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Abstract

Model selection strategies for machine learning algorithms typically involve the numerical opti-
misation of an appropriate model selection criterion, often based on an estimator of generalisation
performance, such ask-fold cross-validation. The error of such an estimator can be broken down
into bias and variance components. While unbiasedness is often cited as a beneficial quality of a
model selection criterion, we demonstrate that a low variance is at least as important, as a non-
negligible variance introduces the potential for over-fitting in model selection as well as in training
the model. While this observation is in hindsight perhaps rather obvious, the degradation in perfor-
mance due to over-fitting the model selection criterion can be surprisingly large, an observation that
appears to have received little attention in the machine learning literature to date. In this paper, we
show that the effects of this form of over-fitting are often ofcomparable magnitude to differences
in performance between learning algorithms, and thus cannot be ignored in empirical evaluation.
Furthermore, we show that some common performance evaluation practices are susceptible to a
form of selection bias as a result of this form of over-fittingand hence are unreliable. We dis-
cuss methods to avoid over-fitting in model selection and subsequent selection bias in performance
evaluation, which we hope will be incorporated into best practice. While this study concentrates
on cross-validation based model selection, the findings arequite general and apply to any model
selection practice involving the optimisation of a model selection criterion evaluated over a finite
sample of data, including maximisation of the Bayesian evidence and optimisation of performance
bounds.

Keywords: model selection, performance evaluation, bias-variance trade-off, selection bias, over-
fitting

1. Introduction

This paper is concerned with two closely related topics that form core components of best practice in
both the real world application of machine learning methods and the development of novel machine
learning algorithms, namely model selection and performance evaluation. Themajority of machine
learning algorithms are based on some form of multi-level inference, wherethe model is defined
by a set of model parameters and also a set of hyper-parameters (Guyon et al., 2009), for example
in kernel learning methods the parameters correspond to the coefficients of the kernel expansion
and the hyper-parameters include the regularisation parameter, the choiceof kernel function and
any associated kernel parameters. This division into parameters and hyper-parameters is typically
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performed for computational convenience; for instance in the case of kernel machines, for fixed
values of the hyper-parameters, the parameters are normally given by thesolution of a convex
optimisation problem for which efficient algorithms are available. Thus it makessense to take
advantage of this structure and fit the model iteratively using a pair of nested loops, with the hyper-
parameters adjusted to optimise a model selection criterion in the outer loop (modelselection) and
the parameters set to optimise a training criterion in the inner loop (model fitting/training). In
our previous study (Cawley and Talbot, 2007), we noted that the variance of the model selection
criterion admitted the possibility of over-fitting during model selection as well as the more familiar
form of over-fitting that occurs during training and demonstrated that this could be ameliorated to
some extent by regularisation of the model selection criterion. The first part of this paper discusses
the problem of over-fitting in model selection in more detail, providing illustrativeexamples, and
describes how to avoid this form of over-fitting in order to gain the best attainable performance,
desirable in practical applications, and required for fair comparison of machine learning algorithms.

Unbiased and robust1 performance evaluation is undoubtedly the cornerstone of machine learn-
ing research; without a reliable indication of the relative performance of competing algorithms,
across a wide range of learning tasks, we cannot have the clear pictureof the strengths and weak-
nesses of current approaches required to set the direction for future research. This topic is consid-
ered in the second part of the paper, specifically focusing on the undesirable optimistic bias that
can arise due to over-fitting in model selection. This phenomenon is essentiallyanalogous to the
selection bias observed by Ambroise and McLachlan (2002) in microarrayclassification, due to
feature selection prior to performance evaluation, and shares a similar solution. We show that some,
apparently quite benign, performance evaluation protocols in common use bythe machine learning
community are susceptible to this form of bias, and thus potentially give spurious results. In order
to avoid this bias, model selection must be treated as an integral part of the model fitting process and
performed afresh every time a model is fitted to a new sample of data. Furthermore, as the differ-
ences in performance due to model selection are shown to be often of comparable magnitude to the
difference in performance between learning algorithms, it seems no longer meaningful to evaluate
the performance of machine learning algorithms in isolation, and we should instead compare learn-
ing algorithm/model selection procedure combinations. However, this means that robust unbiased
performance evaluation is likely to require more rigorous and computationally intensive protocols,
such a nested cross-validation or “double cross” (Stone, 1974).

None of the methods or algorithms discussed in this paper are new; the novelcontribution
of this work is an empirical demonstration that over-fitting at the second levelof inference (i.e.,
model selection) can have a very substantial deleterious effect on the generalisation performance of
state-of-the-art machine learning algorithms. Furthermore the demonstrationthat this can lead to a
misleading optimistic bias in performance evaluation using evaluation protocols in common use in
the machine learning community is also novel. The paper is intended to be of some tutorial value in
promoting best practice in model selection and performance evaluation, however we also hope that
the observation that over-fitting in model selection is a significant problem willencourage much
needed algorithmic and theoretical development in this area.

The remainder of the paper is structured as follows: Section 2 provides a brief overview of the
kernel ridge regression classifier used as the base classifier for the majority of the experimental work

1. The term “robust” is used here to imply insensitivity to irrelevant experimental factors, such as the sampling and par-
titioning of the data to form training, validation and test sets; this is normally achieved by computationally expensive
resampling schemes, for example, cross-validation (Stone, 1974) and the bootstrap (Efron and Tibshirani, 1994).
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and Section 3 describes the data sets used. Section 4 demonstrates the importance of the variance
of the model selection criterion, as it can lead to over-fitting in model selection,resulting in poor
generalisation performance. A number of methods to avoid over-fitting in model selection are also
discussed. Section 5 shows that over-fitting in model selection can result inbiased performance
evaluation if model selection is not viewed as an integral part of the modelling procedure. Two
apparently benign and widely used performance evaluation protocols areshown to be affected by
this problem. Finally, the work is summarised in Section 6.

2. Kernel Ridge Regression

In this section, we provide a brief overview of the Kernel Ridge Regression (KRR) classifier (Saun-
ders et al., 1998), also known as the Least-Squares Support Vector Machine (Suykens et al., 2002),
Regularised Least Squares (Rifkin and Lippert, 2007), RegularisationNetwork (Poggio and Girosi,
1990) etc., used as the base classifier in most of the empirical demonstrations inthe sequel. Assume
we are given labeled training data,D = {(xi ,yi)}

ℓ
i=1, wherexi ∈ X ⊂R

d is a vector of input features
describing theith example andyi ∈ {−1,+1} is an indicator variable such thatyi = +1 if the ith

example is drawn from the positive class,C+, andyi = −1 if from the negative class,C−. Further
let us assume there areℓ+ positive examples andℓ− = ℓ− ℓ+ negative examples. The Kernel Ridge
Regression classifier aims to construct a linear modelf (x) = w · φ(x)+b in a fixed feature space,
φ : X → F , that is able to distinguish between examples drawn fromC− andC+, such that

x∈

{

C+ if f (x)≥ 0
C− otherwise

.

However, rather than specifying the feature space,F , directly, it is induced by a kernel function,
K : X ×X →R, giving the inner product between the images of vectors in the feature space,F , that
is, K (x,x′) = φ(x) ·φ(x′). A common kernel function, used throughout this study, is the Gaussian
radial basis function (RBF) kernel

K (x,x′) = exp
{

−η‖x−x′‖2} , (1)

whereη is a kernel parameter controlling the sensitivity of the kernel function. However, the inter-
pretation of the kernel function as evaluating the inner product between points in an implied feature
space is valid for any kernel for which the kernel matrixK = [ki j =K (xi ,x j)]

ℓ
i, j=1 is positive definite

(Mercer, 1909), such that
aTKa> 0, ∀ a 6= 0.

The model parameters(w,b) are given by the minimum of a regularised (Tikhonov and Arsenin,
1977) least-squares loss function,

L =
1
2
‖w‖2+

1
2λ

ℓ

∑
i=1

[yi −w·φ(xi)−b]2 , (2)

whereλ is a regularisation parameter controlling the bias-variance trade-off (Geman et al., 1992).
The accuracy of the kernel machine on test data is critically dependent onthe choice of good values
for thehyper-parameters, in this caseλ andη. The search for the optimal values for such hyper-
parameters is a process known asmodel selection. The representer theorem (Kimeldorf and Wahba,
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1971) states that the solution to this optimisation problem can be written as an expansion of the
form

w=
ℓ

∑
i=1

αiφ(xi) =⇒ f (x) =
ℓ

∑
i=1

αiK (xi ,x)+b.

The dual parameters of the kernel machine,α, are then given by the solution of a system of linear
equations,

[

K+λI 1
1T 0

][

α
b

]

=

[

y
0

]

. (3)

wherey = (y1,y2, . . . ,yℓ)T , which can be solved efficiently via Cholesky factorisation ofK + λI ,
with a computational complexity ofO(ℓ3) operations (Suykens et al., 2002). The simplicity and
efficiency of the kernel ridge regression classifier makes it an ideal candidate for relatively small-
scale empirical investigations of practical issues, such as model selection.

2.1 Efficient Leave-One-Out Cross-Validation

Cross-validation (e.g., Stone, 1974) provides a simple and effective methodfor both model selec-
tion and performance evaluation, widely employed by the machine learning community. Under
k-fold cross-validation the data are randomly partitioned to formk disjoint subsets of approximately
equal size. In theith fold of the cross-validation procedure, theith subset is used to estimate the
generalisation performance of a model trained on the remainingk− 1 subsets. The average of
the generalisation performance observed over allk folds provides an estimate (with a slightly pes-
simistic bias) of the generalisation performance of a model trained on the entiresample. The most
extreme form of cross-validation, in which each subset contains only a single pattern is known as
leave-one-out cross-validation (Lachenbruch and Mickey, 1968; Luntz and Brailovsky, 1969). An
attractive feature of kernel ridge regression is that it is possible to perform leave-one-out cross-
validation in closed form, with minimal cost as a by-product of the training algorithm (Cawley and
Talbot, 2003). LetC represent the matrix on the left hand side of (3), then the residual errorfor the
ith training pattern in theith fold of the leave-one-out process is given by,

r(−i)
i = yi − ŷ(−i)

i =
αi

C−1
ii

,

whereŷ(− j)
i is the output of the kernel ridge regression machine for theith observation in thej th fold

of the leave-one-out procedure andC−1
ii is the ith element of the principal diagonal of the inverse

of the matrixC. Similar methods have been used in least-squares linear regression for many years,
(e.g., Stone, 1974; Weisberg, 1985). While the optimal model parameters ofthe kernel machine
are given by the solution of a simple system of linear equations, (3), some form of model selection
is required to determine good values for thehyper-parameters, θ = (λ,η), in order to maximise
generalisation performance. The analytic leave-one-out cross-validation procedure described here
can easily be adapted to form the basis of an efficient model selection strategy (cf. Chapelle et al.,
2002; Cawley and Talbot, 2003; Bo et al., 2006). In order to obtain a continuous model selection
criterion, we adopt Allen’s Predicted REsidual Sum-of-Squares (PRESS) statistic (Allen, 1974),

PRESS(θ) =
ℓ

∑
i=1

[

r(−i)
i

]2
.
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The PRESS criterion can be optimised efficiently using scaled conjugate gradient descent (Williams,
1991) or Nelder-Mead simplex (Nelder and Mead, 1965) procedures.For full details of the train-
ing and model selection procedures for the kernel ridge regression classifier, see Cawley (2006).
A public domain MATLAB implementation of the kernel ridge regression classifier, including au-
tomated model selection, is provided by the Generalised Kernel Machine (GKM) (Cawley et al.,
2007) toolbox.2

3. Data Sets used in Empirical Demonstrations

In this section, we describe the benchmark data sets used in this study to illustrate the problem
of over-fitting in model selection and to demonstrate the bias this can introduce into performance
evaluation.

3.1 A Synthetic Benchmark

A synthetic benchmark, based on that introduced by Ripley (1996), is used widely in the next
section to illustrate the nature of over-fitting in model selection. The data are drawn from four
spherical bivariate Gaussian distributions, with equal probability. All four Gaussians have a com-
mon variance,σ2 = 0.04. Patterns belonging to the positive classes are drawn from Gaussians
centered on[+0.4,+0.7] and [−0.3,+0.7]; the negative patterns are drawn from Gaussians cen-
tered on[−0.7,+0.3] and [+0.3,+0.3]. Figure 1 shows a realisation of the synthetic benchmark,
consisting of 256 patterns, showing the Bayes-optimal decision boundaryand contours representing
an a-posteriori probability of belonging to the positive class of 0.1 and 0.9. The Bayes error for
this benchmark is approximately 12.38%. This benchmark is useful firstly as the Bayes optimal
decision boundary is known, but also because it provides an inexhaustible supply of data, allowing
the numerical approximation of various expectations.

3.2 A Suite of Benchmarks for Robust Performance Evaluation

In addition to illustrating the nature of over-fitting in model selection, we need to demonstrate that
it is a serious concern in practical applications and show that it can resultin biased performance
evaluation if not taken into consideration. Table 1 gives the details of a suite of thirteen benchmark
data sets, introduced by Rätsch et al. (2001). Each benchmark is based on a data set from the
UCI machine learning repository, augmented by a set of 100 pre-definedpartitions to form multiple
realisations of the training and test sets (20 in the case of the largerimage andsplice data sets).
The use of multiple benchmarks means that the evaluation is more robust as the selection of data
sets that provide a good match to the inductive bias of a particular classifier becomes less likely.
Likewise, the use of multiple partitions provides robustness against sensitivity to the sampling of
data to form training and test sets. Results on this suite of benchmarks thus provides a reasonable
indication of the magnitude of the effects of over-fitting in model selection that we might expect to
see in practice.

2. Toolbox can be found athttp://theoval.cmp.uea.ac.uk/ ˜ gcc/projects/gkm .
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Figure 1: Realisation of the Synthetic benchmark data set, with Bayes optimal decision bound-
ary (a) and kernel ridge regression classifier with an automatic relevance determination
(ARD) kernel where the hyper-parameters are tuned so as to minimise the true test MSE
(b).

Data Set
Training Testing Number of Input
Patterns Patterns Replications Features

banana 400 4900 100 2
breast cancer 200 77 100 9
diabetis 468 300 100 8
flare solar 666 400 100 9
german 700 300 100 20
heart 170 100 100 13
image 1300 1010 20 18
ringnorm 400 7000 100 20
splice 1000 2175 20 60
thyroid 140 75 100 5
titanic 150 2051 100 3
twonorm 400 7000 100 20
waveform 400 4600 100 21

Table 1: Details of data sets used in empirical comparison.

4. Over-fitting in Model Selection

We begin by demonstrating that it is possible to over-fit a model selection criterion based on a finite
sample of data, using the synthetic benchmark problem, where ground truth isavailable. Here we
use “over-fitting in model selection” to mean minimisation of the model selection criterion beyond
the point at which generalisation performance ceases to improve and subsequently begins to decline.
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Figure 1 (b) shows the output of a kernel ridge regression classifier for the synthetic problem, with
the Automatic Relevance Determination (ARD) variant of the Gaussian radial basis function kernel,

K (x,x′) = exp

{

−
d

∑
i=1

ηi(xi −x′i)
2

}

,

which has a separate scaling parameter,ηi , for each feature. A much larger training set of 4096
samples was used, and the hyper-parameters were tuned to minimise the true test mean squared
errors (MSE). The performance of this model achieved an error rate of 12.50%, which suggests that
a model of this form is capable of approaching the Bayes error rate for this problem, at least in
principle, and so there is little concern of model mis-specification.
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Figure 2: Evolution of the expected four-fold cross-validation and true test mean squared error as a
function of the number of iterations (optimisation steps in the minimisation of the model
selection criterion) of the model selection process, for a kernel ridge regression classifier
trained on thesynthetic benchmark data set (a) and (b) the evolution of those statistics
for a particular realisation of the data set.

A further one thousand independent realisations of this benchmark weregenerated, each consist-
ing of 64 samples. A kernel ridge regression classifier, based on the ARD kernel, was constructed for
each realisation, with the hyper-parameters tuned so as to minimise a four-foldcross-validation es-
timate of the mean squared error. The true generalisation performance of each model was estimated
numerically using the underlying generative model of the data set. Figure 2 (a) shows the expected
true test and cross-validation estimates of the mean squared error averaged over all 1000 realisations
of the benchmark. As would be expected, the cross-validation estimate of themean squared error,
forming the model selection criterion, is monotonically decreasing. However,the expected value of
the true test MSE initially shows a decrease, as the hyper-parameters are modified in a manner that
provides genuine improvements in generalisation, but after a relatively short time (approximately
30–40 iterations), the test error begins to climb slowly once more as the hyper-parameters are tuned
in ways that exploit the meaningless statistical peculiarities of the sample. This produces a close
analog of the classic plot used to illustrate the nature of over-fitting in training,for example, Figure
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9.7 of the book by Bishop (1995). Figure 2 (b) shows the same statistics forone particular realisation
of the data, demonstrating that the over-fitting can in some cases be quite substantial, clearly in this
case some form of early-stopping in the model selection process would have resulted in improved
generalisation. Having demonstrated that the classic signature of over-fitting during training is also
apparent in the evolution of cross-validation and test errors during model selection, we discuss in
the next section the origin of this form of over-fitting in terms of thebiasandvarianceof the model
selection criterion.

4.1 Bias and Variance in Model Selection

Model selection criteria are generally based on an estimator of generalisation performance evaluated
over a finite sample of data, this includes resampling methods, such as split sample estimators,
cross-validation (Stone, 1974) and bootstrap methods (Efron and Tibshirani, 1994), but also more
loosely, the Bayesian evidence (MacKay, 1992; Rasmussen and Williams, 2006) and theoretical
performance bounds such as the radius-margin bound (Vapnik, 1998). The error of an estimator can
be decomposed into two components,biasandvariance. Let G(θ) represent the true generalisation
performance of a model with hyper-parametersθ, andg(θ;D) be an estimate of generalisation
performance evaluated over a finite sample,D, of n patterns. The expected squared error of the
estimator can then be written in the form (Geman et al., 1992; Duda et al., 2001),

ED

{

[g(θ;D)−G(θ)]2
}

= [ED {g(θ;D)−G(θ)}]2+ ED

{

[

g(θ;D)−ED ′

{

g(θ;D ′)
}]2

}

,

whereED{·} represents an expectation evaluated over independent samples,D, of sizen. The first
term, the squaredbias, represents the difference between the expected value of the estimator and the
unknown value of the true generalisation error. The second term, knownas thevariance, reflects
the variability of the estimator around its expected value due to the sampling of the dataD on
which it is evaluated. Clearly if the expected squared error is low, we may reasonably expectg(·) to
perform well as a model selection criterion. However, in practice, the expected squared error may
be significant, in which case, it is interesting to ask whether the bias or the variance component is
of greatest importance in reliably achieving optimal generalisation.

It is straightforward to demonstrate that leave-one-out cross-validationprovides an almost un-
biased estimate of the true generalisation performance (Luntz and Brailovsky, 1969), and this is
often cited as being an advantageous property of the leave-one-out estimator in the setting of model
selection (e.g., Vapnik, 1998; Chapelle et al., 2002). However, for the purpose of model selection,
rather than performance evaluation, unbiasednessper seis relatively unimportant, instead the pri-
mary requirement is merely for the minimum of the model selection criterion to provide a reliable
indication of the minimum of the true test error in hyper-parameter space. Thispoint is illustrated
in Figure 3, which shows a hypothetical example of a model selection criterionthat is unbiased (by
construction) (a) and another that is clearly biased (b). Unbiasednessprovides the assurance that
the minimum of the expected value of the model selection criterion,ED{g(θ;D)} coincides with
the minimum of the test error,G(θ). However, in practice, we have only a finite sample of data,Di ,
over which to evaluate the model selection criterion, and so it is the minimum ofg(θ;Di) that is of
interest. In Figure 3 (a), it can be seen that while the estimator is unbiased, ithas a high variance,
and so there is a large spread in the values ofθ at which the minimum occurs for different samples
of data, and sog(θ;Di) is likely to provide a poor model selection criterion in practice. On the other
hand, Figure 3 (b) shows a criterion with lower variance, and hence is thebetter model selection
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criterion, despite being biased, as the minima ofg′(θ;Di) for individual samples lie much closer
to the minimum of the true test error. This demonstrates that while unbiasednessis reassuring, as
it means that the form of the model selection criterion is correcton average, the variance of the
criterion is also vitally important as it is this that ensures that the minimum of the selection criterion
evaluated on a particular sample will provide good generalisation.
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Figure 3: Hypothetical example of an unbiased (a) and a biased (b) modelselection criterion. Note
that the biased model selection criterion (b) is likely to provide the more effective model
selection criterion as it has a lower variance, even though it is significantly biased. For
clarity, the true error rate and the expected value of the model selection criteria are shown
with vertical displacements of−0.6 and−0.4 respectively.

4.2 The Effects of Over-fitting in Model Selection

In this section, we investigate the effect of the variance of the model selection criterion using a
more realistic example, again based on thesynthetic benchmark, where the underlying generative
model is known and so we are able to evaluate the true test error. It is demonstrated that over-fitting
in model selection can cause both under-fitting and over-fitting of the trainingsample. A fixed
training set of 256 patterns is generated and used to train a kernel ridge regression classifier, using
the simple RBF kernel (1), with hyper-parameter settings defining a fine gridspanning reasonable
values of the regularisation and kernel parameters,λ andη respectively. The smoothed error rate
(Bo et al., 2006),

SER(θ) =
1
2n

n

∑
i=1

[1−yi tanh{γ f (xi)}]

is used as the statistic of interest, in order to improve the clarity of the figures, whereγ is a param-
eter controlling the amount of smoothing applied (γ = 8 is used throughout, however the precise
value is not critical). Figure 4 (a) shows the true test smoothed error rate as a function of the hyper-
parameters. As these are both scale parameters, a logarithmic representation is used for both axes.
The true test smoothed error rate is an approximately unimodal function of thehyper-parameters,
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with a single distinct minimum, indicating the hyper-parameter settings giving optimal generalisa-
tion.
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Figure 4: Plot of the true test smoothed error rate (a) and mean smoothed error rate over 100 random
validation sets of 64 samples (b), for a kernel ridge regression classifier as a function of
the hyper-parameters. In each case, the minimum is shown by a yellow cross, +.

In practical applications, however, the true test error is generally unknown, and so we must rely
on an estimator of some sort. The simplest estimator for use in model selection is theerror computed
over an independent validation set, that is, the split-sample estimator. It seemsentirely reasonable
to expect the split-sample estimator to be unbiased. Figure 4 (b) shows a plot of the mean smoothed
error rate using the split-sample estimator, over 100 random validation sets, each of which consists
of 64 patterns. Note that the same fixed training set is used in each case. This plot is very similar
to the true smoothed error, shown in Figure 4 (a), demonstrating that the splitsample estimator is
indeed approximately unbiased.

While the split-sample estimator is unbiased, it may have a high variance, especially as in this
case the validation set is (intentionally) relatively small. Figure 5 shows plots ofthe split-sample
estimate of the smoothed error rate for six selected realisations of a validation set of 64 patterns.
Clearly, the split-sample error estimate is no longer as smooth, or indeed unimodal. More impor-
tantly, the hyper-parameter values selected by minimising the validation set error, and therefore the
true generalisation performance, depends on the particular sample of dataused to form the valida-
tion set. Figure 6 shows that the variance of the split-sample estimator can result in models ranging
from severely under-fit (a) to severely over-fit (f), with variations inbetween these extremes.

Figure 7 (a) shows a scatter plot of the validation set and true error ratesfor kernel ridge re-
gression classifiers for the synthetic benchmark, with split-sample based model selection using 100
random realisations of the validation set. Clearly, the split-sample based modelselection procedure
normally performs well. However, there is also significant variation in performance with different
samples forming the validation set. We can also see that the validation set erroris strongly biased,
having been directly minimised during model selection, and (of course) should not be used for
performance estimation.

2088



OVERFITTING IN MODEL SELECTION AND SELECTION BIAS IN PERFORMANCEEVALUATION

log
2
η

lo
g

2
λ

−5 0 5

−10

−8

−6

−4

−2

0

2

4

6

8

log
2
η

lo
g

2
λ

−5 0 5

−10

−8

−6

−4

−2

0

2

4

6

8

log
2
η

lo
g

2
λ

−5 0 5

−10

−8

−6

−4

−2

0

2

4

6

8

(a) (b) (c)

log
2
η

lo
g

2
λ

−5 0 5

−10

−8

−6

−4

−2

0

2

4

6

8

log
2
η

lo
g

2
λ

−5 0 5

−10

−8

−6

−4

−2

0

2

4

6

8

log
2
η

lo
g

2
λ

−5 0 5

−10

−8

−6

−4

−2

0

2

4

6

8

(d) (e) (f)

Figure 5: Contour plot of the split-sample estimate of the smoothed error rate for a kernel ridge
regression machine as a function of the hyper-parameters, for six random realisations of
the validation set. The minimum is shown by a cross,+.

Note that in this section we have deliberately employed a split-sample based model selection
strategy with a relatively high variance, due to the limited size of the validation set.A straightfor-
ward way to reduce the variance of the model selection criterion is simply to increase the size of the
validation sample over which it is evaluated. Figure 8 shows the optimal hyper-parameter settings
obtained using 100 realisations of validation sets of 64 (a) and 256 (b) samples. It can be clearly
seen that the use of a larger validation set has resulted in a tighter clusteringof hyper-parameter
values around the true optimum, note also that the hyper-parameters are concentrated along the bot-
tom of a broad valley in hyper-parameter space, so even when the selected values are different from
the optimal value, they still lie in positions giving good generalisation. This is further illustrated
in Figure 7 (b), where the true smoothed error rates are much more tightly clustered, with fewer
outliers, for the larger validation sets than obtained using smaller validation sets, shown in Figure 7
(a).

The variation in performance for different realisations of the benchmarksuggests that evaluation
of machine learning algorithms should always involve multiple partitions of the datato form train-
ing/validation and test sets, as the sampling of data for a single partition of the data might arbitrarily
favour one classifier over another. This is illustrated in Figure 9, which shows the test error rates for
Gaussian Process and Kernel Logistic Regression classifiers (GPC and KLR respectively), for 100

2089



CAWLEY AND TALBOT

x
1

x
2

−1.5 −1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

x
1

x
2

−1.5 −1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

x
1

x
2

−1.5 −1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

(a) (b) (c)

x
1

x
2

−1.5 −1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

x
1

x
2

−1.5 −1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

x
1

x
2

−1.5 −1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

(d) (e) (f)

Figure 6: Kernel ridge regression models of the synthetic benchmark, using hyper-parameters se-
lected according to the smoothed error rate over six random realisations ofthe validation
set (shown in Figure 5). The variance of the model selection criterion canresult in models
ranging from under-fit, (a) and (b), through well-fitting, (c) and (d),to over-fit (e) and (f).

random realisations of thebanana benchmark data set used in Rätsch et al. (2001) (see Section 5.1
for details). On 64 realisations of the data GPC out-performs KLR, but on 36 KLR out-performs
GPC, even though the GPC is better on average (although the difference isnot statistically signif-
icant in this case). If the classifiers had been evaluated on only one of thelatter 36 realisations, it
might incorrectly be concluded that the KLR classifier is superior to the GPC for that benchmark.
However, it should also be noted that a difference in performance between two algorithms is un-
likely to be of practical significance, even if it isstatisticallysignificant, if it is smaller than the
variation in performance due to the random sampling of the data, as it is probable that a greater
improvement in performance would be obtained by further data collection than by selection of the
optimal classifier.

4.3 Is Over-fitting in Model Selection Really a Genuine Concern in Practice?

In the preceding part of this section we have demonstrated the deleterious effects of the variance
of the model selection criterion using a synthetic benchmark data set, however this is not sufficient
to establish that over-fitting in model selection is actually a genuine concern in practical applica-
tions or in the development of machine learning algorithms. Table 2 shows results obtained using
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Figure 7: Scatter plots of the true test smoothed error rate as a function of the validation set
smoothed error rate for 100 randomly generated validation sets of (a) 64 and (b) 256
patterns.
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Figure 8: Contour plot of the mean validation set smoothed error rate over 100 randomly generated
validation sets of (a) 64 and (b) 256 patterns. The minimum of the mean validationset
error is marked by a large (yellow) cross, and the minimum for each realisation of the
validation set marked by a small (red) cross.

kernel ridge regression (KRR) classifiers, with RBF and ARD kernel functions over the thirteen
benchmarks described in Section 3.2. In each case, model selection was performed independently
for each realisation of each benchmark by minimising the PRESS statistic using theNelder-Mead
simplex method (Nelder and Mead, 1965). For the majority of the benchmarks,a significantly lower
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Figure 9: Scatter plots of the test set error for Gaussian process and Kernel Logistic regression
classifiers (GPC and KLR respectively) for 100 realisations of thebanana benchmark.

test error is achieved (according to the Wilcoxon signed ranks test) usingthe basic RBF kernel; the
ARD kernel only achieves statistical superiority on one of the thirteen (image ). This is perhaps a
surprising result as the models are nested, the RBF kernel being a special case of the ARD kernel,
so the optimal performance that can be achieved with the ARD kernel is guaranteed to be at least
equal to the performance achievable using the RBF kernel. The reason for the poor performance of
the ARD kernel in practice is because there are many more kernel parameters to be tuned in model
selection and so many degrees of freedom available in optimising the model selection criterion. If
the criterion used has a non-negligible variance, this includes optimisations exploiting the statistical
peculiarities of the particular sample of data over which it is evaluated, and hence there will be more
scope for over-fitting. Table 2 also shows the mean value of the PRESS statistic, following model
selection, the fact that the majority of ARD models display a lower value for the PRESS statistic
than the corresponding RBF model, while exhibiting a higher test error rate,is a strong indication
of over-fitting the model selection criterion. This is a clear demonstration that over-fitting in model
selection can be a significant problem in practical applications, especially where there are many
hyper-parameters or where only a limited supply of data is available.

Table 3 shows the results of the same experiment performed using expectation-propagation
based Gaussian process classifiers (EP-GPC) (Rasmussen and Williams,2006), where the hyper-
parameters are tuned independently for each realisation, for each benchmark individually by max-
imising the Bayesian evidence. While the leave-one-out cross-validation based PRESS criterion
is known to exhibit a high variance, the variance of the evidence (which is also evaluated over a
finite sample of data) is discussed less often. We find again here that the RBFcovariance function
often out-performs the more general ARD covariance function, and again the test error rate is often
negatively correlated with the evidence for the models. This indicates that over-fitting the evidence
is also a significant practical problem for the Gaussian process classifier.
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Data Set
Test Error Rate PRESS

RBF ARD RBF ARD
banana 10.610± 0.051 10.638± 0.052 60.808± 0.636 60.957± 0.624
breast cancer 26.727± 0.466 28.766± 0.391 70.632± 0.328 66.789± 0.385
diabetis 23.293± 0.169 24.520± 0.215 146.143± 0.452 141.465± 0.606
flare solar 34.140± 0.175 34.375± 0.175 267.332± 0.480 263.858± 0.550
german 23.540± 0.214 25.847± 0.267 228.256± 0.666 221.743± 0.822
heart 16.730± 0.359 22.810± 0.411 42.576± 0.356 37.023± 0.494
image 2.990± 0.159 2.188± 0.134 74.056± 1.685 44.488± 1.222
ringnorm 1.613± 0.015 2.750± 0.042 28.324± 0.246 27.680± 0.231
splice 10.777± 0.144 9.943± 0.520 186.814± 2.174 130.888± 6.574
thyroid 4.747± 0.235 4.693± 0.202 9.099± 0.152 6.816± 0.164
titanic 22.483± 0.085 22.562± 0.109 48.332± 0.622 47.801± 0.623
twonorm 2.846± 0.021 4.292± 0.086 32.539± 0.279 35.620± 0.490
waveform 9.792± 0.045 11.836± 0.085 61.658± 0.596 56.424± 0.637

Table 2: Error rates of kernel ridge regression (KRR) classifier over thirteen benchmark data sets
(Rätsch et al., 2001), using both standard radial basis function (RBF) andautomatic rel-
evance determination (ARD) kernels. Results shown in bold indicate an error rate that is
statistically superior to that obtained with the same classifier using the other kernel func-
tion, or a PRESS statistic that is significantly lower.

Data Set
Test Error Rate -Log Evidence

RBF ARD RBF ARD
banana 10.413± 0.046 10.459± 0.049 116.894± 0.917 116.459± 0.923
breast cancer 26.506± 0.487 27.948± 0.492 110.628± 0.366 107.181± 0.388
diabetis 23.280± 0.182 23.853± 0.193 230.211± 0.553 222.305± 0.581
flare solar 34.200± 0.175 33.578± 0.181 394.697± 0.546 384.374± 0.512
german 23.363± 0.211 23.757± 0.217 359.181± 0.778 346.048± 0.835
heart 16.670± 0.290 19.770± 0.365 73.464± 0.493 67.811± 0.571
image 2.817± 0.121 2.188± 0.076 205.061± 1.687 123.896± 1.184
ringnorm 4.406± 0.064 8.589± 0.097 121.260± 0.499 91.356± 0.583
splice 11.609± 0.180 8.618± 0.924 365.208± 3.137 242.464± 16.980
thyroid 4.373± 0.219 4.227± 0.216 25.461± 0.182 18.867± 0.170
titanic 22.637± 0.134 22.725± 0.133 78.952± 0.670 78.373± 0.683
twonorm 3.060± 0.034 4.025± 0.068 45.901± 0.577 42.044± 0.610
waveform 10.100± 0.047 11.418± 0.091 105.925± 0.954 91.239± 0.962

Table 3: Error rates of expectation propagation based Gaussian process classifiers (EP-GPC), using
both standard radial basis function (RBF) and automatic relevance determination (ARD)
kernels. Results shown in bold indicate an error rate that is statistically superior to that
obtained with the same classifier using the other kernel function or evidencethat is signif-
icantly higher.
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4.4 Avoiding Over-fitting in Model Selection

It seems reasonable to suggest that over-fitting in model selection is possible whenever a model
selection criterion evaluated over a finite sample of data is directly optimised. Likeover-fitting in
training, over-fitting in model selection is likely to be most severe when the sampleof data is small
and the number of hyper-parameters to be tuned is relatively large. Likewise, assuming additional
data are unavailable, potential solutions to the problem of over-fitting the model selection criterion
are likely to be similar to the tried and tested solutions to the problem of over-fitting the training
criterion, namely regularisation (Cawley and Talbot, 2007), early stopping (Qi et al., 2004) and
model or hyper-parameter averaging (Cawley, 2006; Hall and Robinson, 2009). Alternatively, one
might minimise the number of hyper-parameters, for instance by treating kernel parameters as sim-
ply parameters and optimising them at the first level of inference and have asingle regularisation
hyper-parameter controlling the overall complexity of the model. For very small data sets, where
the problem of over-fitting in both learning and model selection is greatest, thepreferred approach
would be to eliminate model selection altogether and opt for a fully Bayesian approach, where the
hyper-parameters are integrated out rather than optimised (e.g., Williams and Barber, 1998). An-
other approach is simply to avoid model selection altogether using an ensemble approach, for exam-
ple the Random Forest (RF) method (Breiman, 2001). However, while such methods often achieve
state-of-the-art performance, it is often easier to build expert knowledge into hierarchical models,
for example through the design of kernel or covariance functions, so unfortunately approaches such
as the RF are not a panacea.

While the problem of over-fitting in model selection is of the same nature as that of over-fitting
at the first level of inference, the lack of mathematical tractability appears tohave limited the the-
oretical analysis of model selection via optimisation of a model selection criterion. For example,
regarding leave-one-out cross-validation, Kulkarni et al. (1998) comment “In spite of the practical
importance of this estimate, relatively little is known about its properties.The available theory is
especially poor when it comes to analysing parameter selection based on minimizing the deleted
estimate.” (our emphasis). While some asymptotic results are available (Stone, 1977;Shao, 1993;
Toussaint, 1974), these are not directly relevant to the situation considered here, where over-fitting
occurs due to optimising the values of hyper-parameters using a model selection criterion evaluated
over a finite, often quite limited, sample of data. Estimates of the variance of the cross-validation
error are available for some models (Luntz and Brailovsky, 1969; Vapnik, 1982), however Bengio
and Grandvalet (2004) have shown there is no unbiased estimate of the variance of (k-fold) cross-
validation. More recently bounds on the error of leave-one-out cross-validation based on the idea of
stability have been proposed (Kearns and Ron, 1999; Bousquet and Elisseeff, 2002; Zhang, 2003).
In this section, we have demonstrated that over-fitting in model selection is a genuine problem in
machine learning, and hence is likely to be an area that could greatly benefitfrom further theoretical
analysis.

5. Bias in Performance Estimation

Avoiding potentially significant bias in performance evaluation, arising due toover-fitting in model
selection, is conceptually straightforward. The key is to treat both trainingand model selection
together, as integral parts of the model fitting procedure and ensure theyare never performed sepa-
rately at any point of the evaluation process. We present two examples ofpotentially biased evalua-
tion protocols that do not adhere to this principle. The scale of the bias observed on some data sets
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is much larger than the difference in performance between learning algorithms, and so one could
easily draw incorrect inferences based on the results obtained. This highlights the importance of
this issue in empirical studies. We also demonstrate that the magnitude of the bias depends on the
learning and model selection algorithms involved in the comparison and that combinations that are
more prone to over-fitting in model selection are favored by biased protocols. This means that stud-
ies based on potentially biased protocols are not internally consistent, evenif it is acknowledged
that a bias with respect to other studies may exist.

5.1 An Unbiased Performance Evaluation Methodology

We begin by describing an unbiased performance protocol, that correctly accounts for any over-
fitting that may occur in model selection. Three classifiers are evaluated using an unbiased proto-
col, in which model selection is performed separately for each realisation ofeach data set. This
is termed the “internal” protocol as the model selection process is performedindependently within
each fold of the resampling procedure. In this way, the performance estimate includes a component
properly accounting for the error introduced by over-fitting the model selection criterion. The clas-
sifiers used were as follows: RBF-KRR—kernel ridge regression with aradial basis function kernel,
with model selection based on minimisation of Allen’s PRESS statistic, as describedin Section 2.
RBF-KLR—kernel logistic regression with a radial basis function kerneland model selection based
on an approximate leave-one-out cross-validation estimate of the log-likelihood (Cawley and Tal-
bot, 2008). EP-GPC—expectation-propagation based Gaussian process classifier, with an isotropic
squared exponential covariance function, with model selection based onmaximising the marginal
likelihood (e.g., Rasmussen and Williams, 2006). The mean error rates obtained using these classi-
fiers under an unbiased protocol are shown in Table 4. In this case, themean ranks of all methods
are only minimally different, and so there is little if any evidence for a statistically significant superi-
ority of any of the classifiers over any other. Figure 10 shows a critical difference diagram (Dem̌sar,
2006), providing a graphical illustration of this result. A critical difference diagram displays the
mean rank of a set of classifiers over a suite of benchmark data sets, with cliques of classifiers
with statistically similar performance connected by a bar. The critical difference in average ranks
required for a statistical superiority of one classifier over another is alsoshown, labelled “CD”.

CD

3 2 1

1.9231
RBF−KRR (internal)

2
EP−GPC (internal)

2.0769
RBF−KLR (internal)

Figure 10: Critical difference diagram (Demšar, 2006) showing the average ranks of three classi-
fiers with internal model selection protocol.
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Data Set GPC KLR KRR
(internal) (internal) (internal)

banana 10.413± 0.046 10.567± 0.051 10.610± 0.051
breast cancer 26.506± 0.487 26.636± 0.467 26.727± 0.466
diabetis 23.280± 0.182 23.387± 0.180 23.293± 0.169
flare solar 34.200± 0.175 34.197± 0.170 34.140± 0.175
german 23.363± 0.211 23.493± 0.208 23.540± 0.214
heart 16.670± 0.290 16.810± 0.315 16.730± 0.359
image 2.817± 0.121 3.094± 0.130 2.990± 0.159
ringnorm 4.406± 0.064 1.681± 0.031 1.613± 0.015
splice 11.609± 0.180 11.248± 0.177 10.777± 0.144
thyroid 4.373± 0.219 4.293± 0.222 4.747± 0.235
titanic 22.637± 0.134 22.473± 0.103 22.483± 0.085
twonorm 3.060± 0.034 2.944± 0.042 2.846± 0.021
waveform 10.100± 0.047 9.918± 0.043 9.792± 0.045

Table 4: Error rate estimates of three classifiers over a suite of thirteen benchmark data sets: The
results for each method are presented in the form of the mean error rate over test data for
100 realisations of each data set (20 in the case of theimage andsplice data sets), along
with the associated standard error.

It is not unduly surprising that there should be little evidence for any statistically significant
superiority, as all three methods give rise to structurally similar models. The models though dif-
fer significantly in their model selection procedures, the EP-GPC is based on stronger statistical
assumptions, and so can be expected to excel where these assumptions are justified, but poorly
where the model is mis-specified (e.g., the ringnorm benchmark). The cross-validation based model
selection procedures, on the other hand, are more pragmatic and being based on much weaker as-
sumptions might be expected to provide a more consistent level of accuracy.

5.2 An Example of Biased Evaluation Methodology

The performance evaluation protocol most often used in conjunction with thesuite of benchmark
data sets, described in Section 3.2, seeks to perform model selection independently for only the
first five realisations of each data set. The median values of the hyper-parameters over these five
folds are then determined and subsequently used to evaluate the error rates for each realisation. This
“median” performance evaluation protocol was introduced in the same paper that popularised this
suite of benchmark data sets (Rätsch et al., 2001) and has been widely adopted (e.g., Mika et al.,
1999; Weston, 1999; Billings and Lee, 2002; Chapelle et al., 2002; Chu et al., 2003; Stewart, 2003;
Mika et al., 2003; Gold et al., 2005; Peña Centeno and D., 2006; Andelić et al., 2006; An et al.,
2007; Chen et al., 2009). The original motivation for this protocol was that the internal model
selection protocol was prohibitively expensive using workstations available (R̈atsch et al., 2001),
which was perfectly reasonable at the time, but is no longer true.3 The use of the median, however,
can be expected to introduce an optimistic bias into the performance estimates obtained using this
“median” protocol. Firstly all of the training data comprising the first five realisations have been

3. All of the experimental results presented in this paper were obtained using a single modern Linux workstation.
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Data Set KRR KRR Bias
(internal) (median)

banana 10.610± 0.051 10.384± 0.042 0.226± 0.034
breast cancer 26.727± 0.466 26.377± 0.441 0.351± 0.195
diabetis 23.293± 0.169 23.150± 0.157 0.143± 0.074
flare solar 34.140± 0.175 34.013± 0.166 0.128± 0.082
german 23.540± 0.214 23.380± 0.220 0.160± 0.067
heart 16.730± 0.359 15.720± 0.306 1.010± 0.186
image 2.990± 0.159 2.802± 0.129 0.188± 0.095
ringnorm 1.613± 0.015 1.573± 0.010 0.040± 0.010
splice 10.777± 0.144 10.763± 0.137 0.014± 0.055
thyroid 4.747± 0.235 4.560± 0.200 0.187± 0.100
titanic 22.483± 0.085 22.407± 0.102 0.076± 0.077
twonorm 2.846± 0.021 2.868± 0.017 -0.022± 0.014
waveform 9.792± 0.045 9.821± 0.039 -0.029± 0.020

Table 5: Error rate estimates of three classifiers over a suite of thirteen benchmark data sets: The
results for each method are presented in the form of the mean error rate over test data for
100 realisations of each data set (20 in the case of the image and splice data sets), along
with the associated standard error.

used during the model selection process for the classifiers used in everyfold of the re-sampling. This
means that some of the test data for each fold is no longer statistically “pure” as it has been seen
during model selection. Secondly, and more importantly, the median operation acts as a variance
reduction step, so the median of the five sets of hyper-parameters is likely to be better on average
than any of the five from which it is derived. Lastly, as the hyper-parameters are now fixed, there is
no longer scope for over-fitting the model selection criterion due to peculiarities of the sampling of
data for the training and test partitions in each realisation.

We begin by demonstrating that the results using the internal and median protocols are not com-
mensurate, and so the results obtained using different methods are not directly comparable. Table 5
shows the error rate obtained using the RBF-KRR classifier with the internaland median perfor-
mance evaluation protocols and the resulting bias, that is, the difference between the mean error
rates obtained with the internal and median protocols. It is clearly seen that the median protocol
introduces a positive bias on almost all benchmarks (twonorm andwaveform being the exceptions)
and that the bias can be quite substantial on some benchmarks. Indeed, for several benchmarks,
breast cancer , german , heart andthyroid in particular, the bias is larger than the typical dif-
ference in performance between classifiers evaluated using an unbiased protocol. Dem̌sar (2006)
recommends the Wilcoxon signed ranks test for determination of the statistical significance of the
superiority of one classifier over another over multiple data sets. Applying this test to the data shown
for EP-GPC (internal), RBF-KLR (internal) and RBF-KRR (median), from Tables 4 and 5, reveals
that the RBF-KRR (median) classifier is statistically superior to the remaining classifiers, at the 95%
level of significance. A critical difference diagram summarising this resultis shown in Figure 12.
However, the difference in performance is entirely spurious as it is purely the result of reducing the
effects of over-fitting in model selection and does not reflect the true operational performance of
the combination of classifier and model selection method. It is clear then that results obtained using
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the internal and median protocols are not directly comparable, and so reliable inferences cannot be
drawn by comparison of results from different studies, using biased and unbiased protocols.

5.2.1 IS THE BIAS SOLELY DUE TO INADVERTENT RE-USE OFTEST SAMPLES?

One explanation for the observed bias of the median protocol is that some ofthe training samples for
the first five realisations of the benchmark, which have been used in tuningthe hyper-parameters,
also appear in the test sets for other realisations of the benchmark used for performance analysis.
In this section, we demonstrate that this inadvertent re-use of test samples isnot the only cause of
the bias. One hundred replications of the internal and median protocol were performed using the
synthetic benchmark, for which an inexhaustible supply of i.i.d. data is available. However, in
this case in each realisation, 100 training sets of 64 patterns and a large testset of 4096 samples were
generated, all mutually disjoint. This means the only remaining source of bias is the amelioration
of over-fitting in model selection by the reduction of variance by taking the median of the hyper-
parameters over the first five folds (cf. Hall and Robinson, 2009). Figure 11 shows the mean test
errors for the internal and median protocols over 100 replications, showing a very distinct optimistic
bias in the median protocol (statistically highly significant according to the Wilcoxon signed ranks
test,p< 0.001), even though there is absolutely no inadvertent re-use of test data.
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Figure 11: Mean error rates for the internal and median evaluation protocols for thesynthetic
benchmark, without inadvertent re-use of test data.

5.2.2 IS THE MEDIAN PROTOCOL INTERNALLY CONSISTENT?

Having established that the median protocol introduces an optimistic bias, and that the results ob-
tained using the internal and median protocols do not give comparable results, we next turn our
attention to whether the median protocol is internally consistent, that is, does themedian protocol
give the correct rank order of the classifiers? Table 6 shows the performance of three classifiers
evaluated using the median protocol; the corresponding critical difference diagram is shown in Fig-
ure 13. In this case the difference in performance between classifiers isnot statistically significant
according to the Friedman test, however it can clearly be seen that the bias of the median protocol
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Data Set EP-GPC RBF-KLR RBF-KRR
(median) (median) (median)

banana 10.371± 0.045 10.407± 0.047 10.384± 0.042
breast cancer 26.117± 0.472 26.130± 0.474 26.377± 0.441
diabetis 23.333± 0.191 23.300± 0.177 23.150± 0.157
flare solar 34.150± 0.170 34.212± 0.176 34.013± 0.166
german 23.160± 0.216 23.203± 0.218 23.380± 0.220
heart 16.400± 0.273 16.120± 0.295 15.720± 0.306
image 2.851± 0.102 3.030± 0.120 2.802± 0.129
ringnorm 4.400± 0.064 1.574± 0.011 1.573± 0.010
splice 11.607± 0.184 11.172± 0.168 10.763± 0.137
thyroid 4.307± 0.217 4.040± 0.221 4.560± 0.200
titanic 22.490± 0.095 22.591± 0.135 22.407± 0.102
twonorm 3.241± 0.039 3.068± 0.033 2.868± 0.017
waveform 10.163± 0.045 9.888± 0.042 9.821± 0.039

Table 6: Error rate estimates of three classifiers over a suite of thirteen benchmark data sets: The
results for each method are presented in the form of the mean error rate over test data for
100 realisations of each data set (20 in the case of the image and splice data sets), along
with the associated standard error.

has favored one classifier, namely the RBF-KRR, much more strongly than the others. It seems
feasible then that the bias of the median protocol may be sufficient in other cases to amplify a small
difference in performance, due perhaps to an accidentally favorable choice of data sets, to the point
where it spuriously appears to be statistically significant. This suggests thatthe median protocol
may be unreliable and perhaps should be deprecated.

CD

3 2 1

1.2308
RBF−KRR (median)

2.3846
EP−GPC (internal)

2.3846
RBF−KLR (internal)

Figure 12: Critical difference diagram (Demšar, 2006) showing the average ranks of three clas-
sifiers, EP-GPC and RBF-KLR with internal model selection protocol and RBF-KLR
using the optimistically biased median protocol (cf. Figure 10).

Next, we perform a statistical analysis to determine whether there is a statisticallysignificant
difference in the magnitude of the biases introduced by the median protocol for different classifiers,
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Data Set RBF-KRR RBF-EP-GPC Wilcoxon
bias bias p-value

banana 0.226± 0.034 0.043± 0.012 < 0.05
breast cancer 0.351± 0.195 0.390± 0.186 0.934
diabetis 0.143± 0.074 -0.053± 0.051 < 0.05
flare solar 0.128± 0.082 0.050± 0.090 0.214
german 0.160± 0.067 0.203± 0.051 0.458
heart 1.010± 0.186 0.270± 0.120 < 0.05
image 0.188± 0.095 -0.035± 0.032 0.060
ringnorm 0.040± 0.010 0.006± 0.002 < 0.05
splice 0.014± 0.055 0.002± 0.014 0.860
thyroid 0.187± 0.100 0.067± 0.064 0.159
titanic 0.076± 0.077 0.147± 0.090 0.846
twonorm -0.022± 0.014 -0.180± 0.032 < 0.05
waveform -0.029± 0.020 -0.064± 0.022 0.244

Table 7: Results of a statistical analysis of the bias introduced by the median protocol into the test
error rates for RBF-KRR and RBF-EP-GPC, using the Wilcoxon signed ranks test.

CD

3 2 1

1.5385
RBF−KRR (median)

2.2308
EP−GPC (median)

2.2308
RBF−KLR (median)

Figure 13: Critical difference diagram showing the average ranks of three classifiers with the me-
dian model selection protocol (cf. Figure 10).

for each benchmark data set.4 First the bias introduced by the use of the median protocol was
computed for the RBF KRR and RBF EP-GPC classifiers as the difference between the test set error
estimated by the internal and median protocols. The Wilcoxon signed rank testwas then used to
determine whether there is a statistically significant difference in the bias, over the 100 realisations
of the benchmark (20 in the case of theimage and splice benchmarks) . The results obtained
are shown in Table 7, the p-value is below 0.05 for five of the thirteen benchmarks, indicating
that in each case the median protocol is significantly biased in favour of the RBF KRR classifier.
Clearly, as the median protocol does not impose a commensurate bias on the estimated test error
rates for different classifiers, it does not provide a reliable protocolfor comparing the performance
of machine learning algorithms.

4. We are grateful to an anonymous reviewer for suggesting this particular form of analysis.

2100



OVERFITTING IN MODEL SELECTION AND SELECTION BIAS IN PERFORMANCEEVALUATION

2 4 6 8 10 12 14 16 18 20
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

number of folds

m
e
a
n
 r

a
n
k

EP−GPC

RBF−KLR

RBF−KRR

2 4 6 8 10 12 14 16 18 20
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

number of folds

m
e
a
n
 r

a
n
k

EP−GPC

RBF−KLR

RBF−KRR

(a) (b)

Figure 14: Mean ranks of three classifiers as a function of the number offolds used in the re-
peated split sample model selection procedure employed by the kernel ridgeregression
(RBF-KRR) machine, using (a) the unbiasedinternalprotocol and (b) the biasedmedian
protocol.

In the final illustration of this section, we show that the magnitude of the bias introduced by
the median protocol is greater for model selection criteria with a high variance. This means the
median protocol favors most the least reliable model selection proceduresand as a result does not
provide a reliable indicator even of relative performance of classifier-model selection procedures
combinations. Again the RBF-KRR model is used as the base classifier, however in this case a
repeated split-sample model selection criterion is used, where the data are repeatedly split at random
to form disjoint training and validation sets in proportions 9:1, and the hyper-parameters tuned to
optimise the average mean-squared error over the validation sets. In this way, the variance of the
model selection criterion can be controlled by varying the number of repetitions, with the variance
decreasing as the number of folds becomes larger. Figure 14 (a) showsa plot of the average ranks
of EP-GPC and RBF-KLR classifiers, with model selection performed as in previous experiments,
and RBF-KRR with repeated split-sample model selection, as a function of the number of folds.
In each case the unbiased internal evaluation protocol was used. Clearly if the number of folds is
small (five or less), the RBF-KRR model performs poorly, due to over-fitting in model selection due
to the high variance of the criterion used. However, as the number of foldsincreases, the variance
of the model selection criterion falls, and the performances of all three algorithms are very similar.
Figure 14 (b) shows the corresponding result using the biased median protocol. The averaging of
hyper-parameters reduces the apparent variance of the model selection criterion, and this disguises
the poor performance of the RBF-KRR model when the number of folds is small. This demonstrates
that the bias introduced by the median protocol favors most the worst modelselection criterion,
which is a cause for some concern.
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Data Set External Internal Bias
banana 10.355± 0.146 10.495± 0.158 0.140± 0.035
breast cancer 26.280± 0.232 27.470± 0.250 1.190± 0.135
diabetis 22.891± 0.127 23.056± 0.134 0.165± 0.050
flare solar 34.518± 0.172 34.707± 0.179 0.189± 0.051
german 23.999± 0.117 24.217± 0.125 0.219± 0.045
heart 16.335± 0.214 16.571± 0.220 0.235± 0.073
image 3.081± 0.102 3.173± 0.112 0.092± 0.035
ringnorm 1.567± 0.058 1.607± 0.057 0.040± 0.014
splice 10.930± 0.219 11.170± 0.280 0.240± 0.152
thyroid 3.743± 0.137 4.279± 0.152 0.536± 0.073
titanic 22.167± 0.434 22.487± 0.442 0.320± 0.077
twonorm 2.480± 0.067 2.502± 0.070 0.022± 0.021
waveform 9.613± 0.168 9.815± 0.183 0.203± 0.064

Table 8: Error rate estimates for kernel ridge regression over thirteen benchmark data sets, for
model selection schemes that are internal and external to the cross-validation process. The
results for each approach and the relative bias are presented in the form of the mean error
rate over for 100 realisations of each data set (20 in the case of the image and splice data
sets), along with the associated standard error.

5.3 Another Example of Biased Evaluation Methodology

In a biased evaluation protocol, occasionally observed in machine learningstudies, an initial model
selection step is performed using all of the available data, often interactivelyas part of a “preliminary
study”. The data are then repeatedly re-partitioned to form one or more pairs of random, disjoint
design and test sets. These are then used for performance evaluationusing the same fixed set of
hyper-parameter values. This practice may seem at first glance to be fairly innocuous, however the
test data are no longer statistically pure, as they have been “seen” by the models in tuning the hyper-
parameters. This would not present a serious problem were it not for the danger of over-fitting in
model selection, which means that in practice the hyper-parameters will inevitably be tuned to an
extent in ways that take advantage of the statistical peculiarities of this particular set of data rather
than only in ways that favor improved generalisation. As a result the hyper-parameter settings
retain a partial “memory” of the data that now form the test partition. We shouldtherefore expect to
observe an optimistic bias in the performance estimates obtained in this manner.

Table 8 shows a comparison of 10-fold cross-validation estimates of the testerror rate, for ker-
nel ridge regression with a Gaussian radian basis function kernel, obtained using protocols where
the model selection stage is eitherexternalor internal to the cross-validation procedure. In the ex-
ternal protocol, model selection is performed once using the entire design set, as described above.
In the internal protocol, the model selection step is performed separately in each fold of the cross-
validation. The internal cross-validation procedure therefore provides a more realistic estimate of
the performance of the combination of model selection and learning algorithm that is actually used
to construct the final model. The table also shows the relative bias (i.e., the mean difference between
the internal and external cross-validation protocols). The external protocol clearly exhibits a con-
sistently optimistic bias with respect to the more rigorous internal cross-validation protocol, over
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all thirteen benchmarks. Furthermore, the bias is statistically significant (i.e., larger than twice the
standard error of the estimate) for all benchmarks, apart fromsplice andtwonorm . In many cases,
the bias is of similar magnitude to the typical difference observed between competitive learning al-
gorithms (cf. Table 4). In some cases, for example,banana andthyroid benchmarks, the bias is of
a surprising magnitude, likely to be large enough to conceal even the true difference between even
state-of-the-art and uncompetitive learning algorithms. This clearly showsthat the external cross-
validation protocol exhibits a consistent optimistic bias, potentially of a very substantial magnitude
even when the number of hyper-parameters is small (in this case only two), and so should not be
used in practice.

6. Conclusions

In this paper, we have discussed the importance of bias and variance in model selection and perfor-
mance evaluation, and demonstrated that a high variance can lead to over-fitting in model selection,
and hence poor performance, even when the number of hyper-parameters is relatively small. Fur-
thermore, we have shown that a potentially severe form of selection bias can be introduced into
performance evaluation by protocols that have been adopted in a number of existing empirical stud-
ies. Fortunately, it seems likely that over-fitting in model selection can be overcome using methods
that have already been effective in preventing over-fitting during training, such as regularisation or
early stopping. Little attention has so far been focused on over-fitting in model selection, however
in this paper we have shown that it presents a genuine pitfall in the practicalapplication of machine
learning algorithms and in empirical comparisons. In order to overcome the bias in performance
evaluation, model selection should be viewed as an integral part of the modelfitting procedure, and
should be conducted independently in each trial in order to prevent selection bias and because it
reflects best practice in operational use. Rigorous performance evaluation therefore requires a sub-
stantial investment of processor time in order to evaluate performance overa wide range of data
sets, using multiple randomised partitionings of the available data, with model selection performed
separately in each trial. However, it is straightforward to fully automate thesesteps, and so requires
little manual involvement. Performance evaluation according to these principlesrequires repeated
training of models using different sets of hyper-parameter values on different samples of the avail-
able data, and so is also well-suited to parallel implementation. Given the recenttrend in processor
design towards multi-core designs, rather than faster processor speeds, rigorous performance eval-
uation is likely to become less and less time-consuming, and so there is little justificationfor the
continued use of potentially biased protocols.
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