
© Sony Corporation of America 1

Tools and Techniques for
Reducing Bootup Time

By
Tim Bird

Sony Corporation

© Sony Corporation of America 2

Agenda
• The problem
• Overview of boot phases
• Instrumentation
• Techniques for kernel
• Techniques for user space
• Final results / Conclusions
• Resources

The Problem
• Consumer electronics products require

very fast boot times.
• Desired cold boot time for a digital still

camera is less than 1 second.
• Did I mention they have crummy, slow processors…?

• Consumer must catch the baby smiling!!

Overview of Boot Phases
• Firmware (bootloader)

F

• Hardware probing
• Hardware initialization
• Kernel load and decompression

• Kernel execution
• Core init (start_kernel)

C

• Driver init (initcalls)

D

• User-space init
• /sbin/init
• RC scripts
• Graphics start (First Impression)

G

• Application start
• Application load and link
• Application initialization

• First use

My hardware
• Old x86 desktop

• X86 - Intel Celeron processor, running at 2 GHz.
• 128 meg. of RAM and a 40G IDE hard drive.
• Linux 2.6.27-rc7 from kernel.org
• Sony distribution (CELinux) for x86.

• Some notes:
• Most initcall and uptime timings are with NFS-root fs.

• (IDE is present (probed and detected) but not mounted).
• Started at 4.91 seconds of uptime, at first shell

prompt.

My Hardware (2)
• Old ARM Eval board

• OSK - OMAP 5912 at 192 MHZ
• 32 meg. RAM and 32 meg. of NOR Flash
• MontaVista distribution (3.1 preview kit) for

ARM
• Linux 2.6.23.17 (with patches)

L

• Notes
• Some tests done with Linux 2.6.27

• Started at uptime: 5.42
• This is after RC scripts, but before first login

Instrumentation

Why Instrumentation
• Very important principle:

• Measure and find the worst problems first, or you just end
up wasting a lot of time

Premature optimization is the root of all evil.
- Donald Knuth

Instrumentation
• System-wide:

• Uptime (!!)
• grabserial

• Kernel Measurement
• Printk-times
• initcall_debug
• KFT

• User space measurement
• Bootchart
• Strace
• Process trace - Tim’s quick hack
• Linux Trace Toolkit

Uptime
• Easiest time measurement ever:

• Add the following to /sbin/init or rc.local, or wherever you "finish"
booting:

• Note: Use of "echo" is wasteful, I'll get back to this later...
• Values produced are:

• Wall time since timekeeping started
• Time spent in the idle process (process 0)

T

• My x86 starting value:
• For kernel, nfs fs mount, and short RC script
• uptime: 4.91 3.04

• My ARM starting value
• For kernel, flash fs mount, short RC script, some services:
• uptime: 5.42 1.56

echo -n "uptime:" ; cat /proc/uptime

X86 user-space init overview
• On X86, /sbin/init is a shell script that:

• Mounts /proc and /sys
• Remounts root filesystem rw
• Configures the loopback interface (ifconfig lo)
• Runs /etc/rc.local
• Starts syslogd, klogd, telnetd
• Runs ‘free’
• Runs a shell

ARM user-space init overview
• OSK has a “real” /sbin/init that processes /

etc/inittab
• Init runs /etc/init.d/rcS with:

• Mounts /proc
• Configured loopback interface (ifconfig lo)
• Mounts /tmp
• Touches a bunch of files in /tmp
• Starts syslogd, klogd, inetd, thttpd

• Also does a ‘sleep 1’ !!)

A

• Creates /dev/dsp nodes
• Then inittab spawns a console getty

grabserial
• Utility for watching serial console output
• Is run on host machine, not target

• Captures serial output and echos it
• Can apply a timestamp to each line seen

• Easy to use:
• Ex: grabserial –t –d /dev/ttyUSB0 –m “Starting

kernel”

grabserial Example Output
[22.774152] ## Booting image at 10000000 ...
[22.776073] Image Name: Linux-2.6.27-00002-g1646475-dirt
[22.780302] Image Type: ARM Linux Kernel Image (uncompressed)
[22.784842] Data Size: 1321228 Bytes = 1.3 MB
[22.787127] Load Address: 10008000
[22.791150] Entry Point: 10008000
[22.792627] Verifying Checksum ... OK
[24.068948] OK
[24.069267]
[24.069367] Starting kernel ...
[0.001231]
[0.001334] Uncompressing Linux.......................................
.......... done, booting the kernel.
[5.434655] serial console detected. Disabling virtual terminals.
[5.437749] init started: BusyBox v0.60.2 (2004.04.16-00:49+0000) multi
-call binary
[5.607621] 3.17 0.28
[5.787597] mount: Mounting /tmpfs on /tmp failed: Invalid argument
[6.947394] mknod: /dev/dsp: File exists
[7.072378] 4.64 0.28
[8.268232]
[8.268373] MontaVista(R) Linux(R) Professional Edition 3.1, Preview Kit
[8.291287]
[8.291381] (none) login: root

grabserial Notes
• Pros:

• Doesn’t put any instrumentation on target
• Doesn’t slow down target – only consumes host cpu

cycles
• Cons:

• Kernel queues up printk messages during very early
init

• To measure time of kernel bootup events, you have to
have kernel messages turned on

• (I will talk about this later)
• Bit of a pain to install.

• Grabserial is a python program. It requires the python
serial.py module, which is not shipped with python by default

Kernel Measurement
• Printk-times
• Initcall_debug
• Kernel Function Trace

Printk times
• Method to put timestamp on every printk
• Is better with a good resolution clock
• How to activate (use one of the following):

• Compile kernel with:
CONFIG_PRINTK_TIMES=y

• Use “time=1” on kernel command line
• Or, to turn on dynamically:

• “echo Y >/sys/module/printk/parameters/time”

Printk Times Example
• Try it right now

• If you have a laptop (or are reading this
presentation on a Linux desktop) try this:

• su root
• echo Y >/sys/module/printk/parameters/time
• <plug in a USB stick>
• dmesg

• To see relative times (deltas):
• Use ‘show_delta’ script
• Located in ‘scripts’ directory in Linux source tree
• dmesg | linux_src/scripts/show_delta /proc/self/fd/0

• (OK – I should change show_delta to be a filter)

(

Printk Times Sample Output
On ARM:

[0.000000] Linux version 2.6.23.17-alp_nl-g679161dd (tbird@crest) (gcc version 4.1.1) …
[0.000000] CPU: ARM926EJ-S [41069263] revision 3 (ARMv5TEJ), cr=00053177
[0.000000] Machine: TI-OSK
[0.000000] Memory policy: ECC disabled, Data cache writeback
[0.000000] On node 0 totalpages: 8192
[0.000000] DMA zone: 64 pages used for memmap
…
[0.000000] OMAP GPIO hardware version 1.0
[0.000000] MUX: initialized M7_1610_GPIO62
[0.000000] MUX: Setting register M7_1610_GPIO62
[0.000000] FUNC_MUX_CTRL_10 (0xfffe1098) = 0x00000000 -> 0x00000000
[0.000000] PULL_DWN_CTRL_4 (0xfffe10ac) = 0x00000000 -> 0x01000000
[0.000000] PID hash table entries: 128 (order: 7, 512 bytes)
[715.825741] Console: colour dummy device 80x30
[715.825999] Dentry cache hash table entries: 4096 (order: 2, 16384 bytes)
[715.826490] Inode-cache hash table entries: 2048 (order: 1, 8192 bytes)
[715.832736] Memory: 32MB = 32MB total
[715.832832] Memory: 28052KB available (3852K code, 396K data, 124K init)
[715.833493] SLUB: Genslabs=22, HWalign=32, Order=0-1, MinObjects=4, CPUs=1, Nodes=1
[715.833595] Calibrating delay loop (skipped)... 95.64 BogoMIPS preset
[715.834196] Mount-cache hash table entries: 512
[715.836419] CPU: Testing write buffer coherency: ok
[715.847232] NET: Registered protocol family 16
[715.860679] OMAP DMA hardware version 1
[715.860773] DMA capabilities: 000c0000:00000000:01ff:003f:007f
[715.868239] USB: hmc 16, usb2 alt 0 wires
[715.904668] SCSI subsystem initialized

Printk Times Notes:
• On ARM, notice that timestamps are zero until clock is

initialized
• On X86, timestamps are available immediately since it

uses TSC, which is a built-in counter on the CPU
• On many embedded platforms, you need to fix the clock

handling to get good timestamp values
• Default printk_clock() returns jiffies

• Only has 4 ms or 10 ms resolution)

O

• Can call sched clock(), but you need to make sure not to call it
too early

• Newest kernel (2.6.27) uses cpu_clock()

N

• For older kernels, I have a patch for some ARM platforms:
• safe_to_call_sched_clock.patch

initcall_debug
• A good portion of bootup time is spent in

‘initcalls’
• There’s a flag already built into the kernel to

show initcall information during startup
• On boot command line, use: initcall_debug=1
• After booting, do:

dmesg -s 256000 | grep "initcall" | sed "s/\
(.*\)after\(.*\)/\2 \1/g" | sort -n

• NOTE: It’s a good idea to increase the printk log
buffer size

• Do this by increasing LOGBUF_SHIFT from
14 (16K) to 18 (256K)

Initcall_debug Example Output

• Problem routines:
• psmouse_init - unused driver!!
• pnp_system_init - ??
• pcibios_assign_resources - ??
• ehci_hcd_init, uhci_hcd_init - part of USB initialization
• serial8250_init - serial driver initialization
• piix_init – IDE disk driver init
• ip_auto_config - dhcp process

24 msecs [2.237177] initcall acpi_button_init+0x0/0x51 returned 0
28 msecs [0.763503] initcall init_acpi_pm_clocksource+0x0/0x16c returned 0
32 msecs [0.348241] initcall acpi_pci_link_init+0x0/0x43 returned 0
33 msecs [0.919004] initcall inet_init+0x0/0x1c7 returned 0
33 msecs [5.282722] initcall psmouse_init+0x0/0x5e returned 0
54 msecs [2.979825] initcall e100_init_module+0x0/0x4d returned 0
71 msecs [0.650325] initcall pnp_system_init+0x0/0xf returned 0
91 msecs [0.872402] initcall pcibios_assign_resources+0x0/0x85 returned 0
187 msecs [4.369187] initcall ehci_hcd_init+0x0/0x70 returned 0
245 msecs [2.777161] initcall serial8250_init+0x0/0x100 returned 0
673 msecs [5.098052] initcall uhci_hcd_init+0x0/0xc1 returned 0
830 msecs [4.067279] initcall piix_init+0x0/0x27 returned 0
1490 msecs [8.290606] initcall ip_auto_config+0x0/0xd70 returned 0

Kernel Function Trace (KFT)
• Instruments every kernel function entry and

exit
• Can filter by time duration of functions
• VERY handy for finding boot latencies in early

startup
• Unfortunately, this is a patch that was never

mainlined
• See http://elinux.org/Kernel_Function_Trace

• I would like to integrate KFT functionality into
ftrace, but haven’t had time yet

• It’s been on my “to do” list for years

KFT Trace Results Example
Entry Delta PID Function Called At 1 0 0 start_kernel L6+0x0 14 8687 0 setup_arch start_kernel+0x35 39 891 0 setup_memory setup_arch+0x2a8 53 872 0 register_bootmem_low_pages setup_memory+0x8f 54 871 0 free_bootmem register_bootmem_low_pages+0x95 54 871 0 free_bootmem_core free_bootmem+0x34 930 7432 0 paging_init setup_arch+0x2af 935 7427 0 zone_sizes_init paging_init+0x4e

$ ~/work/kft/kft/kd -n 30 kftboot-9.lstFunction Count Time Average Local------------------------- ----- -------- -------- --------do_basic_setup 1 1159270 1159270 14do_initcalls 1 1159256 1159256 627__delay 156 619322 3970 0delay_tsc 156 619322 3970 619322__const_udelay 146 608427 4167 0probe_hwif 8 553972 69246 126do_probe 31 553025 17839 68ide_delay_50ms 103 552588 5364 0
isapnp_init 1 383138 383138 18

User-Space Measurement
• Bootchart
• Strace
• Process trace - Tim’s quick hack
• Linux Trace Toolkit

Bootchart
• Tool to display a nice diagram of

processes in early boot
• Starts a daemon in early init
• Daemon collects information via /proc, and

puts it into files in /var/log
• Has a tool to post-process the collected

information, and prepare a nice diagram
• PNG, SVG, or EPS

• Find it at: http://www.bootchart.org/

Bootchart
Example Output

strace
• Strace can be used to collect timing

information for a process
• strace –tt 2>/tmp/strace.log thttpd …

• Can use to see where time is being spent in
application startup

• Can also collect system call counts (-c)
• Can see time spent in each system call (-T)
• Great for finding extraneous operations

• Eg. Wasteful operations, like scanning invalid
paths for files, opening a file multiple times, etc.

strace Example Output
00:00:07.186340 mprotect(0x4001f000, 20480, PROT_READ|PROT_WRITE) = 000:00:07.200866 mprotect(0x4001f000, 20480, PROT_READ|PROT_EXEC) = 000:00:07.221679 socketcall(0x1, 0xbe842c70) = 3
00:00:07.235626 fcntl64(3, F_SETFD, FD_CLOEXEC) = 0
00:00:07.248718 socketcall(0x3, 0xbe842c70) = -1 EPROTOTYPE (Protocol wrong type for socket)00:00:07.264434 close(3) = 000:00:07.286956 socketcall(0x1, 0xbe842c70) = 300:00:07.292816 fcntl64(3, F_SETFD, FD_CLOEXEC) = 0
00:00:07.305603 socketcall(0x3, 0xbe842c70) = 000:00:07.327575 brk(0) = 0x2400000:00:07.345397 brk(0x25000) = 0x2500000:00:07.360290 brk(0) = 0x2500000:00:07.422485 open("/etc/thttpd/thttpd.conf", O_RDONLY) = 4
00:00:07.438049 fstat64(4, {st_mode=S_IFREG|0644, st_size=17592186044416, ...})= 000:00:07.474121 old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x4001700000:00:07.490203 read(4, "#-------------------------------"..., 4096) = 1457
00:00:07.508544 read(4, "", 4096) = 000:00:07.530151 close(4) = 000:00:07.548675 munmap(0x40017000, 4096) = 0
00:00:07.561645 open("/etc/localtime", O_RDONLY) = -1 ENOENT (No such file or directory)00:00:07.585235 open("/etc/thttpd/throttle.conf", O_RDONLY) = 4
00:00:07.599182 gettimeofday({7, 603149}, NULL) = 000:00:07.613983 fstat64(4, {st_mode=S_IFREG|0644, st_size=17592186044416, ...})= 000:00:07.637084 old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x40017000
00:00:07.650604 read(4, "# thttpd 2.21b\n# Main throttle c"..., 4096) = 45300:00:07.669586 read(4, "", 4096) = 000:00:07.691589 close(4) = 0
00:00:07.708099 munmap(0x40017000, 4096) = 0

strace Miscellaneous Notes
• Strace can follow children
• Strace adds of overhead to the execution of the

program
• Good for relative timings, not absolute

• Can’t get counts for a program that doesn’t end
• If someone knows how to do this, let me know!

• I couldn’t figure out how to trace the whole
system init

• I tried replacing /etc/init.d/rcS in /etc/inittab with
“strace –f -tt 2>/tmp/strace.log /etc/init.d/rcS ”

• It didn’t work

Process Trace
• Process trace = Tim’s own quick-and-dirty

tracer
• Why?

• Bootchart has problems:
• Too much overhead for embedded
• Reads lots of /proc frequently during boot

• I envisioned a kind of “Bootchart lite”
• Adds printks to fork, exec and exit in the

kernel - Very simple
• Adds a script to process the dmesg output

Process Trace Example Output
[37.162963] exec: 1 -> /sbin/init
[38.189819] fork: 1 -> 15[38.203155] exec: 15 -> /etc/init.d/rcS[38.244598] fork: 15 -> 16[38.251708] exec: 16 -> /bin/mount[38.300262] exit: 16 - real 0.056 user 0.007 sys 0.039 nonrun 0.009[38.302429] fork: 15 -> 17[38.309509] exec: 17 -> /bin/cat[38.331481] exit: 17 - real 0.029 user 0.007 sys 0.015 nonrun 0.006[38.333312] fork: 15 -> 18[38.340362] exec: 18 -> /bin/mount[38.464355] exit: 14 - real 1.481 user 0.000 sys 0.390 nonrun 1.091[38.464752] fork: 18 -> 19[38.466979] exit: 18 - real 0.134 user 0.015 sys 0.007 nonrun 0.110

PPid Pid Program Start Duration Active Idle----- ----- --------------------- -------- -------- -------- -------- 0 1 /sbin/init 0.000 0.000 0.000 0.000 0 2 unknown 0.000 0.000 0.000 0.000 2 3 unknown* 0.000 0.000 0.000 0.000. . . 15 23 /bin/touch 38.644 0.106 0.014 0.092 15 31 /usr/sbin/inetd 39.216 0.122 0.046 0.076 15 18 /bin/mount 38.333 0.134 0.022 0.112 15 25 /bin/touch 38.775 0.228 0.116 0.112 1 14 [worker_thread] 36.983 1.482 0.390 1.092 1 15 /etc/init.d/rcS 38.190 33.367 0.116 33.251

 Result of: “linux_src/scripts/procgraph –s d /target/tmp/bootprocs.msg”

Process Trace Notes
• ‘procgraph’ script is badly named

• It doesn’t produce a graph
• I intended to copy Arjan’s bootgraph program,

but didn’t have time
• May be finished sometime soon

• It doesn’t replace bootchart, since it
doesn’t show cpu or I/O utilization

• It’s good enough to find some problems
• Like unexpected fork and execs

Linux Trace Toolkit
• Very nice tool for tracing “major” system

events
• Good for showing process startup and

interaction
• Has been out-of-mainline for many years
• See http://ltt.polymtl.ca/

Other Trace Systems
• trace_boot (being worked on right now)

• Similar to process trace, but more
comprehensive

• Watches process schedules also
• See fastboot git tree
• Also search for "fastboot" subject lines on

LKML
• SystemTap

• Requires kernel loadable modules
• Requires module insertion (user space must

be up)
• Should be easy to write a process trace tapset

Techniques for Reducing
Bootup Time

Reduction Techniques for the
Kernel

Reduction Techniques for the
Kernel

• quiet console
• Eliminate unused drivers and features
• Deferred module initialization
• Reducing probing delays
• Filesystem tricks
• async initcall

quiet console
• Kernel spends significant time outputing

chars to serial port during boot
• Can eliminate with simple runtime switch
• Add “quiet” to kernel command line
• Savings:

• X86 savings: 1.32 seconds
• ARM savings: 0.45 seconds

• Can still see all messages after booting
with ‘dmesg’

• May also affect VGA console, but I haven’t
measured

Eliminate Unused Features
• “The fastest code is the code you don’t run!”
• Linux kernel defconfigs include lots of features not

needed in product
• They try to include all features of a platform or board

• Should eliminate as much as possible from kernel using
CONFIG options

• This helps two ways:
• Reduces the amount of initialization in the kernel
• Reduces the kernel size, which reduces the time it takes the

bootloader to load the kernel image
• Can look at Linux-tiny pages for ideas of things you can

safely eliminate
• Also, use initcall_debug to see lots of modules you

probably don’t need

Example Unused Feature
• I found that CONFIG_HOTPLUG was

turned on in the X86 defconfig
• Booting my X86 machine with Linux

v2.6.27, there are 809 calls to execve
/sbin/hotplug, during boot

• I eliminated these by turning
CONFIG_HOTPLUG=n

• X86 savings: 1.34 seconds

Deferred module initialization
• Deferred module loading

• Compile drivers as modules, and insmod after
main boot

• Deferred initcall
• Statically link modules (CONFIG_FOO=y)
• Change module init routine to be run later, on

demand
• Add trigger for deferred initcalls, after main

boot sequence
• Patch is available to provide support for this

feature

Deferred initcall Howto
• Find modules that are not required for core

functionality of product
• Ex: USB on a camera – uhci_hcd_usb, ehci_hcd_init

• Change module init routine declaration
• module_init(foo_init) to
• deferred_module_init(foo_init)

• Modules marked like this are not initialized during
kernel boot

• After main init, do:
• echo 1 >/proc/deferred_initcalls

• Deferred initcalls are run
• Also .init section memory is freed by kernel

Using deferred_module_init()
(USB modules)

• Used deferred_module_init() on
ehci_hcd_init and uhci_hcd_init

• Changed:
• module_init(ehci_hcd_init) to
• deferred_modle_init(echi_hcd_init)
• Same change for uhci_hcd_init

• X86 savings: 530 ms

Using deferred_module_init()
(piix_init)

• Used deferred_module_init(piix_init)
• X86 savings: 670 ms

• Total savings from just these three
deferred_module_init()s = 1.2 seconds

Reduce Probing
• Reduce probe delays

• Can often reduce probe delay on known hardware
• Example: IDE probe, especially for flash devices

masquerading as IDE block devices
• It makes no sense to wait 50 milliseconds for the disk

to respond on a solid state disk
• Eliminate probes for non-existent hardware

• Look at kernel command line options for drivers you
use

• USB, IDE, PCI, network
• Pass operational parameters directly to driver, which

causes driver to bypass probing
• See Documentation/kernel-parameters.txt

Reducing Probing Delays
• Preset LPJ – next page
• Network delays for IP autoconfig
• Passing device parameters from firmware

Preset-lpj
• Time to calibrate “loops_per_jiffy”

 can be long
• Can specify the value for lpj on kernel

command line
• This bypasses the runtime calibration

• How much time is saved depends on
platform, CPU speed, HZ, etc.
• ARM savings: 192 ms
• X86 savings: 19 ms

Preset-lpj howto
• Example on ARM:

• On target (example on ARM):
• $ dmesg | grep -A 2 Bogo >/tmp/boot.txt

• On host:

• Add to kernel command line: "lpj=478208"

• New timings:

$ linux/scripts/show_delta /target/osk/tmp/boot.txt
[715.833569 < 715.833569 >] Calibrating delay loop... 95.64 BogoMIPS (lpj=478208)
[716.025733 < 0.192164 >] Mount-cache hash table entries: 512
[716.027787 < 0.002054 >] CPU: Testing write buffer coherency: ok

[715.833595 < 715.833595 >] Calibrating delay loop (skipped)... 95.64 BogoMIPS preset
[715.834196 < 0.000601 >] Mount-cache hash table entries: 512
[715.836419 < 0.002223 >] CPU: Testing write buffer coherency: ok

Reducing Network Delays
• Example of finding a bogus delay and shortening it
• Generic mainline code has to work with every

conceivable crummy piece of hardware
• Delays are often too long for specific hardware
• Patch on next page shows reduction in delay for IP

autoconfig
• X86 savings: 1.4 seconds

Patch to Reduce Network Delay

diff --git a/net/ipv4/ipconfig.c b/net/ipv4/ipconfig.c
index 42065ff..e42d83f 100644
--- a/net/ipv4/ipconfig.c
+++ b/net/ipv4/ipconfig.c
@@ -86,8 +86,10 @@
 #endif

 /* Define the friendly delay before and after opening net devices */
-#define CONF_PRE_OPEN 500 /* Before opening: 1/2 second */
-#define CONF_POST_OPEN 1 /* After opening: 1 second */
+/*#define CONF_PRE_OPEN 500 /* Before opening: 1/2 second */
+/*#define CONF_POST_OPEN 1 /* After opening: 1 second */
+#define CONF_PRE_OPEN 5 /* Before opening: 5 milli seconds */
+#define CONF_POST_OPEN 10 /* After opening: 10 milli seconds */

 /* Define the timeout for waiting for a DHCP/BOOTP/RARP reply */
 #define CONF_OPEN_RETRIES 2 /* (Re)open devices twice */
@@ -1292,7 +1294,7 @@ static int __init ip_auto_config(void)
 return -1;

 /* Give drivers a chance to settle */
- ssleep(CONF_POST_OPEN);
+ msleep(CONF_POST_OPEN);

 /*
 * If the config information is insufficient (e.g., our IP address or

Passing Device Params from
Firmware

• Have firmware initialize hardware
• It can sometimes do it faster because it

doesn’t probe so much
• Have firmware pass information to kernel,

for kernel driver to avoid probing and
initializing hardware

• Sony used this in “snapshot boot”
• This is very firmware and hardware-

specific
• Don’t count on mainlining your work

• Devicetree does this in a general way??

Filesystem Tricks
• Partition filesystem into read-only portion

and read/write portion
• Read-only file systems mount faster

• Mount filesystem faster:
• Ex: Use UBIFS
• Ex: Use CONFIG_JFFS2_SUMMARY

Filesystem Mount Time
Comparison

• Next slide stolen shamelessly from Michael
Opdenacker’s presentation comparing
flash filesystems

• JFFS2 mount of 8M filesystem partition is
over 1 second

• UBIFS mount of 8M partition is under .2
seconds

• Squashfs mount of 8M partition is under 50
milliseconds (it looks like)

Filesystem Mount Time
Comparison

• See slide stolen shamelessly from Michael
Opdenacker’s presentation comparing
flash filesystems

• JFFS2 mount of 8M filesystem partition is
over 1 second

• UBIFS mount of 8M partition is under .2
seconds

• Squashfs mount of 8M partition is under 50
milliseconds (it looks like)

async initcall
• Arjan Van de Ven wrote a system to allow

aynchronous calling of initcalls
• Allows initcalls in parallel

• Patches were put into fastboot.git tree
• Unfortunately, patch was rejected for

2.6.28 merge – Linus didn’t like it
• Back to the drawing board

• Point of story: Likely there will be some new
async capabilities for module initialization
sometime soon

Reduction Techniques
for User-space

Reduction Techniques for
User-space

• Adjusting user-space init
• Use custom init
• Refactor RC scripts
• Use builtins with busybox ash

• Readahead
• Prelinking
• Execute In Place (XIP)

Use custom init
• Should use busybox ‘init’ program instead of full-

blown ‘init’
• Probably already doing this, but good thing to check

• Kernel executes /sbin/init by default
• Can change on kernel command line:

• Try this sometime: “init=/bin/sh”
• Can have /sbin/init be a shell script

• No login prompt, no getty, etc.
• Even better, make it a compiled program

• No interpreter at boot time

Refactor RC scripts
• If you must use RC scripts, at least take

out the junk
• Use ‘set –x’ to see all commands run
• Remove conditional code
• Eliminate unneeded actions

• e.g. echo of completion status
• Start sub-processes in parallel so that idle

and busy portions of applications can
intersect
• Watch out for load order dependencies

Use builtins with busybox ash
• Old versions of busybox did fork and exec for commands

from shell interpreter
• Ex. Echo “foo” – overhead 33 ms

• Newer busybox has support to execute echo, test and ‘[‘
directly

• The commands are in the same binary
• No need to instantiate another instance of busybox for these

commands
• Process trace will tell you if you are exec’ing ‘echo’ or ‘[‘
• To fix this, use latest busybox and set config:

• busybox 1.10 has (in shell/Config.in):
• CONFIG_ASH_BUILTIN_ECHO
• CONFIG_ASH_BUILTIN_TEST

Readahead
• Basic idea:

• While system is doing other stuff, read blocks that will
soon be needed

• In Arjan’s testing, Readahead cut boot time from
7 seconds to 5 seconds

• sReadahead code is now included in moblin, I’m
told

• See moblin.org

Prelinking
• A good portion of application initialization time is

spent resolving symbols to dynamic libraries
• Can reduce the time spent during dynamic

linking
• Use prelink on applications to reduce linking time
• Philips reported 30% reduction in application

load time, per application

XIP = Execute In Place
• Kernel XIP reduces bootloader time
• Application XIP is to reduce application load

times
• New flash filesystem: AXFS

• See Jared Hulbert’s presentation and YouTube
videos from OLS

• http://ols.fedoraproject.org/OLS/Reprints-2008/hu
lbert-reprint.pdf

• http://www.youtube.com/watch?v=fu6Yj7iKEiA
• http://www.youtube.com/watch?v=HUqFrA4FYd

Final Results
• X86 final boot time:

• User-space init complete: .90 seconds
• ARM final boot time:

• User-space init complete: 3.25 seconds
• Sony record:

• Time for kernel boot (to userspace) in 110
milliseconds on a 192 MHZ ARM processor

Conclusions
• 1 second boot is within reach

• Depending, of course, on your application initialization
time

• Should be able to boot embedded kernel in under 1
second

• It takes a lot of elbow grease, but it’s getting
easier

Resources
• Arjan Van de Ven’s talk at LPC

• “LPC: Booting Linux in 5 Seconds”
http://lwn.net/Articles/299483/

• New fastboot git tree:
• "What's in fastboot.git for 2.6.28“

http://lwn.net/Articles/299591/
• Christopher Hallinan's talk at MV Vision
• elinux wiki – Boot Time development portal

• Stuff for this presentation:
http://elinux.org/Tims_Fastboot_Tools

	Slide 1
	Agenda
	The Problem
	Overview of Boot Phases
	My hardware
	My Hardware (2)
	Instrumentation
	Why Instrumentation
	Slide 9
	Uptime
	X86 user-space init overview
	ARM user-space init overview
	grabserial
	grabserial Example Output
	grabserial Notes
	Kernel Measurement
	Printk times
	Printk Times Example
	Printk Times Sample Output
	Printk Times Notes:
	initcall_debug
	Initcall_debug Example Output
	Kernel Function Trace (KFT)
	KFT Trace Results Example
	User-Space Measurement
	Bootchart
	Bootchart Example Output
	strace
	strace Example Output
	strace Miscellaneous Notes
	Process Trace
	Process Trace Example Output
	Process Trace Notes
	Linux Trace Toolkit
	Other Trace Systems
	Techniques for Reducing Bootup Time
	 Reduction Techniques for the Kernel
	Reduction Techniques for the Kernel
	quiet console
	Eliminate Unused Features
	Example Unused Feature
	Deferred module initialization
	Deferred initcall Howto
	Using deferred_module_init() (USB modules)
	Using deferred_module_init() (piix_init)
	Reduce Probing
	Reducing Probing Delays
	Preset-lpj
	Preset-lpj howto
	Reducing Network Delays
	Patch to Reduce Network Delay
	Passing Device Params from Firmware
	Filesystem Tricks
	Filesystem Mount Time Comparison
	Slide 55
	async initcall
	Reduction Techniques for User-space
	Slide 58
	Use custom init
	Refactor RC scripts
	Use builtins with busybox ash
	Readahead
	Prelinking
	XIP = Execute In Place
	Final Results
	Conclusions
	Resources

