 256
patterns.

Iogz}\

Iogz}\

Figure 8: Contour plot of the mean validation set smoothed error rate 6@eiabhdomly generated
validation sets of (a) 64 and (b) 256 patterns. The minimum of the mean validagion
error is marked by a large (yellow) cross, and the minimum for each reafisatithe
validation set marked by a small (red) cross.

kernel ridge regression (KRR) classifiers, with RBF and ARD keraetfions over the thirteen
benchmarks described in Section 3.2. In each case, model selectiorer@sned independently
for each realisation of each benchmark by minimising the PRESS statistic usihglither-Mead
simplex method (Nelder and Mead, 1965). For the majority of the benchnaasigmificantly lower
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Figure 9: Scatter plots of the test set error for Gaussian process emmglK_ogistic regression
classifiers (GPC and KLR respectively) for 100 realisations obtinana benchmark.

test error is achieved (according to the Wilcoxon signed ranks test) thgrtzasic RBF kernel; the
ARD kernel only achieves statistical superiority on one of the thirt@esgé ). This is perhaps a
surprising result as the models are nested, the RBF kernel being al jaseiaf the ARD kernel,
so the optimal performance that can be achieved with the ARD kernel iamgfead to be at least
equal to the performance achievable using the RBF kernel. The reasthe fpoor performance of
the ARD kernel in practice is because there are many more kernel paraitoebe tuned in model
selection and so many degrees of freedom available in optimising the moddicsetzierion. If
the criterion used has a non-negligible variance, this includes optimisatiplmsteng the statistical
peculiarities of the particular sample of data over which it is evaluated, arathiere will be more
scope for over-fitting. Table 2 also shows the mean value of the PRESSigt&itowing model
selection, the fact that the majority of ARD models display a lower value for RESS statistic
than the corresponding RBF model, while exhibiting a higher test errorisadestrong indication
of over-fitting the model selection criterion. This is a clear demonstration Heaifidting in model
selection can be a significant problem in practical applications, especialiyevthere are many
hyper-parameters or where only a limited supply of data is available.

Table 3 shows the results of the same experiment performed using expegiapagation
based Gaussian process classifiers (EP-GPC) (Rasmussen and WRIEA®)s, where the hyper-
parameters are tuned independently for each realisation, for eachrbarcindividually by max-
imising the Bayesian evidence. While the leave-one-out cross-validatssdRRESS criterion
is known to exhibit a high variance, the variance of the evidence (whicls@sevaluated over a
finite sample of data) is discussed less often. We find again here that thed®Bifance function
often out-performs the more general ARD covariance function, anid #uatest error rate is often
negatively correlated with the evidence for the models. This indicates tkafitting the evidence
is also a significant practical problem for the Gaussian process classifie
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Data Set Test Error Rate PRESS
RBF \ ARD RBF \ ARD
banana 10.610+ 0.051 10.638+ 0.052 60.808+ 0.636 60.957+ 0.624
breast cancer 26.727+ 0.466 28.766+ 0.391 70.632+ 0.328 66.789+ 0.385
diabetis 23.293+ 0.169 24.520+ 0.215 146.143+ 0.452 141.465+ 0.606
flare solar 34.140+ 0.175 34.375+ 0.175 267.332+ 0.480 263.8584+ 0.550
german 23.540+ 0.214 25.847+ 0.267 228.256=+ 0.666 221.7434+ 0.822
heart 16.730+ 0.359 22.810+ 0.411 42.576=+ 0.356 37.023+ 0.494
image 2.990+ 0.159 2.1884+ 0.134 74.056+ 1.685 44.488+ 1.222
ringnorm 1.613+ 0.015 2.7504+ 0.042 28.324+ 0.246 27.680+ 0.231
splice 10.777+ 0.144 9.943+ 0.520 186.814+ 2.174 130.888+ 6.574
thyroid 4,747+ 0.235 4,693+ 0.202 9.099+ 0.152 6.816+ 0.164
titanic 22.483+ 0.085 22.562+ 0.109 48.332+ 0.622 47.801+ 0.623
twonorm 2.846+ 0.021 4,292+ 0.086 32.539+ 0.279 35.620+ 0.490
waveform 9.792+ 0.045 11.8364 0.085 61.658+ 0.596 56.4244+ 0.637

Table 2: Error rates of kernel ridge regression (KRR) classifier thisteen benchmark data sets
(Ratsch et al., 2001), using both standard radial basis function (RBFuatoedhatic rel-
evance determination (ARD) kernels. Results shown in bold indicate anrateothat is
statistically superior to that obtained with the same classifier using the othel kenic-
tion, or a PRESS statistic that is significantly lower.

Data Set Test Error Rate -Log Evidence
RBF \ ARD RBF \ ARD
banana 10.413+ 0.046 10.459+ 0.049 | 116.894+ 0.917 | 116.459+ 0.923
breast cancer 26.5064 0.487 27.9484+0.492 | 110.628+0.366 | 107.181+ 0.388
diabetis 23.2804+0.182 23.8534+0.193 | 230.211+0.553 | 222.305+ 0.581
flare solar 34.200+ 0.175 33.5784+0.181 | 394.697+ 0.546 | 384.374+ 0.512
german 23.363+0.211 23.7574+0.217 | 359.181+ 0.778 | 346.048+ 0.835
heart 16.670+ 0.290 19.770+ 0.365 73.4644 0.493 67.811+ 0.571
image 2.8174+0.121 2.1884+0.076 | 205.061+ 1.687 | 123.896+ 1.184
ringnorm 4.406+ 0.064 8.589+ 0.097 | 121.260+ 0.499 91.3564+ 0.583
splice 11.609+ 0.180 8.6184+0.924 | 365.208+ 3.137 | 242.464+ 16.980
thyroid 4.373+ 0.219 4,227+ 0.216 25.461+ 0.182 18.867+ 0.170
titanic 22.637+0.134 22.725+0.133 78.9524+ 0.670 78.373+ 0.683
twonorm 3.060+ 0.034 4.025+ 0.068 45,901+ 0.577 42.044+ 0.610
waveform 10.100+ 0.047 11.418+0.091 | 105.925+ 0.954 91.239+4+ 0.962

Table 3: Error rates of expectation propagation based Gaussiarspidassifiers (EP-GPC), using
both standard radial basis function (RBF) and automatic relevance deationifARD)
kernels. Results shown in bold indicate an error rate that is statisticallyisupethat
obtained with the same classifier using the other kernel function or evidleaicis signif-
icantly higher.
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4.4 Avoiding Over-fitting in Model Selection

It seems reasonable to suggest that over-fitting in model selection is lpossienever a model
selection criterion evaluated over a finite sample of data is directly optimised.okiefitting in
training, over-fitting in model selection is likely to be most severe when the sashgkga is small
and the number of hyper-parameters to be tuned is relatively large. Lieassuming additional
data are unavailable, potential solutions to the problem of over-fitting thelreléetion criterion
are likely to be similar to the tried and tested solutions to the problem of over-fittengraining
criterion, namely regularisation (Cawley and Talbot, 2007), early stopggt al., 2004) and
model or hyper-parameter averaging (Cawley, 2006; Hall and Rohjr299). Alternatively, one
might minimise the number of hyper-parameters, for instance by treatingl kemaneters as sim-
ply parameters and optimising them at the first level of inference and hswvele regularisation
hyper-parameter controlling the overall complexity of the model. For verylstata sets, where
the problem of overfitting in both learning and model selection is greategpréfierred approach
would be to eliminate model selection altogether and opt for a fully Bayesiaaqp where the
hyper-parameters are integrated out rather than optimised (e.g., WilliamsaaberB1998). An-
other approach is simply to avoid model selection altogether using an ensgpldaeh, for exam-
ple the Random Forest (RF) method (Breiman, 2001). However, whitersethods often achieve
state-of-the-art performance, it is often easier to build expert kn@el@uto hierarchical models,
for example through the design of kernel or covariance functionspfotunately approaches such
as the RF are not a panacea.

While the problem of over-fitting in model selection is of the same nature asftbaenfitting
at the first level of inference, the lack of mathematical tractability appedravte limited the the-
oretical analysis of model selection via optimisation of a model selection criteFonexample,
regarding leave-one-out cross-validation, Kulkarni et al. (1998)roent “In spite of the practical
importance of this estimate, relatively little is known about its properfid® available theory is
especially poor when it comes to analysing parameter selection basednanining the deleted
estimate¢’ (our emphasis). While some asymptotic results are available (Stone, $82@; 1993;
Toussaint, 1974), these are not directly relevant to the situation coedidere, where over-fitting
occurs due to optimising the values of hyper-parameters using a moddimelzierion evaluated
over a finite, often quite limited, sample of data. Estimates of the variance ofdks-calidation
error are available for some models (Luntz and Brailovsky, 1969; Va@d®i&2), however Bengio
and Grandvalet (2004) have shown there is no unbiased estimate ofriduecesof k-fold) cross-
validation. More recently bounds on the error of leave-one-out eralidation based on the idea of
stability have been proposed (Kearns and Ron, 1999; Bousquet and E|i2882; Zhang, 2003).
In this section, we have demonstrated that over-fitting in model selection isuangeproblem in
machine learning, and hence is likely to be an area that could greatly Hemreffurther theoretical
analysis.

5. Bias in Performance Estimation

Avoiding potentially significant bias in performance evaluation, arising dweéo-fitting in model
selection, is conceptually straightforward. The key is to treat both traiambmodel selection
together, as integral parts of the model fitting procedure and ensurarthegver performed sepa-
rately at any point of the evaluation process. We present two examppesesftially biased evalua-
tion protocols that do not adhere to this principle. The scale of the biasvalosen some data sets
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is much larger than the difference in performance between learning algstitnd so one could
easily draw incorrect inferences based on the results obtained. Thikghig the importance of
this issue in empirical studies. We also demonstrate that the magnitude of thepémsld on the
learning and model selection algorithms involved in the comparison and thafrwatiohs that are
more prone to over-fitting in model selection are favored by biased prstotiois means that stud-
ies based on potentially biased protocols are not internally consistentjfevénacknowledged
that a bias with respect to other studies may exist.

5.1 An Unbiased Performance Evaluation Methodology

We begin by describing an unbiased performance protocol, that dgreexcounts for any over-
fitting that may occur in model selection. Three classifiers are evaluategl aisinnbiased proto-
col, in which model selection is performed separately for each realisatieaatt data set. This
is termed the “internal” protocol as the model selection process is perfdndegendently within
each fold of the resampling procedure. In this way, the performance éstincédudes a component
properly accounting for the error introduced by over-fitting the modeksen criterion. The clas-
sifiers used were as follows: RBF-KRR—kernel ridge regression wisldlial basis function kernel,
with model selection based on minimisation of Allen’s PRESS statistic, as desanilsadtion 2.
RBF-KLR—kernel logistic regression with a radial basis function keamel model selection based
on an approximate leave-one-out cross-validation estimate of the log-lidlif@awley and Tal-
bot, 2008). EP-GPC—expectation-propagation based Gaussiarspiassifier, with an isotropic
squared exponential covariance function, with model selection basethrimising the marginal
likelihood (e.g., Rasmussen and Williams, 2006). The mean error rates abtesimg these classi-
fiers under an unbiased protocol are shown in Table 4. In this casmehe ranks of all methods
are only minimally different, and so there is little if any evidence for a statisticallyifstgnt superi-
ority of any of the classifiers over any other. Figure 10 shows a critiffarence diagram (De&ar,
2006), providing a graphical illustration of this result. A critical differerdiagram displays the
mean rank of a set of classifiers over a suite of benchmark data sets,ligithscof classifiers
with statistically similar performance connected by a bar. The critical difterém average ranks
required for a statistical superiority of one classifier over another isshlean, labelled “CD".

RBF-KLR (internal) 2:0769 19231 RBF-KRR (internal)

2 EP-GPC (internal)

Figure 10: Critical difference diagram (D&ar, 2006) showing the average ranks of three classi-
fiers with internal model selection protocol.
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Data Set GPC KLR KRR
(internal) (internal) (internal)

banana 10.4134- 0.046/10.567+ 0.051| 10.6104- 0.051
breast cancer| 26.506+ 0.487| 26.6364- 0.467|26.727+ 0.466
diabetis 23.280+ 0.182 23.3874+ 0.180| 23.293+ 0.169
flare solar 34.200+ 0.175/34.1974+ 0.170| 34.1404+ 0.175
german 23.36340.211] 23.4934- 0.208| 23.5404+ 0.214
heart 16.6704- 0.290/ 16.810+ 0.315| 16.7304- 0.359
image 2.81740.121] 3.094+ 0.130, 2.9904 0.159
ringnorm 4.406+ 0.064| 1.681+ 0.031| 1.613+ 0.015
splice 11.6094 0.180|11.2484- 0.177/10.777+ 0.144
thyroid 4,373+ 0.219| 4.29340.222| 4.7474+ 0.235
titanic 22.6374+ 0.134(22.4734 0.103|22.4834- 0.085
twonorm 3.0604- 0.034] 2.944+ 0.042| 2.8464-0.021
waveform 10.1004 0.047| 9.9184 0.043| 9.792+ 0.045

Table 4: Error rate estimates of three classifiers over a suite of thirteehinank data sets: The
results for each method are presented in the form of the mean error eatiest/data for
100 realisations of each data set (20 in the case dhtige andsplice data sets), along
with the associated standard error.

It is not unduly surprising that there should be little evidence for any stailtisignificant
superiority, as all three methods give rise to structurally similar models. Thelsmtwugh dif-
fer significantly in their model selection procedures, the EP-GPC is basettanger statistical
assumptions, and so can be expected to excel where these assummiqustitaed, but poorly
where the model is mis-specified (e.g., the ringnorm benchmark). The-eatidation based model
selection procedures, on the other hand, are more pragmatic and bsedydramuch weaker as-
sumptions might be expected to provide a more consistent level of accuracy

5.2 An Example of Biased Evaluation Methodology

The performance evaluation protocol most often used in conjunction withuibe of benchmark
data sets, described in Section 3.2, seeks to perform model selectiornmagegly for only the
first five realisations of each data set. The median values of the hypemneters over these five
folds are then determined and subsequently used to evaluate the esdorai@ch realisation. This
“median” performance evaluation protocol was introduced in the same ffsdepopularised this
suite of benchmark data setsgfch et al., 2001) and has been widely adopted (e.g., Mika et al.,
1999; Weston, 1999; Billings and Lee, 2002; Chapelle et al., 2002; Caiy, 2003; Stewart, 2003;
Mika et al., 2003; Gold et al., 2005; Ra Centeno and D., 2006; Andelet al., 2006; An et al.,
2007; Chen et al., 2009). The original motivation for this protocol was & internal model
selection protocol was prohibitively expensive using workstations dleil@atsch et al., 2001),
which was perfectly reasonable at the time, but is no longeritiitee use of the median, however,
can be expected to introduce an optimistic bias into the performance estimatesahitsing this
“median” protocol. Firstly all of the training data comprising the first five resigsms have been

3. All of the experimental results presented in this paper were obtainegl asingle modern Linux workstation.
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Data Set KRR KRR Bias
(internal) (median)

banana 10.6104- 0.051|10.3844+ 0.042 0.226+ 0.034
breast cancer| 26.7274 0.466(26.377+ 0.441| 0.3514 0.195
diabetis 23.293+ 0.169|23.1504 0.157| 0.143+ 0.074
flare solar 34.1404+ 0.175/34.0134+ 0.166| 0.128+ 0.082
german 23.540+ 0.21423.3804- 0.220 0.1604+ 0.067
heart 16.7304- 0.359|15.720+ 0.306| 1.010+ 0.186
image 2.9904 0.159| 2.802+ 0.129| 0.1884 0.095
ringnorm 1.613+ 0.015] 1.5734+ 0.010; 0.040+ 0.010
splice 10.777+ 0.144{10.763+ 0.137| 0.014+ 0.055
thyroid 47474+ 0.235| 4.5604 0.2001 0.187+ 0.100
titanic 22.483+ 0.085|22.4074- 0.102| 0.0764+ 0.077
twonorm 2.8464-0.021] 2.868+ 0.017|-0.0224- 0.014
waveform 9.7924 0.045| 9.821+ 0.039-0.029+4 0.020

Table 5: Error rate estimates of three classifiers over a suite of thirteehinank data sets: The
results for each method are presented in the form of the mean error eatiest/data for
100 realisations of each data set (20 in the case of the image and splicetdataleng
with the associated standard error.

used during the model selection process for the classifiers used infelkofthe re-sampling. This

means that some of the test data for each fold is no longer statistically “psiiehas been seen
during model selection. Secondly, and more importantly, the median operat®asa variance
reduction step, so the median of the five sets of hyper-parameters is likedylietter on average
than any of the five from which it is derived. Lastly, as the hyper-patara@re now fixed, there is
no longer scope for over-fitting the model selection criterion due to pettidsof the sampling of

data for the training and test partitions in each realisation.

We begin by demonstrating that the results using the internal and mediangisaioz not com-
mensurate, and so the results obtained using different methods areautiydiomparable. Table 5
shows the error rate obtained using the RBF-KRR classifier with the intanthimedian perfor-
mance evaluation protocols and the resulting bias, that is, the differetwedrethe mean error
rates obtained with the internal and median protocols. It is clearly seen thatelian protocol
introduces a positive bias on almost all benchmatskenprm andwaveform being the exceptions)
and that the bias can be quite substantial on some benchmarks. Indeseydmal benchmarks,
breast cancer , german, heart andthyroid in particular, the bias is larger than the typical dif-
ference in performance between classifiers evaluated using an uhpiadecol. Dersar (2006)
recommends the Wilcoxon signed ranks test for determination of the statisgindicence of the
superiority of one classifier over another over multiple data sets. Applyisi¢etst to the data shown
for EP-GPC (internal), RBF-KLR (internal) and RBF-KRR (median)nirdables 4 and 5, reveals
that the RBF-KRR (median) classifier is statistically superior to the remainingjfidas, at the 95%
level of significance. A critical difference diagram summarising this raswghown in Figure 12.
However, the difference in performance is entirely spurious as it idyptire result of reducing the
effects of over-fitting in model selection and does not reflect the trueatipeal performance of
the combination of classifier and model selection method. It is clear then sheiisrebtained using
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the internal and median protocols are not directly comparable, and sdeétiédrences cannot be
drawn by comparison of results from different studies, using biasédiabhiased protocols.

5.2.1 Is THEBIAS SOLELY DUE TO INADVERTENT RE-USE OFTEST SAMPLES?

One explanation for the observed bias of the median protocol is that sahmetadining samples for
the first five realisations of the benchmark, which have been used in tthéngyper-parameters,
also appear in the test sets for other realisations of the benchmark ugsetftrmance analysis.
In this section, we demonstrate that this inadvertent re-use of test samptggli® only cause of
the bias. One hundred replications of the internal and median protocel peeformed using the
synthetic  benchmark, for which an inexhaustible supply of i.i.d. data is available. ke
this case in each realisation, 100 training sets of 64 patterns and a larggt ®st096 samples were
generated, all mutually disjoint. This means the only remaining source of bias &nhlioration
of over-fitting in model selection by the reduction of variance by taking theianeaf the hyper-
parameters over the first five folds (cf. Hall and Robinson, 2009)urEig1 shows the mean test
errors for the internal and median protocols over 100 replications,isj@wery distinct optimistic
bias in the median protocol (statistically highly significant according to the Wilasigned ranks
test,p < 0.001), even though there is absolutely no inadvertent re-use of test data

0.165
0.16
0.155
0.151

0.145r +
Wyt +
+oFr

+
T
N

+ +
0.14} + o FerF

Error rate (median)

+
ey
+

0.1351

+

ot 4T

b +
¥

0.13f

0.125

0.13 0.14 0.15 0.16
Error rate (internal)

Figure 11: Mean error rates for the internal and median evaluation jpietémr thesynthetic
benchmark, without inadvertent re-use of test data.

5.2.2 IS THEMEDIAN PROTOCOLINTERNALLY CONSISTENT?

Having established that the median protocol introduces an optimistic bias, arttiétresults ob-
tained using the internal and median protocols do not give comparabliésrese next turn our
attention to whether the median protocol is internally consistent, that is, doesetttian protocol
give the correct rank order of the classifiers? Table 6 shows therpahce of three classifiers
evaluated using the median protocol; the corresponding critical differgiagram is shown in Fig-
ure 13. In this case the difference in performance between classifieos statistically significant
according to the Friedman test, however it can clearly be seen that thef tieesmedian protocol
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Data Set EP-GPC RBF-KLR RBF-KRR
(median) (median) (median)
banana 10.3714 0.045/ 10.4074 0.047|10.384+ 0.042
breast cancer| 26.117+ 0.472 26.1304 0.474(26.377+ 0.441
diabetis 23.333+ 0.191] 23.3004 0.177|23.150+ 0.157
flare solar 34.150+ 0.170|34.212+ 0.176| 34.013+ 0.166,
german 23.160+ 0.216(23.203+ 0.218] 23.380+ 0.220
heart 16.4004 0.273) 16.1204 0.295|15.720+ 0.306
image 2.851+ 0.102] 3.030+4 0.120] 2.802+ 0.129
ringnorm 4.400+ 0.064| 1.574+ 0.011| 1.573+ 0.010
splice 11.6074+ 0.184{11.172+ 0.168| 10.763+ 0.137
thyroid 4.3074+ 0.217| 4.040+ 0.221] 4.560+ 0.200
titanic 22.490+ 0.095(22.591+ 0.135| 22.407+ 0.102
twonorm 3.241+ 0.039 3.068+4 0.033| 2.868+ 0.017
waveform 10.1634 0.045| 9.888+ 0.042| 9.821+ 0.039

Table 6: Error rate estimates of three classifiers over a suite of thirteehinank data sets: The
results for each method are presented in the form of the mean error eatiest/data for
100 realisations of each data set (20 in the case of the image and splicetdataleng
with the associated standard error.

has favored one classifier, namely the RBF-KRR, much more strongly tleaothiers. It seems
feasible then that the bias of the median protocol may be sufficient in otbes taamplify a small
difference in performance, due perhaps to an accidentally favorhbleecof data sets, to the point
where it spuriously appears to be statistically significant. This suggestththatedian protocol
may be unreliable and perhaps should be deprecated.

2.3846

RBF-KLR (internal) L 12308 RBF-KRR (median)

23846 Ep_gpC (internal)

Figure 12: Critical difference diagram (D&ar, 2006) showing the average ranks of three clas-
sifiers, EP-GPC and RBF-KLR with internal model selection protocol aB&-RLR
using the optimistically biased median protocol (cf. Figure 10).

Next, we perform a statistical analysis to determine whether there is a statissiicadlficant
difference in the magnitude of the biases introduced by the median protwabfferent classifiers,
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Data Set RBF-KRR | RBF-EP-GPC|Wilcoxon
bias bias p-value
banana 0.2264 0.034| 0.0434+-0.012| < 0.05
breast cancer, 0.3514-0.195| 0.390+ 0.186] 0.934
diabetis 0.143+ 0.074(-0.0534+ 0.051| < 0.05
flare solar 0.128+ 0.082| 0.0504 0.090| 0.214
german 0.1604- 0.067| 0.20340.051/ 0.458
heart 1.0104 0.186| 0.270+ 0.120, < 0.05
image 0.1884- 0.095|-0.0354- 0.032| 0.060
ringnorm 0.040+ 0.010 0.006+ 0.002] < 0.05
splice 0.014+ 0.055| 0.002+ 0.014{ 0.860
thyroid 0.18740.100| 0.0674 0.064| 0.159
titanic 0.0764- 0.077| 0.14740.090, 0.846
twonorm -0.022+ 0.014/-0.1804+ 0.032] < 0.05
waveform -0.029+ 0.020/-0.064+ 0.022] 0.244

Table 7: Results of a statistical analysis of the bias introduced by the meditntgirinto the test
error rates for RBF-KRR and RBF-EP-GPC, using the Wilcoxon sigaels test.

3 2 1
l ! l ! I
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2.2308
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Figure 13: Critical difference diagram showing the average ranksreétblassifiers with the me-
dian model selection protocol (cf. Figure 10).

for each benchmark data getFirst the bias introduced by the use of the median protocol was
computed for the RBF KRR and RBF EP-GPC classifiers as the differetagebn the test set error
estimated by the internal and median protocols. The Wilcoxon signed rankadsshen used to
determine whether there is a statistically significant difference in the biastlo@00 realisations

of the benchmark (20 in the case of tinage andsplice benchmarks) . The results obtained
are shown in Table 7, the p-value is below 0.05 for five of the thirteen beardts, indicating
that in each case the median protocol is significantly biased in favour of BireKiRR classifier.
Clearly, as the median protocol does not impose a commensurate bias otirtretezstest error
rates for different classifiers, it does not provide a reliable protfmratomparing the performance

of machine learning algorithms.

4. We are grateful to an anonymous reviewer for suggesting this gartfoum of analysis.
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Figure 14: Mean ranks of three classifiers as a function of the numbfids used in the re-
peated split sample model selection procedure employed by the kernetegigssion
(RBF-KRR) machine, using (a) the unbiaget&rnal protocol and (b) the biasededian
protocol.

In the final illustration of this section, we show that the magnitude of the biasdintex by
the median protocol is greater for model selection criteria with a high variahb&s means the
median protocol favors most the least reliable model selection procealdess a result does not
provide a reliable indicator even of relative performance of classifiataingelection procedures
combinations. Again the RBF-KRR model is used as the base classifieryéioimethis case a
repeated split-sample model selection criterion is used, where the datpeaeedly split at random
to form disjoint training and validation sets in proportions 9:1, and the hgpeameters tuned to
optimise the average mean-squared error over the validation sets. In thitheaariance of the
model selection criterion can be controlled by varying the number of repetjtwith the variance
decreasing as the number of folds becomes larger. Figure 14 (a) shalasof the average ranks
of EP-GPC and RBF-KLR classifiers, with model selection performed asewiqus experiments,
and RBF-KRR with repeated split-sample model selection, as a function ofuthéer of folds.
In each case the unbiased internal evaluation protocol was usedlyGi¢he number of folds is
small (five or less), the RBF-KRR model performs poorly, due to overjitirmodel selection due
to the high variance of the criterion used. However, as the number of ifuldsases, the variance
of the model selection criterion falls, and the performances of all threeitlows are very similar.
Figure 14 (b) shows the corresponding result using the biased meditot@ic The averaging of
hyper-parameters reduces the apparent variance of the model setztBoon, and this disguises
the poor performance of the RBF-KRR model when the number of folds i#. shhiés demonstrates
that the bias introduced by the median protocol favors most the worst reetdadtion criterion,
which is a cause for some concern.
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[ Data Set | External | Internal | Bias \
banana 10.355+ 0.146/ 10.495+ 0.158| 0.1404+ 0.035,
breast cancer 26.280+ 0.232(27.470+ 0.250( 1.190+ 0.135
diabetis 22.891+4+ 0.127|23.056=+ 0.134| 0.165+ 0.050
flare solar 34.518+ 0.172/34.707+ 0.179| 0.189+ 0.051
german 23.999+ 0.117/24.217+ 0.125| 0.219+ 0.045
heart 16.335+ 0.214]16.571+ 0.220| 0.2354+ 0.073
image 3.081+0.102] 3.1734+0.112| 0.092+ 0.035
ringnorm 1.567+ 0.058] 1.607+ 0.057| 0.040+ 0.014
splice 10.930+ 0.219(11.170+ 0.280| 0.2404 0.152
thyroid 3.743+ 0.137| 4.2794+ 0.152| 0.5364+ 0.073
titanic 22.1674+ 0.434|22.487+ 0.442] 0.320+ 0.077
twonorm 2.4804+ 0.067| 2.502+ 0.070] 0.022+ 0.021
waveform 9.613+ 0.168| 9.815+ 0.183] 0.203+ 0.064

Table 8: Error rate estimates for kernel ridge regression over thirteeohinark data sets, for
model selection schemes that are internal and external to the crosdivaljgl@cess. The
results for each approach and the relative bias are presented inrthefftte mean error
rate over for 100 realisations of each data set (20 in the case of the imdgplice data
sets), along with the associated standard error.

5.3 Another Example of Biased Evaluation Methodology

In a biased evaluation protocol, occasionally observed in machine leatuidigs, an initial model
selection step is performed using all of the available data, often interactisgigrt of a “preliminary
study”. The data are then repeatedly re-partitioned to form one or maegdaandom, disjoint
design and test sets. These are then used for performance evaligtigrthe same fixed set of
hyper-parameter value§ his practice may seem at first glance to be fairly innocuous, howewer th
test data are no longer statistically pure, as they have been “seen” by tleésnrotuning the hyper-
parameters. This would not present a serious problem were it notdaahger of over-fitting in
model selection, which means that in practice the hyper-parameters will inlg\vita tuned to an
extent in ways that take advantage of the statistical peculiarities of this gartsai of data rather
than only in ways that favor improved generalisation. As a result the fpyg@meter settings
retain a partial “memory” of the data that now form the test partition. We shbelefore expect to
observe an optimistic bias in the performance estimates obtained in this manner.

Table 8 shows a comparison of 10-fold cross-validation estimates of thertestate, for ker-
nel ridge regression with a Gaussian radian basis function kernel, othtasirey protocols where
the model selection stage is eittexternalor internal to the cross-validation procedure. In the ex-
ternal protocol, model selection is performed once using the entire destigassdescribed above.
In the internal protocol, the model selection step is performed separatedglnfeld of the cross-
validation. The internal cross-validation procedure therefore prevadeore realistic estimate of
the performance of the combination of model selection and learning algorittristactually used
to construct the final model. The table also shows the relative bias (i.e., timediffeaence between
the internal and external cross-validation protocols). The exteroabqol clearly exhibits a con-
sistently optimistic bias with respect to the more rigorous internal cross-validataocol, over
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all thirteen benchmarks. Furthermore, the bias is statistically significant (rger ldan twice the
standard error of the estimate) for all benchmarks, apart goe  andtwonorm . In many cases,
the bias is of similar magnitude to the typical difference observed betweenetibigolearning al-
gorithms (cf. Table 4). In some cases, for exampdaana andthyroid benchmarks, the bias is of
a surprising magnitude, likely to be large enough to conceal even the tfagedife between even
state-of-the-art and uncompetitive learning algorithms. This clearly shmtthe external cross-
validation protocol exhibits a consistent optimistic bias, potentially of a vergtantial magnitude
even when the number of hyper-parameters is small (in this case only méb}cashould not be
used in practice.

6. Conclusions

In this paper, we have discussed the importance of bias and variance &h se¢ettion and perfor-
mance evaluation, and demonstrated that a high variance can lead tatovgirfimodel selection,
and hence poor performance, even when the number of hyper-pgararerelatively small. Fur-
thermore, we have shown that a potentially severe form of selection hiasecantroduced into
performance evaluation by protocols that have been adopted in a nufrexésting empirical stud-
ies. Fortunately, it seems likely that over-fitting in model selection can beorer using methods
that have already been effective in preventing over-fitting during trgjrinch as regularisation or
early stopping. Little attention has so far been focused on over-fitting in Insetition, however
in this paper we have shown that it presents a genuine pitfall in the praagtipktation of machine
learning algorithms and in empirical comparisons. In order to overcome tedrbjzerformance
evaluation, model selection should be viewed as an integral part of the fittdglprocedure, and
should be conducted independently in each trial in order to preventiseldias and because it
reflects best practice in operational use. Rigorous performanceatiealtherefore requires a sub-
stantial investment of processor time in order to evaluate performanceaavigte range of data
sets, using multiple randomised partitionings of the available data, with modetiselperformed
separately in each trial. However, it is straightforward to fully automate thtepes, and so requires
little manual involvement. Performance evaluation according to these princggases repeated
training of models using different sets of hyper-parameter values areliff samples of the avail-
able data, and so is also well-suited to parallel implementation. Given the temeehin processor
design towards multi-core designs, rather than faster processorsspigedous performance eval-
uation is likely to become less and less time-consuming, and so there is little justifif@titre
continued use of potentially biased protocols.
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