
Y LeCun
MA Ranzato

Deep Learning
Tutorial

ICML, Atlanta, 2013-06-16

Yann LeCun
Center for Data Science & Courant Institute, NYU
yann@cs.nyu.edu
http://yann.lecun.com

Marc'Aurelio Ranzato
Google
ranzato@google.com
http://www.cs.toronto.edu/~ranzato

mailto:yann@cs.nyu.edu
http://yann.lecun.com/
mailto:ranzato@google.com
http://www.cs.toronto.edu/~ranzato

Y LeCun
MA Ranzato

Deep Learning = Learning Representations/Features

The traditional model of pattern recognition (since the late 50's)
Fixed/engineered features (or fixed kernel) + trainable
classifier

End-to-end learning / Feature learning / Deep learning
Trainable features (or kernel) + trainable classifier

“Simple” Trainable
Classifier

hand-crafted
Feature Extractor

Trainable
Classifier

Trainable
Feature Extractor

Y LeCun
MA Ranzato

This Basic Model has not evolved much since the 50's

The first learning machine: the Perceptron
Built at Cornell in 1960

The Perceptron was a linear classifier on
top of a simple feature extractor
The vast majority of practical applications
of ML today use glorified linear classifiers
or glorified template matching.
Designing a feature extractor requires
considerable efforts by experts.

y=sign (∑
i=1

N

W i F i (X)+b)

A
Featur e Extra ctor

Wi

Y LeCun
MA Ranzato

Architecture of “Mainstream”Pattern Recognition Systems

Modern architecture for pattern recognition
Speech recognition: early 90's – 2011

Object Recognition: 2006 - 2012

fixed unsupervised supervised

ClassifierMFCC Mix of Gaussians

Classifier
SIFT
HoG

K-means
Sparse Coding

Pooling

fixed unsupervised supervised

Low-level
Features

Mid-level
Features

Y LeCun
MA Ranzato

Deep Learning = Learning Hierarchical Representations

It's deep if it has more than one stage of non-linear feature
transformation

Trainable
Classifier

Low-Level
Feature

Mid-Level
Feature

High-Level
Feature

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Y LeCun
MA Ranzato

Trainable Feature Hierarchy

Hierarchy of representations with increasing level of abstraction

Each stage is a kind of trainable feature transform

Image recognition
Pixel edge texton motif part object→ → → → →

Text
Character word word group clause sentence story→ → → → →

Speech
Sample spectral band sound … phone phoneme → → → → → →
word →

Y LeCun
MA Ranzato

Learning Representations: a challenge for
ML, CV, AI, Neuroscience, Cognitive Science...

How do we learn representations of the perceptual
world?

How can a perceptual system build itself by
looking at the world?
How much prior structure is necessary

ML/AI: how do we learn features or feature hierarchies?
What is the fundamental principle? What is the
learning algorithm? What is the architecture?

Neuroscience: how does the cortex learn perception?
Does the cortex “run” a single, general
learning algorithm? (or a small number of
them)

CogSci: how does the mind learn abstract concepts on
top of less abstract ones?

Deep Learning addresses the problem of learning
hierarchical representations with a single algorithm

or perhaps with a few algorithms

Trainable Feature
Transform

Trainable Feature
Transform

Trainable Feature
Transform

Trainable Feature
Transform

Y LeCun
MA Ranzato

The Mammalian Visual Cortex is Hierarchical

[picture from Simon Thorpe]

[Gallant & Van Essen]

The ventral (recognition) pathway in the visual cortex has multiple stages
Retina - LGN - V1 - V2 - V4 - PIT - AIT
Lots of intermediate representations

Y LeCun
MA Ranzato

Let's be inspired by nature, but not too much

It's nice imitate Nature,
But we also need to understand

How do we know which
details are important?

Which details are merely the
result of evolution, and the
constraints of biochemistry?

For airplanes, we developed
aerodynamics and compressible
fluid dynamics.

We figured that feathers and
wing flapping weren't crucial

QUESTION: What is the
equivalent of aerodynamics for
understanding intelligence?

L'Avion III de Clément Ader, 1897
(Musée du CNAM, Paris)

His Eole took off from the ground in 1890,

13 years before the Wright Brothers, but you

probably never heard of it.

Y LeCun
MA Ranzato

Trainable Feature Hierarchies: End-to-end learning

A hierarchy of trainable feature transforms
Each module transforms its input representation into a higher-level
one.

High-level features are more global and more invariant

Low-level features are shared among categories

Trainable
Feature

Transform

Trainable
Feature

Transform

Trainable
Classifier/
Predictor

Learned Internal Representations

How can we make all the modules trainable and get them to learn
appropriate representations?

Y LeCun
MA Ranzato

Three Types of Deep Architectures

Feed-Forward: multilayer neural nets, convolutional nets

Feed-Back: Stacked Sparse Coding, Deconvolutional Nets

Bi-Drectional: Deep Boltzmann Machines, Stacked Auto-Encoders

Y LeCun
MA Ranzato

Three Types of Training Protocols

Purely Supervised
Initialize parameters randomly
Train in supervised mode

typically with SGD, using backprop to compute gradients

Used in most practical systems for speech and image
recognition

Unsupervised, layerwise + supervised classifier on top
Train each layer unsupervised, one after the other
Train a supervised classifier on top, keeping the other layers
fixed
Good when very few labeled samples are available

Unsupervised, layerwise + global supervised fine-tuning
Train each layer unsupervised, one after the other
Add a classifier layer, and retrain the whole thing supervised
Good when label set is poor (e.g. pedestrian detection)

Unsupervised pre-training often uses regularized auto-encoders

Y LeCun
MA Ranzato

Do we really need deep architectures?

Theoretician's dilemma: “We can approximate any function as close as we
want with shallow architecture. Why would we need deep ones?”

kernel machines (and 2-layer neural nets) are “universal”.

Deep learning machines

Deep machines are more efficient for representing certain classes of
functions, particularly those involved in visual recognition

they can represent more complex functions with less “hardware”

We need an efficient parameterization of the class of functions that are
useful for “AI” tasks (vision, audition, NLP...)

Y LeCun
MA Ranzato

Why would deep architectures be more efficient?

A deep architecture trades space for time (or breadth for depth)
more layers (more sequential computation),
but less hardware (less parallel computation).

Example1: N-bit parity
requires N-1 XOR gates in a tree of depth log(N).
Even easier if we use threshold gates
requires an exponential number of gates of we restrict ourselves
to 2 layers (DNF formula with exponential number of minterms).

Example2: circuit for addition of 2 N-bit binary numbers
Requires O(N) gates, and O(N) layers using N one-bit adders with
ripple carry propagation.
Requires lots of gates (some polynomial in N) if we restrict
ourselves to two layers (e.g. Disjunctive Normal Form).
Bad news: almost all boolean functions have a DNF formula with
an exponential number of minterms O(2^N).....

[Bengio & LeCun 2007 “Scaling Learning Algorithms Towards AI”]

Y LeCun
MA Ranzato

Which Models are Deep?

2-layer models are not deep (even if
you train the first layer)

Because there is no feature
hierarchy

Neural nets with 1 hidden layer are not
deep

SVMs and Kernel methods are not deep
Layer1: kernels; layer2: linear
The first layer is “trained” in
with the simplest unsupervised
method ever devised: using
the samples as templates for
the kernel functions.

Classification trees are not deep
No hierarchy of features. All
decisions are made in the input
space

Y LeCun
MA Ranzato

Are Graphical Models Deep?

There is no opposition between graphical models and deep learning.
Many deep learning models are formulated as factor graphs
Some graphical models use deep architectures inside their factors

Graphical models can be deep (but most are not).

Factor Graph: sum of energy functions
Over inputs X, outputs Y and latent variables Z. Trainable parameters: W

Each energy function can contain a deep network

The whole factor graph can be seen as a deep network

−log P (X ,Y , Z /W)∝E (X , Y , Z , W)=∑i
E i(X ,Y ,Z ,W i)

E1(X1,Y1)

E2(X2,Z1,Z2)

E3(Z2,Y1) E4(Y3,Y4)

X1 Z3 Y2Y1Z2
Z1 X2

Y LeCun
MA Ranzato

Deep Learning: A Theoretician's Nightmare?

Deep Learning involves non-convex loss functions
With non-convex losses, all bets are off
Then again, every speech recognition system ever deployed
has used non-convex optimization (GMMs are non convex).

But to some of us all “interesting” learning is non convex
Convex learning is invariant to the order in which sample are
presented (only depends on asymptotic sample frequencies).
Human learning isn't like that: we learn simple concepts
before complex ones. The order in which we learn things
matter.

Y LeCun
MA Ranzato

Deep Learning: A Theoretician's Nightmare?

No generalization bounds?
Actually, the usual VC bounds apply: most deep learning
systems have a finite VC dimension
We don't have tighter bounds than that.
But then again, how many bounds are tight enough to be
useful for model selection?

It's hard to prove anything about deep learning systems
Then again, if we only study models for which we can prove
things, we wouldn't have speech, handwriting, and visual
object recognition systems today.

Y LeCun
MA Ranzato

Deep Learning: A Theoretician's Paradise?

Deep Learning is about representing high-dimensional data
There has to be interesting theoretical questions there
What is the geometry of natural signals?
Is there an equivalent of statistical learning theory for
unsupervised learning?
What are good criteria on which to base unsupervised
learning?

Deep Learning Systems are a form of latent variable factor graph
Internal representations can be viewed as latent variables to
be inferred, and deep belief networks are a particular type of
latent variable models.
The most interesting deep belief nets have intractable loss
functions: how do we get around that problem?

Lots of theory at the 2012 IPAM summer school on deep learning
Wright's parallel SGD methods, Mallat's “scattering transform”,
Osher's “split Bregman” methods for sparse modeling,
Morton's “algebraic geometry of DBN”,....

Y LeCun
MA Ranzato

Deep Learning and Feature Learning Today

Deep Learning has been the hottest topic in speech recognition in the last 2 years
A few long-standing performance records were broken with deep
learning methods
Microsoft and Google have both deployed DL-based speech
recognition system in their products
Microsoft, Google, IBM, Nuance, AT&T, and all the major academic
and industrial players in speech recognition have projects on deep
learning

Deep Learning is the hottest topic in Computer Vision
Feature engineering is the bread-and-butter of a large portion of the
CV community, which creates some resistance to feature learning
But the record holders on ImageNet and Semantic Segmentation are
convolutional nets

Deep Learning is becoming hot in Natural Language Processing

Deep Learning/Feature Learning in Applied Mathematics
The connection with Applied Math is through sparse coding,
non-convex optimization, stochastic gradient algorithms, etc...

Y LeCun
MA Ranzato

In Many Fields, Feature Learning Has Caused a Revolution
(methods used in commercially deployed systems)

Speech Recognition I (late 1980s)
Trained mid-level features with Gaussian mixtures (2-layer classifier)

Handwriting Recognition and OCR (late 1980s to mid 1990s)
Supervised convolutional nets operating on pixels

Face & People Detection (early 1990s to mid 2000s)
Supervised convolutional nets operating on pixels (YLC 1994, 2004,
Garcia 2004)
Haar features generation/selection (Viola-Jones 2001)

Object Recognition I (mid-to-late 2000s: Ponce, Schmid, Yu, YLC....)
Trainable mid-level features (K-means or sparse coding)

Low-Res Object Recognition: road signs, house numbers (early 2010's)
Supervised convolutional net operating on pixels

Speech Recognition II (circa 2011)
Deep neural nets for acoustic modeling

Object Recognition III, Semantic Labeling (2012, Hinton, YLC,...)
Supervised convolutional nets operating on pixels

Y LeCun
MA Ranzato

D-AE

DBN DBM

AEPerceptron

RBM

GMM BayesNP

SVM

Sparse
Coding



DecisionTree

Boosting

SHALLOW DEEP

Conv. Net

Neural Net
RNN

Y LeCun
MA Ranzato

SHALLOW DEEP

Neural Networks

Probabilistic Models

D-AE

DBN DBM

AEPerceptron

RBM

GMM BayesNP

SVM

Sparse
Coding



DecisionTree

Boosting

Conv. Net

Neural Net
RNN

Y LeCun
MA Ranzato

SHALLOW DEEP

Neural Networks

Probabilistic Models

Conv. Net
D-AE

DBN DBM

AEPerceptron

RBM

GMM BayesNP

SVM

Supervised Supervised
Unsupervised

Sparse
Coding



Boosting

DecisionTree

Neural Net
RNN

Y LeCun
MA Ranzato

SHALLOW DEEP

D-AE

DBN DBM

AEPerceptro
n

RBM

GMM BayesNP

SVM

Sparse
Coding



Boosting

DecisionTree

Neural Net

Conv. Net

RNN

In this talk, we'll focus on the
simplest and typically most

effective methods.

Y LeCun
MA Ranzato

What Are
Good Feature?

Y LeCun
MA Ranzato

Discovering the Hidden Structure in High-Dimensional Data
The manifold hypothesis

Learning Representations of Data:

Discovering & disentangling the independent
explanatory factors

The Manifold Hypothesis:
Natural data lives in a low-dimensional (non-linear) manifold

Because variables in natural data are mutually dependent

Y LeCun
MA Ranzato

Discovering the Hidden Structure in High-Dimensional Data

Example: all face images of a person
1000x1000 pixels = 1,000,000 dimensions

But the face has 3 cartesian coordinates and 3 Euler angles

And humans have less than about 50 muscles in the face

Hence the manifold of face images for a person has <56 dimensions

The perfect representations of a face image:
Its coordinates on the face manifold

Its coordinates away from the manifold

We do not have good and general methods to learn functions that turns an
image into this kind of representation

Ideal
Feature

Extractor [
1 . 2
−3
0 . 2

−2 .. .
]

Face/not face
Pose
Lighting
Expression

Y LeCun
MA Ranzato

Disentangling factors of variation

The Ideal Disentangling Feature Extractor

Pixel 1

Pixel 2

Pixel n

Expression

View

Ideal
Feature

Extractor

Y LeCun
MA Ranzato

Data Manifold & Invariance:
Some variations must be eliminated

Azimuth-Elevation manifold. Ignores lighting. [Hadsell et al. CVPR 2006]

Y LeCun
MA Ranzato

Basic Idea fpr Invariant Feature Learning

Embed the input non-linearly into a high(er) dimensional space
In the new space, things that were non separable may become
separable

Pool regions of the new space together
Bringing together things that are semantically similar. Like
pooling.

Non-Linear
Function

Pooling
Or

Aggregation

Input
high-dim

Unstable/non-smooth
 features

Stable/invariant
features

Y LeCun
MA Ranzato

Non-Linear Expansion → Pooling

Entangled data manifolds

Non-Linear Dim
Expansion,

Disentangling

Pooling.
Aggregation

Y LeCun
MA Ranzato

Sparse Non-Linear Expansion → Pooling

Use clustering to break things apart, pool together similar things

Clustering,
Quantization,
Sparse Coding

Pooling.
Aggregation

Y LeCun
MA Ranzato

Overall Architecture:
Normalization → Filter Bank → Non-Linearity → Pooling

Stacking multiple stages of
[Normalization Filter Bank Non-Linearity Pooling].→ → →

Normalization: variations on whitening
Subtractive: average removal, high pass filtering

Divisive: local contrast normalization, variance normalization

Filter Bank: dimension expansion, projection on overcomplete basis
Non-Linearity: sparsification, saturation, lateral inhibition....

Rectification (ReLU), Component-wise shrinkage, tanh,
winner-takes-all

Pooling: aggregation over space or feature type
 X i ; L p :

p√ X i
p ; PROB :

1
b

log (∑i

e
bX i)

Classifier
feature

Pooling

Non-

Linear

Filter

Bank
Norm

feature

Pooling

Non-

Linear

Filter

Bank
Norm

Y LeCun
MA Ranzato

Deep Supervised Learning
(modular approach)

Y LeCun
MA Ranzato

Multimodule Systems: Cascade

Complex learning machines can be
built by assembling modules into
networks

 Simple example: sequential/layered
feed-forward architecture (cascade)

Forward Propagation:

Y LeCun
MA Ranzato

Multimodule Systems: Implementation

Each module is an object
Contains trainable
parameters
Inputs are arguments
Output is returned, but also
stored internally
Example: 2 modules m1, m2

Torch7 (by hand)
hid = m1:forward(in)
out = m2:forward(hid)

Torch7 (using the nn.Sequential class)
model = nn.Sequential()
model:add(m1)
model:add(m2)
out = model:forward(in)

Y LeCun
MA Ranzato

Computing the Gradient in Multi-Layer Systems

Y LeCun
MA Ranzato

Computing the Gradient in Multi-Layer Systems

Y LeCun
MA Ranzato

Computing the Gradient in Multi-Layer Systems

Y LeCun
MA Ranzato

Jacobians and Dimensions

Y LeCun
MA Ranzato

Back Propgation

Y LeCun
MA Ranzato

Multimodule Systems: Implementation

Backpropagation through a module
Contains trainable parameters
Inputs are arguments
Gradient with respect to input is
returned.
Arguments are input and
gradient with respect to output

Torch7 (by hand)
hidg =
m2:backward(hid,outg)
ing = m1:backward(in,hidg)

Torch7 (using the nn.Sequential class)
ing =
model:backward(in,outg)

Y LeCun
MA Ranzato

Linear Module

Y LeCun
MA Ranzato

Tanh module (or any other pointwise function)

Y LeCun
MA Ranzato

Euclidean Distance Module

Y LeCun
MA Ranzato

Any Architecture works

Any connection is permissible
Networks with loops must be
“unfolded in time”.

Any module is permissible
As long as it is continuous and
differentiable almost everywhere
with respect to the parameters, and
with respect to non-terminal inputs.

Y LeCun
MA Ranzato

Module-Based Deep Learning with Torch7

Torch7 is based on the Lua language
Simple and lightweight scripting language, dominant in the game industry
Has a native just-in-time compiler (fast!)
Has a simple foreign function interface to call C/C++ functions from Lua

Torch7 is an extension of Lua with
A multidimensional array engine with CUDA and OpenMP backends
A machine learning library that implements multilayer nets, convolutional
nets, unsupervised pre-training, etc
Various libraries for data/image manipulation and computer vision
A quickly growing community of users

Single-line installation on Ubuntu and Mac OSX:
curl -s https://raw.github.com/clementfarabet/torchinstall/master/install | bash

Torch7 Machine Learning Tutorial (neural net, convnet, sparse auto-encoder):
http://code.cogbits.com/wiki/doku.php

http://code.cogbits.com/wiki/doku.php

Y LeCun
MA Ranzato

Example: building a Neural Net in Torch7

Net for SVHN digit recognition

10 categories

Input is 32x32 RGB (3 channels)

1500 hidden units

Creating a 2-layer net

Make a cascade module

Reshape input to vector

Add Linear module

Add tanh module

Add Linear Module

Add log softmax layer

Create loss function module

Noutputs = 10;
nfeats = 3; Width = 32; height = 32
ninputs = nfeats*width*height
nhiddens = 1500

­­ Simple 2­layer neural network
model = nn.Sequential()
model:add(nn.Reshape(ninputs))
model:add(nn.Linear(ninputs,nhiddens))
model:add(nn.Tanh())
model:add(nn.Linear(nhiddens,noutputs))
model:add(nn.LogSoftMax())

criterion = nn.ClassNLLCriterion()

 See Torch7 example at http://bit.ly/16tyLAx

http://bit.ly/16tyLAx

Y LeCun
MA Ranzato

Example: Training a Neural Net in Torch7

one epoch over training set

Get next batch of samples

Create a “closure” feval(x) that takes the
parameter vector as argument and returns
the loss and its gradient on the batch.

Run model on batch

backprop

Normalize by size of batch

Return loss and gradient

call the stochastic gradient optimizer

for t = 1,trainData:size(),batchSize do
 inputs,outputs = getNextBatch()
 local feval = function(x)
 parameters:copy(x)
 gradParameters:zero()
 local f = 0
 for i = 1,#inputs do
 local output = model:forward(inputs[i])
 local err = criterion:forward(output,targets[i])
 f = f + err
 local df_do = criterion:backward(output,targets[i])
 model:backward(inputs[i], df_do)
 end
 gradParameters:div(#inputs)
 f = f/#inputs
 return f,gradParameters
 end – of feval
 optim.sgd(feval,parameters,optimState)
end

Y LeCun
MA Ranzato

% F-PROP

for i = 1 : nr_layers - 1

 [h{i} jac{i}] = nonlinearity(W{i} * h{i-1} + b{i});

end

h{nr_layers-1} = W{nr_layers-1} * h{nr_layers-2} + b{nr_layers-1};

prediction = softmax(h{l-1});

% CROSS ENTROPY LOSS

loss = - sum(sum(log(prediction) .* target)) / batch_size;

% B-PROP

dh{l-1} = prediction - target;

for i = nr_layers – 1 : -1 : 1

 Wgrad{i} = dh{i} * h{i-1}';

 bgrad{i} = sum(dh{i}, 2);

 dh{i-1} = (W{i}' * dh{i}) .* jac{i-1};

end

% UPDATE

for i = 1 : nr_layers - 1

 W{i} = W{i} – (lr / batch_size) * Wgrad{i};

 b{i} = b{i} – (lr / batch_size) * bgrad{i};

end

Toy Code (Matlab): Neural Net Trainer

Y LeCun
MA Ranzato

Deep Supervised Learning is Non-Convex

Example: what is the loss function for the simplest 2-layer neural net ever
Function: 1-1-1 neural net. Map 0.5 to 0.5 and -0.5 to -0.5
(identity function) with quadratic cost:

Y LeCun
MA Ranzato

Backprop in Practice

Use ReLU non-linearities (tanh and logistic are falling out of favor)

Use cross-entropy loss for classification

Use Stochastic Gradient Descent on minibatches

Shuffle the training samples

Normalize the input variables (zero mean, unit variance)

Schedule to decrease the learning rate

Use a bit of L1 or L2 regularization on the weights (or a combination)
But it's best to turn it on after a couple of epochs

Use “dropout” for regularization
Hinton et al 2012 http://arxiv.org/abs/1207.0580

Lots more in [LeCun et al. “Efficient Backprop” 1998]

Lots, lots more in “Neural Networks, Tricks of the Trade” (2012 edition)
edited by G. Montavon, G. B. Orr, and K-R Müller (Springer)

http://arxiv.org/abs/1207.0580

Y LeCun
MA Ranzato

Deep Learning
In Speech Recognition

Y LeCun
MA Ranzato

Case study #1: Acoustic Modeling

A typical speech recognition system:

Feature

Extraction

Neural
Network

Decoder

Transducer
&

Language
Model

H
i, how

 are you?

Y LeCun
MA Ranzato

Case study #1: Acoustic Modeling

A typical speech recognition system:

Feature

Extraction

Neural
Network

Decoder

Transducer
&

Language
Model

H
i, how

 are you?

 Here, we focus only on the prediction of phone states from
short time-windows of spectrogram.

 For simplicity, we will use a fully connected neural network
(in practice, a convolutional net does better).

Mohamed et al. “DBNs for phone recognition” NIPS Workshop 2009
Zeiler et al. “On rectified linear units for speech recognition” ICASSP 2013

Y LeCun
MA Ranzato

Data

 US English: Voice Search, Voice Typing, Read data

 Billions of training samples

 Input: log-energy filter bank outputs
40 frequency bands
26 input frames

 Output: 8000 phone states

Zeiler et al. “On rectified linear units for speech recognition” ICASSP 2013

Y LeCun
MA Ranzato

Architecture

 From 1 to 12 hidden layers

 For simplicity, the same number of hidden units at each layer:
1040 → 2560 → 2560 → … → 2560 → 8000

 Non-linearities: __/ output = max(0, input)

Zeiler et al. “On rectified linear units for speech recognition” ICASSP 2013

Y LeCun
MA Ranzato

Energy & Loss

 Since it is a standard classification problem, the energy is:

Zeiler et al. “On rectified linear units for speech recognition” ICASSP 2013

E  x , y =− y f  x  y 1-of-N vector

 The loss is the negative log-likelihood:

L=E x , y log ∑
y

exp −E  x , y 

Y LeCun
MA Ranzato

Optimization

 SGD with schedule on learning rate

Zeiler et al. “On rectified linear units for speech recognition” ICASSP 2013

t t−1− t
∂ L

∂t−1

 t=


max 1,
t
T



 Mini-batches of size 40

 Asynchronous SGD (using 100 copies of the network on a few
hundred machines). This speeds up training at Google but it is not
crucial.

Y LeCun
MA Ranzato

Training

 Given an input mini-batch

FPROP

max 0,W 1 x 

max 0,W 2 h1

max 0,W n hn−1

Negative
Log-Likelihood

label y

Y LeCun
MA Ranzato

Training

 Given an input mini-batch

FPROP

max 0,W 1 x 

max 0,W 2 h1

max 0,W n hn−1

Negative
Log-Likelihood

label y

h2= f x ;W 1

Y LeCun
MA Ranzato

Training

 Given an input mini-batch

FPROP

max 0,W 1 x 

max 0,W 2 h1

max 0,W n hn−1

Negative
Log-Likelihood

label y

h2= f h1 ;W 2

Y LeCun
MA Ranzato

Training

 Given an input mini-batch

FPROP

max 0,W 1 x 

max 0,W 2 h1

max 0,W n hn−1

Negative
Log-Likelihood

label y

hn= f hn−1

Y LeCun
MA Ranzato

Training

 Given an input mini-batch

FPROP

max 0,W 1 x 

max 0,W 2 h1

max 0,W n hn−1

Negative
Log-Likelihood

label y

Y LeCun
MA Ranzato

Training

 Given an input mini-batch

BPROP

max 0,W 1 x 

max 0,W 2 h1

max 0,W n hn−1

Negative
Log-Likelihood

label y

∂ L
∂hn−1

=
∂ L
∂hn

∂hn
∂hn−1

∂ L
∂W n

=
∂ L
∂hn

∂hn
∂ W n

Y LeCun
MA Ranzato

Training

 Given an input mini-batch

max 0,W 1 x 

max 0,W 2 h1

max 0,W n hn−1

Negative
Log-Likelihood

label y

BPROP

∂ L
∂h1

=
∂ L
∂h2

∂h2

∂h1

∂ L
∂W 2

=
∂ L
∂h2

∂h2

∂W 2

Y LeCun
MA Ranzato

Training

 Given an input mini-batch

max 0,W 1 x 

max 0,W 2 h1

max 0,W n hn−1

Negative
Log-Likelihood

label y

BPROP

∂ L
∂W 1

=
∂ L
∂h1

∂h1

∂W 1

Y LeCun
MA Ranzato

Training

 Given an input mini-batch

max 0,W 1 x 

max 0,W 2 h1

max 0,W n hn−1

Negative
Log-Likelihood

label y

Parameter
update

−
∂ L
∂

Y LeCun
MA Ranzato

Training

Y LeCun
MA Ranzato

Zeiler et al. “On rectified linear units for speech recognition” ICASSP 2013

Number of
hidden layers Word Error Rate %

1

2

4

8

12

16

12.8

11.4

10.9

11.1

GMM baseline: 15.4%

Word Error Rate

Y LeCun
MA Ranzato

Convolutional
Networks

Y LeCun
MA Ranzato

Convolutional Nets

Are deployed in many practical applications
Image recognition, speech recognition, Google's and Baidu's
photo taggers

Have won several competitions
ImageNet, Kaggle Facial Expression, Kaggle Multimodal
Learning, German Traffic Signs, Connectomics, Handwriting....

Are applicable to array data where nearby values are correlated
Images, sound, time-frequency representations, video,
volumetric images, RGB-Depth images,.....

One of the few models that can be trained purely supervised

input

83x83

Layer 1

64x75x7
5

Layer 2

64@14x14

Layer 3

256@6x6 Layer 4

256@1x1
Output

101

9x9

convolution

(64 kernels)

9x9

convolution

(4096 kernels)

10x10 pooling,

5x5 subsampling
6x6 pooling

4x4 subsamp

Y LeCun
MA Ranzato

Fully-connected neural net in high dimension

Example: 200x200 image
Fully-connected, 400,000 hidden units = 16 billion parameters
Locally-connected, 400,000 hidden units 10x10 fields = 40
million params
Local connections capture local dependencies

Y LeCun
MA Ranzato

Shared Weights & Convolutions:
Exploiting Stationarity

Features that are useful on one part of the image
and probably useful elsewhere.

All units share the same set of weights

Shift equivariant processing:
When the input shifts, the output also
shifts but stays otherwise unchanged.

Convolution
with a learned kernel (or filter)
Non-linearity: ReLU (rectified linear)

The filtered “image” Z is called a feature map

Aij=∑kl
W kl X i+ j. k+ l

Z ij=max(0, Aij)

Example: 200x200 image
400,000 hidden units with
10x10 fields = 1000
params
10 feature maps of size
200x200, 10 filters of size
10x10

Y LeCun
MA Ranzato

Multiple Convolutions with Different Kernels

Detects multiple motifs at each
location

The collection of units looking at
the same patch is akin to a
feature vector for that patch.

The result is a 3D array, where
each slice is a feature map.

Multiple
convolutions

Y LeCun
MA Ranzato

Early Hierarchical Feature Models for Vision

[Hubel & Wiesel 1962]:
simple cells detect local features

complex cells “pool” the outputs of simple
cells within a retinotopic neighborhood.

Cognitron & Neocognitron [Fukushima 1974-1982]

pooling
subsampling

“Simple cells”
“Complex
cells”

Multiple
convolutions

Y LeCun
MA Ranzato

The Convolutional Net Model
(Multistage Hubel-Wiesel system)

pooling
subsampling

“Simple cells”
“Complex cells”

Multiple
convolutions

Retinotopic Feature Maps

[LeCun et al. 89]
[LeCun et al. 98]

Training is supervised
With stochastic gradient
descent

Y LeCun
MA Ranzato

Feature Transform:
Normalization → Filter Bank → Non-Linearity → Pooling

Stacking multiple stages of
[Normalization Filter Bank Non-Linearity Pooling].→ → →

Normalization: variations on whitening
Subtractive: average removal, high pass filtering

Divisive: local contrast normalization, variance normalization

Filter Bank: dimension expansion, projection on overcomplete basis
Non-Linearity: sparsification, saturation, lateral inhibition....

Rectification, Component-wise shrinkage, tanh, winner-takes-all

Pooling: aggregation over space or feature type, subsampling
 X i ; L p :

p√ X i
p ; PROB :

1
b

log (∑i

e
bX i)

Classifier
feature

Pooling

Non-

Linear

Filter

Bank
Norm

feature

Pooling

Non-

Linear

Filter

Bank
Norm

Y LeCun
MA Ranzato

Feature Transform:
Normalization → Filter Bank → Non-Linearity → Pooling

Filter Bank → Non-Linearity = Non-linear embedding in high dimension
Feature Pooling = contraction, dimensionality reduction, smoothing
Learning the filter banks at every stage
Creating a hierarchy of features
Basic elements are inspired by models of the visual (and auditory) cortex

Simple Cell + Complex Cell model of [Hubel and Wiesel 1962]

Many “traditional” feature extraction methods are based on this

SIFT, GIST, HoG, SURF...

 [Fukushima 1974-1982], [LeCun 1988-now],
since the mid 2000: Hinton, Seung, Poggio, Ng,....

Classifier
feature

Pooling

Non-

Linear

Filter

Bank
Norm

feature

Pooling

Non-

Linear

Filter

Bank
Norm

Y LeCun
MA Ranzato

Convolutional Network (ConvNet)

Non-Linearity: half-wave rectification, shrinkage function, sigmoid
Pooling: average, L1, L2, max
Training: Supervised (1988-2006), Unsupervised+Supervised (2006-now)

input

83x83

Layer 1

64x75x75 Layer 2

64@14x14

Layer 3

256@6x6 Layer 4

256@1x1 Output

101

9x9

convolution

(64 kernels)

9x9

convolution

(4096 kernels)

10x10 pooling,

5x5 subsampling
6x6 pooling

4x4 subsamp

Y LeCun
MA Ranzato

Convolutional Network Architecture

Y LeCun
MA Ranzato

Convolutional Network (vintage 1990)

filters → tanh → average-tanh → filters → tanh → average-tanh → filters → tanh

Curved
manifold

Flatter
manifold

Y LeCun
MA Ranzato

“Mainstream” object recognition pipeline 2006-2012:
 somewhat similar to ConvNets

Fixed Features + unsupervised mid-level features + simple classifier
SIFT + Vector Quantization + Pyramid pooling + SVM

[Lazebnik et al. CVPR 2006]

SIFT + Local Sparse Coding Macrofeatures + Pyramid pooling + SVM

[Boureau et al. ICCV 2011]

SIFT + Fisher Vectors + Deformable Parts Pooling + SVM

[Perronin et al. 2012]

Oriented

 Edges

Winner

Takes All
Histogram

(sum)

Filter

Bank

feature

Pooling

Non-

Linearity

Filter

Bank

feature

Pooling

Non-

Linearity
Classifier

Fixed (SIFT/HoG/...)

K-means

Sparse Coding
Spatial Max

Or average
Any simple

classifier

Unsupervised Supervised

Y LeCun
MA Ranzato

Tasks for Which Deep Convolutional Nets are the Best

Handwriting recognition MNIST (many), Arabic HWX (IDSIA)
OCR in the Wild [2011]: StreetView House Numbers (NYU and others)
Traffic sign recognition [2011] GTSRB competition (IDSIA, NYU)
Pedestrian Detection [2013]: INRIA datasets and others (NYU)
Volumetric brain image segmentation [2009] connectomics (IDSIA, MIT)
Human Action Recognition [2011] Hollywood II dataset (Stanford)
Object Recognition [2012] ImageNet competition
Scene Parsing [2012] Stanford bgd, SiftFlow, Barcelona (NYU)
Scene parsing from depth images [2013] NYU RGB-D dataset (NYU)
Speech Recognition [2012] Acoustic modeling (IBM and Google)
Breast cancer cell mitosis detection [2011] MITOS (IDSIA)

The list of perceptual tasks for which ConvNets hold the record is growing.
Most of these tasks (but not all) use purely supervised convnets.

Y LeCun
MA Ranzato

Ideas from Neuroscience and Psychophysics

The whole architecture: simple cells and complex cells
Local receptive fields
Self-similar receptive fields over the visual field (convolutions)
Pooling (complex cells)
Non-Linearity: Rectified Linear Units (ReLU)
LGN-like band-pass filtering and contrast normalization in the input
Divisive contrast normalization (from Heeger, Simoncelli....)

Lateral inhibition

Sparse/Overcomplete representations (Olshausen-Field....)
Inference of sparse representations with lateral inhibition
Sub-sampling ratios in the visual cortex

between 2 and 3 between V1-V2-V4

Crowding and visual metamers give cues on the size of the pooling areas

Y LeCun
MA Ranzato

Simple ConvNet Applications with State-of-the-Art Performance

Traffic Sign Recognition (GTSRB)
German Traffic Sign Reco
Bench

99.2% accuracy

#1: IDSIA; #2 NYU

House Number Recognition (Google)
Street View House Numbers

94.3 % accuracy

Y LeCun
MA Ranzato

Prediction of Epilepsy Seizures from Intra-Cranial EEG

Piotr Mirowski, Deepak Mahdevan (NYU Neurology), Yann LeCun

Y LeCun
MA Ranzato

Epilepsy Prediction

4

64

10

32

…

…

…

…

…
…

…

…
…

… …

32

… …

…

…

…

8

32

384

feature extraction

over short time

windows

for individual

channels

(we look for

10 sorts

of features)
integration of

all channels and all features

across several time samples

E
E

G
 c

h
an

n
el

s

time, in samples

…

integration of

all channels

and all features

across several

time samples

inputs

outputs

Temporal Convolutional Net

Y LeCun
MA Ranzato

ConvNet in Connectomics
[Jain, Turaga, Seung 2007-present]

3D convnet to segment volumetric images

Y LeCun
MA Ranzato

Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

CONV 11x11/ReLU 96fm

LOCAL CONTRAST NORM

MAX POOL 2x2sub

FULL 4096/ReLU

FULL CONNECT

CONV 11x11/ReLU 256fm

LOCAL CONTRAST NORM

MAX POOLING 2x2sub

CONV 3x3/ReLU 384fm

CONV 3x3ReLU 384fm

CONV 3x3/ReLU 256fm

MAX POOLING

FULL 4096/ReLU

Won the 2012 ImageNet LSVRC. 60 Million parameters, 832M MAC ops
4M

16M

37M

442K

1.3M

884K

307K

35K

4Mflop

16M

37M

74M

224M

149M

223M

105M

Y LeCun
MA Ranzato

Object Recognition: ILSVRC 2012 results

ImageNet Large Scale Visual Recognition Challenge
1000 categories, 1.5 Million labeled training samples

Y LeCun
MA Ranzato

Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

Method: large convolutional net
650K neurons, 832M synapses, 60M parameters

Trained with backprop on GPU

Trained “with all the tricks Yann came up with in
the last 20 years, plus dropout” (Hinton, NIPS
2012)

Rectification, contrast normalization,...

Error rate: 15% (whenever correct class isn't in top 5)
Previous state of the art: 25% error

A REVOLUTION IN COMPUTER VISION

Acquired by Google in Jan 2013
Deployed in Google+ Photo Tagging in May 2013

Y LeCun
MA Ranzato

Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

Y LeCun
MA Ranzato

Object Recognition [Krizhevsky, Sutskever, Hinton 2012]

TEST
IMAGE RETRIEVED IMAGES

Y LeCun
MA Ranzato

ConvNet-Based Google+ Photo Tagger

Searched my personal collection for “bird”

Samy
Bengio
???

Y LeCun
MA Ranzato

Another ImageNet-trained ConvNet
[Zeiler & Fergus 2013]

Convolutional Net with 8 layers, input is 224x224 pixels
conv-pool-conv-pool-conv-conv-conv-full-full-full
Rectified-Linear Units (ReLU): y = max(0,x)
Divisive contrast normalization across features [Jarrett et al.
ICCV 2009]

Trained on ImageNet 2012 training set
1.3M images, 1000 classes
10 different crops/flips per image

Regularization: Dropout
[Hinton 2012]
zeroing random subsets of units

Stochastic gradient descent
for 70 epochs (7-10 days)
With learning rate annealing

Y LeCun
MA Ranzato

Object Recognition on-line demo [Zeiler & Fergus 2013]

http://horatio.cs.nyu.edu

Y LeCun
MA Ranzato

ConvNet trained on ImageNet [Zeiler & Fergus 2013]

Y LeCun
MA Ranzato

State of the art with
only 6 training examples

Features are generic: Caltech 256

Network first
trained on
ImageNet.

Last layer
chopped off

Last layer trained
on Caltech 256,

first layers N-1
kept fixed.

State of the art
accuracy with only
6 training
samples/class

3: [Bo, Ren, Fox. CVPR, 2013] 16: [Sohn, Jung, Lee, Hero ICCV 2011]

Y LeCun
MA Ranzato

Features are generic: PASCAL VOC 2012

Network first trained on ImageNet.

Last layer trained on Pascal VOC, keeping N-1 first layers fixed.

[15] K. Sande, J. Uijlings, C. Snoek, and A. Smeulders. Hybrid coding for selective search. In
PASCAL VOC Classification Challenge 2012,
[19] S. Yan, J. Dong, Q. Chen, Z. Song, Y. Pan, W. Xia, Z. Huang, Y. Hua, and S. Shen. Generalized
hierarchical matching for sub-category aware object classification. In PASCAL VOC Classification
Challenge 2012

Y LeCun
MA Ranzato

Semantic Labeling:
Labeling every pixel with the object it belongs to

[Farabet et al. ICML 2012, PAMI 2013]

Would help identify obstacles, targets, landing sites, dangerous areas
Would help line up depth map with edge maps

Y LeCun
MA Ranzato

Scene Parsing/Labeling: ConvNet Architecture

Each output sees a large input context:
46x46 window at full rez; 92x92 at ½ rez; 184x184 at ¼ rez

[7x7conv]->[2x2pool]->[7x7conv]->[2x2pool]->[7x7conv]->

Trained supervised on fully-labeled images

Laplacian

Pyramid

Level 1

Features

Level 2

Features

Upsampled

Level 2 Features

Categories

Y LeCun
MA Ranzato

Scene Parsing/Labeling: Performance

Stanford Background Dataset [Gould 1009]: 8 categories

[Farabet et al. IEEE T. PAMI 2013]

Y LeCun
MA Ranzato

Scene Parsing/Labeling: Performance

[Farabet et al. IEEE T. PAMI 2012]

SIFT Flow Dataset
[Liu 2009]:
33 categories

Barcelona dataset
[Tighe 2010]:
170 categories.

Y LeCun
MA Ranzato

Scene Parsing/Labeling: SIFT Flow dataset (33 categories)

Samples from the SIFT-Flow dataset (Liu)

[Farabet et al. ICML 2012, PAMI 2013]

Y LeCun
MA Ranzato

Scene Parsing/Labeling: SIFT Flow dataset (33 categories)

[Farabet et al. ICML 2012, PAMI 2013]

Y LeCun
MA Ranzato

Scene Parsing/Labeling

[Farabet et al. ICML 2012, PAMI 2013]

Y LeCun
MA Ranzato

Scene Parsing/Labeling

[Farabet et al. ICML 2012, PAMI 2013]

Y LeCun
MA Ranzato

Scene Parsing/Labeling

[Farabet et al. ICML 2012, PAMI 2013]

Y LeCun
MA Ranzato

Scene Parsing/Labeling

[Farabet et al. ICML 2012, PAMI 2013]

Y LeCun
MA Ranzato

Scene Parsing/Labeling

No post-processing
Frame-by-frame
ConvNet runs at 50ms/frame on Virtex-6 FPGA hardware

But communicating the features over ethernet limits system
performance

Y LeCun
MA Ranzato

Scene Parsing/Labeling: Temporal Consistency

Causal method for temporal consistency

[Couprie, Farabet, Najman, LeCun ICLR 2013, ICIP 2013]

Y LeCun
MA Ranzato

NYU RGB-Depth Indoor Scenes Dataset

407024 RGB-D images of apartments

1449 labeled frames, 894 object categories
[Silberman et al. 2012]

Y LeCun
MA Ranzato

Scene Parsing/Labeling on RGB+Depth Images

With temporal consistency

[Couprie, Farabet, Najman, LeCun ICLR 2013, ICIP 2013]

Y LeCun
MA Ranzato

Scene Parsing/Labeling on RGB+Depth Images

With temporal consistency

[Couprie, Farabet, Najman, LeCun ICLR 2013, ICIP 2013]

Y LeCun
MA Ranzato

Semantic Segmentation on RGB+D Images and Videos

[Couprie, Farabet, Najman, LeCun ICLR 2013, ICIP 2013]

Y LeCun
MA Ranzato

Energy-Based
Unsupervised Learning

Y LeCun
MA Ranzato

Energy-Based Unsupervised Learning

Learning an energy function (or contrast function) that takes
Low values on the data manifold
Higher values everywhere else

Y1

Y2

Y LeCun
MA Ranzato

Capturing Dependencies Between Variables
with an Energy Function

The energy surface is a “contrast function” that takes low values on the
data manifold, and higher values everywhere else

Special case: energy = negative log density
Example: the samples live in the manifold

Y1

Y2

Y 2=(Y 1)
2

Y LeCun
MA Ranzato

Transforming Energies into Probabilities (if necessary)

Y

P(Y|W)

Y

E(Y,W)

The energy can be interpreted as an unnormalized negative log density

Gibbs distribution: Probability proportional to exp(-energy)
Beta parameter is akin to an inverse temperature

Don't compute probabilities unless you absolutely have to
Because the denominator is often intractable

Y LeCun
MA Ranzato

Learning the Energy Function

parameterized energy function E(Y,W)
Make the energy low on the samples
Make the energy higher everywhere else
Making the energy low on the samples is easy
But how do we make it higher everywhere else?

Y LeCun
MA Ranzato

Seven Strategies to Shape the Energy Function

 1. build the machine so that the volume of low energy stuff is constant
PCA, K-means, GMM, square ICA

 2. push down of the energy of data points, push up everywhere else
Max likelihood (needs tractable partition function)

 3. push down of the energy of data points, push up on chosen locations
 contrastive divergence, Ratio Matching, Noise Contrastive
Estimation, Minimum Probability Flow

 4. minimize the gradient and maximize the curvature around data points
score matching

 5. train a dynamical system so that the dynamics goes to the manifold
denoising auto-encoder

 6. use a regularizer that limits the volume of space that has low energy
Sparse coding, sparse auto-encoder, PSD

 7. if E(Y) = ||Y - G(Y)||^2, make G(Y) as "constant" as possible.
Contracting auto-encoder, saturating auto-encoder

Y LeCun
MA Ranzato

#1: constant volume of low energy

 1. build the machine so that the volume of low energy stuff is constant
PCA, K-means, GMM, square ICA...

E (Y)=∥W T WY −Y∥
2

PCA K-Means,
Z constrained to 1-of-K code

E (Y)=minz∑i
∥Y −W i Z i∥

2

Y LeCun
MA Ranzato

#2: push down of the energy of data points,
push up everywhere else

Max likelihood (requires a tractable partition function)

Y

P(Y)

Y

E(Y)

Maximizing P(Y|W) on training
samples make this big

make this bigmake this small

Minimizing -log P(Y,W) on training
samples

make this small

Y LeCun
MA Ranzato

#2: push down of the energy of data points,
push up everywhere else

Gradient of the negative log-likelihood loss for one sample Y:

Pushes down on the
energy of the samples

Pulls up on the
energy of low-energy Y's

Y

Y

E(Y)Gradient descent:

Y LeCun
MA Ranzato

#3. push down of the energy of data points,
push up on chosen locations

contrastive divergence, Ratio Matching, Noise Contrastive Estimation,
Minimum Probability Flow

Contrastive divergence: basic idea
Pick a training sample, lower the energy at that point
From the sample, move down in the energy surface with noise
Stop after a while
Push up on the energy of the point where we stopped
This creates grooves in the energy surface around data manifolds
CD can be applied to any energy function (not just RBMs)

Persistent CD: use a bunch of “particles” and remember their positions
Make them roll down the energy surface with noise
Push up on the energy wherever they are
Faster than CD

RBM

E (Y , Z)=−Z T WY E (Y)=−log∑z
eZ T WY

Y LeCun
MA Ranzato

#6. use a regularizer that limits
the volume of space that has low energy

 Sparse coding, sparse auto-encoder, Predictive Saprse Decomposition

Y LeCun
MA Ranzato

Sparse Modeling,
Sparse Auto-Encoders,

Predictive Sparse Decomposition
LISTA

Y LeCun
MA Ranzato

How to Speed Up Inference in a Generative Model?

Factor Graph with an asymmetric factor

Inference Z → Y is easy
Run Z through deterministic decoder, and sample Y

Inference Y → Z is hard, particularly if Decoder function is many-to-one
MAP: minimize sum of two factors with respect to Z
Z* = argmin_z Distance[Decoder(Z), Y] + FactorB(Z)

Examples: K-Means (1of K), Sparse Coding (sparse), Factor Analysis

INPUT

Decoder

Y

Distance

Z
LATENT

VARIABLE

Factor B

Generative Model

Factor A

Y LeCun
MA Ranzato

Sparse Coding & Sparse Modeling

Sparse linear reconstruction

Energy = reconstruction_error + code_prediction_error + code_sparsity

E (Y i , Z)=∥Y i
−W d Z∥

2
+ λ∑ j

∣z j∣

[Olshausen & Field 1997]

INPUT Y Z

∥Y i
− Y∥

2

∣z j∣

W d Z

FEATURES

∑ j
.

Y → Ẑ=argmin Z E (Y , Z)Inference is slow

DETERMINISTIC

FUNCTION
FACTOR

VARIABLE

Y LeCun
MA Ranzato

Encoder Architecture

Examples: most ICA models, Product of Experts

INPUT Y Z
LATENT

VARIABLE

Factor B

Encoder Distance

Fast Feed-Forward Model

Factor A'

Y LeCun
MA Ranzato

Encoder-Decoder Architecture

Train a “simple” feed-forward function to predict the result of a complex
optimization on the data points of interest

INPUT

Decoder

Y

Distance

Z
LATENT

VARIABLE

Factor B

[Kavukcuoglu, Ranzato, LeCun, rejected by every conference, 2008-2009]

Generative Model

Factor A

Encoder Distance

Fast Feed-Forward Model

Factor A'

1. Find optimal Zi for all Yi; 2. Train Encoder to predict Zi from Yi

Y LeCun
MA RanzatoWhy Limit the Information Content of the Code?

INPUT SPACE FEATURE
SPACE

Training sample

Input vector which is NOT a training sample

Feature vector

Y LeCun
MA RanzatoWhy Limit the Information Content of the Code?

INPUT SPACE FEATURE
SPACE

Training sample

Input vector which is NOT a training sample

Feature vector

Training based on minimizing the reconstruction error
over the training set

Y LeCun
MA RanzatoWhy Limit the Information Content of the Code?

INPUT SPACE FEATURE
SPACE

Training sample

Input vector which is NOT a training sample

Feature vector
BAD: machine does not learn structure from training data!!
It just copies the data.

Y LeCun
MA RanzatoWhy Limit the Information Content of the Code?

Training sample

Input vector which is NOT a training sample

Feature vector

IDEA: reduce number of available codes.

INPUT SPACE FEATURE
SPACE

Y LeCun
MA RanzatoWhy Limit the Information Content of the Code?

Training sample

Input vector which is NOT a training sample

Feature vector

IDEA: reduce number of available codes.

INPUT SPACE FEATURE
SPACE

Y LeCun
MA RanzatoWhy Limit the Information Content of the Code?

Training sample

Input vector which is NOT a training sample

Feature vector

IDEA: reduce number of available codes.

INPUT SPACE FEATURE
SPACE

Y LeCun
MA Ranzato

Predictive Sparse Decomposition (PSD): sparse auto-encoder

Prediction the optimal code with a trained encoder

Energy = reconstruction_error + code_prediction_error + code_sparsity

E Y i , Z =∥Y i
−W d Z∥

2
∥Z−ge W e ,Y i

∥
2
∑ j

∣z j∣

ge (W e , Y i
)=shrinkage(W e Y i

)

[Kavukcuoglu, Ranzato, LeCun, 2008 → arXiv:1010.3467],

INPUT Y Z

∥Y i
− Y∥

2

∣z j∣

W d Z

FEATURES

∑ j
.

∥Z− Z∥
2ge W e ,Y i



Y LeCun
MA Ranzato

PSD: Basis Functions on MNIST

Basis functions (and encoder matrix) are digit parts

Y LeCun
MA Ranzato

Training on natural images
patches.

12X12
256 basis functions

Predictive Sparse Decomposition (PSD): Training

Y LeCun
MA Ranzato

Learned Features on natural patches:
V1-like receptive fields

Y LeCun
MA Ranzato

ISTA/FISTA: iterative algorithm that converges to optimal sparse code

INPUT Y ZW e sh()

S

+

[Gregor & LeCun, ICML 2010], [Bronstein et al. ICML 2012], [Rolfe & LeCun ICLR 2013]

Lateral Inhibition

Better Idea: Give the “right” structure to the encoder

Y LeCun
MA Ranzato

Think of the FISTA flow graph as a recurrent neural net where We and S are
trainable parameters

INPUT Y ZW e sh()

S

+

Time-Unfold the flow graph for K iterations

Learn the We and S matrices with “backprop-through-time”

Get the best approximate solution within K iterations

Y

Z

W e

sh()+ S sh()+ S

LISTA: Train We and S matrices
to give a good approximation quickly

Y LeCun
MA Ranzato

Learning ISTA (LISTA) vs ISTA/FISTA

Y LeCun
MA Ranzato

LISTA with partial mutual inhibition matrix

Y LeCun
MA Ranzato

Learning Coordinate Descent (LcoD): faster than LISTA

Y LeCun
MA Ranzato

Architecture

 Rectified linear units

Classification loss: cross-entropy

Reconstruction loss: squared error

Sparsity penalty: L1 norm of last hidden layer

Rows of Wd and columns of We constrained in unit sphere

W e

()
+ S +

W c

W d

Can be repeated

Encoding

Filters

Lateral

Inhibition
Decoding

Filters

X̄

Ȳ

X

L1 Z̄

X

Y

0

()
+

[Rolfe & LeCun ICLR 2013]

Discriminative Recurrent Sparse Auto-Encoder (DrSAE)

Y LeCun
MA Ranzato

Image = prototype + sparse sum of “parts” (to move around the manifold)

DrSAE Discovers manifold structure of handwritten digits

Y LeCun
MA Ranzato

Replace the dot products with dictionary element by convolutions.
Input Y is a full image
Each code component Zk is a feature map (an image)
Each dictionary element is a convolution kernel

Regular sparse coding

Convolutional S.C.

∑
k

. * Zk

Wk

Y =

“deconvolutional networks” [Zeiler, Taylor, Fergus CVPR 2010]

Convolutional Sparse Coding

Y LeCun
MA Ranzato

Convolutional Formulation
Extend sparse coding from PATCH to IMAGE

PATCH based learning CONVOLUTIONAL learning

Convolutional PSD: Encoder with a soft sh() Function

Y LeCun
MA Ranzato

Convolutional Sparse Auto-Encoder on Natural Images

Filters and Basis Functions obtained with 1, 2, 4, 8, 16, 32, and 64 filters.

Y LeCun
MA Ranzato

Phase 1: train first layer using PSD

FEATURES

Y Z

∥Y i
−Ỹ∥

2

∣z j∣

W d Z λ∑ .

∥Z−Z̃∥
2g e (W e ,Y i)

Using PSD to Train a Hierarchy of Features

Y LeCun
MA Ranzato

Phase 1: train first layer using PSD

Phase 2: use encoder + absolute value as feature extractor

FEATURES

Y ∣z j∣

g e (W e ,Y i)

Using PSD to Train a Hierarchy of Features

Y LeCun
MA Ranzato

Phase 1: train first layer using PSD

Phase 2: use encoder + absolute value as feature extractor

Phase 3: train the second layer using PSD

FEATURES

Y ∣z j∣

g e (W e ,Y i)

Y Z

∥Y i
−Ỹ∥

2

∣z j∣

W d Z λ∑ .

∥Z−Z̃∥
2g e (W e ,Y i)

Using PSD to Train a Hierarchy of Features

Y LeCun
MA Ranzato

Phase 1: train first layer using PSD

Phase 2: use encoder + absolute value as feature extractor

Phase 3: train the second layer using PSD

Phase 4: use encoder + absolute value as 2nd feature extractor

FEATURES

Y ∣z j∣

g e (W e ,Y i)

∣z j∣

g e (W e ,Y i)

Using PSD to Train a Hierarchy of Features

Y LeCun
MA Ranzato

Phase 1: train first layer using PSD

Phase 2: use encoder + absolute value as feature extractor

Phase 3: train the second layer using PSD

Phase 4: use encoder + absolute value as 2nd feature extractor

Phase 5: train a supervised classifier on top

Phase 6 (optional): train the entire system with supervised back-propagation

FEATURES

Y ∣z j∣

g e (W e ,Y i)

∣z j∣

g e (W e ,Y i)

classifier

Using PSD to Train a Hierarchy of Features

Y LeCun
MA Ranzato

[Osadchy,Miller LeCun JMLR 2007],[Kavukcuoglu et al. NIPS 2010] [Sermanet et al. CVPR 2013]

Pedestrian Detection, Face Detection

Y LeCun
MA Ranzato

Feature maps from all stages are pooled/subsampled and sent to the final
classification layers

Pooled low-level features: good for textures and local motifs
High-level features: good for “gestalt” and global shape

[Sermanet, Chintala, LeCun CVPR 2013]

7x7 filter+tanh

38 feat maps

Input

78x126xYUV

L2 Pooling

3x3

2040 9x9

filters+tanh

68 feat maps

Av Pooling

2x2 filter+tanh

ConvNet Architecture with Multi-Stage Features

Y LeCun
MA Ranzato

[Kavukcuoglu et al. NIPS 2010] [Sermanet et al. ArXiv 2012]

ConvNet

Color+Skip

Supervised

ConvNet

Color+Skip

Unsup+Sup
ConvNet

B&W

Unsup+Sup

ConvNet

B&W

Supervised

Pedestrian Detection: INRIA Dataset. Miss rate vs false
positives

Y LeCun
MA Ranzato

Results on “Near Scale” Images (>80 pixels tall, no occlusions)

Daimler
p=217
90

ETH
p=8
04

TudBrussels
p=508

INRIA
p=288

Y LeCun
MA Ranzato

Results on “Reasonable” Images (>50 pixels tall, few occlusions)

Daimler
p=217
90

ETH
p=8
04

TudBrussels
p=508

INRIA
p=288

Y LeCun
MA Ranzato

128 stage-1 filters on Y channel.

Unsupervised training with convolutional predictive sparse decomposition

Unsupervised pre-training with convolutional PSD

Y LeCun
MA Ranzato

Stage 2 filters.

Unsupervised training with convolutional predictive sparse decomposition

Unsupervised pre-training with convolutional PSD

Y LeCun
MA Ranzato

96x96

input:120x12
0

output: 3x3

 Traditional Detectors/Classifiers must be applied to every location on
a large input image, at multiple scales.
 Convolutional nets can replicated over large images very cheaply.
 The network is applied to multiple scales spaced by 1.5.

Applying a ConvNet on
Sliding Windows is Very Cheap!

Y LeCun
MA Ranzato

 Computational cost for replicated convolutional net:
96x96 -> 4.6 million multiply-accumulate operations
120x120 -> 8.3 million multiply-accumulate ops
240x240 -> 47.5 million multiply-accumulate ops
480x480 -> 232 million multiply-accumulate ops

 Computational cost for a non-convolutional detector
of the same size, applied every 12 pixels:

96x96 -> 4.6 million multiply-accumulate operations
120x120 -> 42.0 million multiply-accumulate
operations
240x240 -> 788.0 million multiply-accumulate ops
480x480 -> 5,083 million multiply-accumulate ops

96x96 window

12 pixel shift

84x84 overlap

Building a Detector/Recognizer:
Replicated Convolutional Nets

Y LeCun
MA Ranzato

Y LeCun
MA Ranzato

Y LeCun
MA Ranzato

Musical Genre Recognition with PSD Feature

Input: “Constant Q Transform” over 46.4ms windows (1024 samples)
96 filters, with frequencies spaced every quarter tone (4
octaves)

Architecture:
Input: sequence of contrast-normalized CQT vectors
1: PSD features, 512 trained filters; shrinkage function →
rectification
3: pooling over 5 seconds
4: linear SVM classifier. Pooling of SVM categories over 30
seconds

GTZAN Dataset
1000 clips, 30 second each
10 genres: blues, classical, country, disco, hiphop, jazz,
metal, pop, reggae and rock.

Results
84% correct classification

Y LeCun
MA Ranzato

Single-Stage Convolutional Network
Training of filters: PSD (unsupervised)

Architecture: contrast norm → filters → shrink → max pooling

su
b

tr activ e+
d

i visive
con

tr ast n
orm

a lizat ion

F
ilt ers

 S
h

ri n
k

a ge

M
ax P

ooli n
g (5 s)

L
in

ea r C
l assifi er

Y LeCun
MA Ranzato

Constant Q Transform over 46.4 ms → Contrast Normalization

subtractive+divisive contrast normalization

Y LeCun
MA Ranzato

Convolutional PSD Features on Time-Frequency Signals

Octave-wide features full 4-octave features

Minor 3rd

Perfect 4th

Perfect 5th

Quartal chord

Major triad

transient

Y LeCun
MA Ranzato

PSD Features on Constant-Q Transform

Octave-wide features

Encoder basis
functions

Decoder basis
functions

Y LeCun
MA Ranzato

Time-Frequency Features

Octave-wide features on
8 successive acoustic
vectors

Almost no
temporal
structure in the
filters!

Y LeCun
MA Ranzato

Accuracy on GTZAN dataset (small, old, etc...)

Accuracy: 83.4%. State of the Art: 84.3%

Very fast

Y LeCun
MA Ranzato

Unsupervised Learning:
Invariant Features

Y LeCun
MA Ranzato

Learning Invariant Features with L2 Group Sparsity

Unsupervised PSD ignores the spatial pooling step.
Could we devise a similar method that learns the pooling layer as well?
Idea [Hyvarinen & Hoyer 2001]: group sparsity on pools of features

Minimum number of pools must be non-zero

Number of features that are on within a pool doesn't matter

Pools tend to regroup similar features

INPUT Y Z

∥Y i
−Ỹ∥

2 W d Z

FEATURES

λ∑ .

∥Z−Z̃∥
2g e (W e ,Y i)

√ (∑ Z k
2)

L2 norm within
each pool

E (Y,Z)=∥Y −W d Z∥2+∥Z−g e (W e ,Y)∥
2+∑

j √ ∑
k∈P j

Z k
2

Y LeCun
MA Ranzato

Learning Invariant Features with L2 Group Sparsity

Idea: features are pooled in group.
Sparsity: sum over groups of L2 norm of activity in group.

[Hyvärinen Hoyer 2001]: “subspace ICA”
decoder only, square

[Welling, Hinton, Osindero NIPS 2002]: pooled product of experts
encoder only, overcomplete, log student-T penalty on L2 pooling

[Kavukcuoglu, Ranzato, Fergus LeCun, CVPR 2010]: Invariant PSD
encoder-decoder (like PSD), overcomplete, L2 pooling

[Le et al. NIPS 2011]: Reconstruction ICA
Same as [Kavukcuoglu 2010] with linear encoder and tied decoder

[Gregor & LeCun arXiv:1006:0448, 2010] [Le et al. ICML 2012]
Locally-connect non shared (tiled) encoder-decoder

INPUT

Y
Encoder only (PoE, ICA),

Decoder Only or

Encoder-Decoder (iPSD, RICA)
Z INVARIANT

FEATURES

λ∑ .

√ (∑ Z k
2)

L2 norm within
each pool

SIMPLE
FEATURES

Y LeCun
MA Ranzato

Groups are local in a 2D Topographic Map

The filters arrange
themselves spontaneously
so that similar filters enter
the same pool.
The pooling units can be
seen as complex cells
Outputs of pooling units are
invariant to local
transformations of the input

For some it's
translations, for others
rotations, or other
transformations.

Y LeCun
MA Ranzato

Image-level training, local filters but no weight sharing

Training on 115x115 images. Kernels are 15x15 (not shared across
space!)

[Gregor & LeCun 2010]

Local receptive fields

No shared weights

4x overcomplete

L2 pooling

Group sparsity over pools

Input

Reconstructed Input

(Inferred) Code

Predicted Code

Decoder

Encoder

Y LeCun
MA Ranzato

Image-level training, local filters but no weight sharing

Training on 115x115 images. Kernels are 15x15 (not shared across
space!)

Y LeCun
MA Ranzato

119x119 Image Input
100x100 Code

20x20 Receptive field size
sigma=5 Michael C. Crair, et. al. The Journal of Neurophysiology

Vol. 77 No. 6 June 1997, pp. 3381-3385 (Cat)

K Obermayer and GG Blasdel, Journal of
Neuroscience, Vol 13, 4114-4129 (Monkey)Topographic Maps

Y LeCun
MA Ranzato

Image-level training, local filters but no weight sharing

Color indicates orientation (by fitting Gabors)

Y LeCun
MA Ranzato

Invariant Features Lateral Inhibition

Replace the L1 sparsity term by a lateral inhibition matrix
Easy way to impose some structure on the sparsity

[Gregor, Szlam, LeCun NIPS 2011]

Y LeCun
MA Ranzato

Invariant Features via Lateral Inhibition: Structured Sparsity

 Each edge in the tree indicates a zero in the S matrix (no mutual inhibition)

Sij is larger if two neurons are far away in the tree

Y LeCun
MA Ranzato

Invariant Features via Lateral Inhibition: Topographic Maps

Non-zero values in S form a ring in a 2D topology
Input patches are high-pass filtered

Y LeCun
MA Ranzato

Invariant Features through Temporal Constancy

Object is cross-product of object type and instantiation parameters
Mapping units [Hinton 1981], capsules [Hinton 2011]

small medium large

Object type Object size[Karol Gregor et al.]

Y LeCun
MA Ranzato

What-Where Auto-Encoder Architecture

St St-1 St-2

C
1
t C

1
t-1 C

1
t-2 C

2
t

Decoder

W1 W1 W1 W2

Predicted
input

C
1
t C

1
t-1 C

1
t-2 C

2
t

St St-1 St-2

Inferred
code

Predicted
code

InputEncoder

f ∘ W̃ 1 f ∘ W̃ 1 f ∘ W̃ 1

W̃ 2

f

W̃ 2

W̃ 2

Y LeCun
MA Ranzato

Low-Level Filters Connected to Each Complex Cell

C1
(where)

C2
(what)

Y LeCun
MA Ranzato

Input

Generating Images

Generating images

Y LeCun
MA Ranzato

Future
Challenges

Y LeCun
MA Ranzato

The Graph of Deep Learning Sparse Modeling Neuroscience↔ ↔

Architecture of V1

[Hubel, Wiesel 62]

Basis/Matching Pursuit

[Mallat 93; Donoho 94]

Sparse Modeling

[Olshausen-Field 97]

Neocognitron

[Fukushima 82]
Backprop

[many 85]

Convolutional Net

[LeCun 89]

Sparse Auto-Encoder

[LeCun 06; Ng 07]

Restricted

Boltzmann

Machine

[Hinton 05]

Normalization

[Simoncelli 94]

Speech Recognition

[Goog, IBM, MSFT 12]

Object Recog

[Hinton 12]
Scene Labeling

[LeCun 12]

Connectomics

[Seung 10]

Object Reco

[LeCun 10]

Compr. Sensing

[Candès-Tao 04]

L2-L1 optim

[Nesterov,

Nemirovski

Daubechies,

Osher....]

Scattering

Transform

[Mallat 10]

Stochastic Optimization

[Nesterov, Bottou

Nemirovski,....]

Sparse Modeling

[Bach, Sapiro. Elad]
MCMC, HMC

Cont. Div.

[Neal, Hinton]

Visual Metamers

[Simoncelli 12]

Y LeCun
MA Ranzato

Integrating Feed-Forward and Feedback

Marrying feed-forward convolutional nets with
generative “deconvolutional nets”

Deconvolutional networks

[Zeiler-Graham-Fergus ICCV 2011]

Feed-forward/Feedback networks allow
reconstruction, multimodal prediction, restoration,
etc...

Deep Boltzmann machines can do this, but
there are scalability issues with training

Trainable Feature
Transform

Trainable Feature
Transform

Trainable Feature
Transform

Trainable Feature
Transform

Y LeCun
MA Ranzato

Integrating Deep Learning and Structured Prediction

Deep Learning systems can be assembled into
factor graphs

Energy function is a sum of factors

Factors can embed whole deep learning
systems

X: observed variables (inputs)

Z: never observed (latent variables)

Y: observed on training set (output
variables)

Inference is energy minimization (MAP) or free
energy minimization (marginalization) over Z
and Y given an X

Energy Model
(factor graph)

E(X,Y,Z)

X
(observed)

Z
(unobserved)

Y
(observed on
training set)

Y LeCun
MA Ranzato

Energy Model
(factor graph)

Integrating Deep Learning and Structured Prediction

Deep Learning systems can be assembled into
factor graphs

Energy function is a sum of factors

Factors can embed whole deep learning
systems

X: observed variables (inputs)

Z: never observed (latent variables)

Y: observed on training set (output
variables)

Inference is energy minimization (MAP) or free
energy minimization (marginalization) over Z
and Y given an X

F(X,Y) = MIN_z E(X,Y,Z)

F(X,Y) = -log SUM_z exp[-E(X,Y,Z)]

Energy Model
(factor graph)

E(X,Y,Z)

X
(observed)

Z
(unobserved)

Y
(observed on
training set)

F(X,Y) = Marg_z E(X,Y,Z)

Y LeCun
MA Ranzato

Integrating Deep Learning and Structured Prediction

Integrting deep learning and structured
prediction is a very old idea

In fact, it predates structured
prediction

Globally-trained convolutional-net +
graphical models

trained discriminatively at the word
level

Loss identical to CRF and structured
perceptron

Compositional movable parts model

A system like this was reading 10 to 20%
of all the checks in the US around 1998

Y LeCun
MA Ranzato

Energy Model
(factor graph)

Integrating Deep Learning and Structured Prediction

Deep Learning systems can be assembled into
factor graphs

Energy function is a sum of factors

Factors can embed whole deep learning
systems

X: observed variables (inputs)

Z: never observed (latent variables)

Y: observed on training set (output
variables)

Inference is energy minimization (MAP) or free
energy minimization (marginalization) over Z
and Y given an X

F(X,Y) = MIN_z E(X,Y,Z)

F(X,Y) = -log SUM_z exp[-E(X,Y,Z)]

Energy Model
(factor graph)

E(X,Y,Z)

X
(observed)

Z
(unobserved)

Y
(observed on
training set)

F(X,Y) = Marg_z E(X,Y,Z)

Y LeCun
MA Ranzato

Future Challenges

Integrated feed-forward and feedback
Deep Boltzmann machine do this, but there are issues of scalability.

Integrating supervised and unsupervised learning in a single algorithm
Again, deep Boltzmann machines do this, but....

Integrating deep learning and structured prediction (“reasoning”)
This has been around since the 1990's but needs to be revived

Learning representations for complex reasoning
“recursive” networks that operate on vector space representations
of knowledge [Pollack 90's] [Bottou 2010] [Socher, Manning, Ng
2011]

Representation learning in natural language processing
[Y. Bengio 01],[Collobert Weston 10], [Mnih Hinton 11] [Socher 12]

Better theoretical understanding of deep learning and convolutional nets
e.g. Stephane Mallat's “scattering transform”, work on the sparse
representations from the applied math community....

Y LeCun
MA RanzatoSOFTWARE

Torch7: learning library that supports neural net training

– http://www.torch.ch
– http://code.cogbits.com/wiki/doku.php (tutorial with demos by C. Farabet)
- http://eblearn.sf.net (C++ Library with convnet support by P. Sermanet)

Python-based learning library (U. Montreal)

- http://deeplearning.net/software/theano/ (does automatic differentiation)

RNN

– www.fit.vutbr.cz/~imikolov/rnnlm (language modeling)
– http://sourceforge.net/apps/mediawiki/rnnl/index.php (LSTM)

Misc

– www.deeplearning.net//software_links

CUDAMat & GNumpy

– code.google.com/p/cudamat
– www.cs.toronto.edu/~tijmen/gnumpy.html

Y LeCun
MA Ranzato

REFERENCES
Convolutional Nets

– LeCun, Bottou, Bengio and Haffner: Gradient-Based Learning Applied to Document
Recognition, Proceedings of the IEEE, 86(11):2278-2324, November 1998

- Krizhevsky, Sutskever, Hinton “ImageNet Classification with deep convolutional neural
networks” NIPS 2012

– Jarrett, Kavukcuoglu, Ranzato, LeCun: What is the Best Multi-Stage Architecture for
Object Recognition?, Proc. International Conference on Computer Vision (ICCV'09),
IEEE, 2009

- Kavukcuoglu, Sermanet, Boureau, Gregor, Mathieu, LeCun: Learning Convolutional
Feature Hierachies for Visual Recognition, Advances in Neural Information Processing
Systems (NIPS 2010), 23, 2010

– see yann.lecun.com/exdb/publis for references on many different kinds of convnets.

– see http://www.cmap.polytechnique.fr/scattering/ for scattering networks (similar to
convnets but with less learning and stronger mathematical foundations)

Y LeCun
MA RanzatoREFERENCES

Applications of Convolutional Nets

– Farabet, Couprie, Najman, LeCun, “Scene Parsing with Multiscale Feature Learning,
Purity Trees, and Optimal Covers”, ICML 2012

– Pierre Sermanet, Koray Kavukcuoglu, Soumith Chintala and Yann LeCun: Pedestrian
Detection with Unsupervised Multi-Stage Feature Learning, CVPR 2013

- D. Ciresan, A. Giusti, L. Gambardella, J. Schmidhuber. Deep Neural Networks
Segment Neuronal Membranes in Electron Microscopy Images. NIPS 2012

- Raia Hadsell, Pierre Sermanet, Marco Scoffier, Ayse Erkan, Koray Kavackuoglu, Urs
Muller and Yann LeCun: Learning Long-Range Vision for Autonomous Off-Road Driving,
Journal of Field Robotics, 26(2):120-144, February 2009

– Burger, Schuler, Harmeling: Image Denoisng: Can Plain Neural Networks Compete
with BM3D?, Computer Vision and Pattern Recognition, CVPR 2012,

Y LeCun
MA RanzatoREFERENCES

Applications of RNNs

– Mikolov “Statistical language models based on neural networks” PhD thesis 2012
– Boden “A guide to RNNs and backpropagation” Tech Report 2002
– Hochreiter, Schmidhuber “Long short term memory” Neural Computation 1997
– Graves “Offline arabic handwrting recognition with multidimensional neural networks”
Springer 2012
– Graves “Speech recognition with deep recurrent neural networks” ICASSP 2013

http://www.torch.ch/
http://code.cogbits.com/wiki/doku.php
http://eblearn.sf.net/
http://deeplearning.net/software/theano/
http://www.fit.vutbr.cz/~imikolov/rnnlm
http://sourceforge.net/apps/mediawiki/rnnl/index.php

Y LeCun
MA RanzatoREFERENCES

Deep Learning & Energy-Based Models

– Y. Bengio, Learning Deep Architectures for AI, Foundations and Trends in Machine
Learning, 2(1), pp.1-127, 2009.

– LeCun, Chopra, Hadsell, Ranzato, Huang: A Tutorial on Energy-Based Learning, in
Bakir, G. and Hofman, T. and Schölkopf, B. and Smola, A. and Taskar, B. (Eds),
Predicting Structured Data, MIT Press, 2006

– M. Ranzato Ph.D. Thesis “Unsupervised Learning of Feature Hierarchies” NYU 2009

Practical guide

– Y. LeCun et al. Efficient BackProp, Neural Networks: Tricks of the Trade, 1998

– L. Bottou, Stochastic gradient descent tricks, Neural Networks, Tricks of the Trade
Reloaded, LNCS 2012.

– Y. Bengio, Practical recommendations for gradient-based training of deep
architectures, ArXiv 2012

http://www.cmap.polytechnique.fr/scattering/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 131
	Slide 135
	Slide 136
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207

