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The Problem
• Consumer electronics products require 

very fast boot times.
• Desired cold boot time for a digital still 

camera is less than 1 second.
• Did I mention they have crummy, slow processors…?

• Consumer must catch the baby smiling!!



 

Overview of Boot Phases
• Firmware (bootloader)

F

• Hardware probing
• Hardware initialization
• Kernel load and decompression

• Kernel execution
• Core init (start_kernel)

C

• Driver init (initcalls)

D

• User-space init
• /sbin/init
• RC scripts
• Graphics start (First Impression)

G

• Application start
• Application load and link
• Application initialization

• First use



 

My hardware
• Old x86 desktop

• X86 - Intel Celeron processor, running at 2 GHz.
• 128 meg. of RAM and a 40G IDE hard drive.
• Linux 2.6.27-rc7 from kernel.org
• Sony distribution (CELinux) for x86.

• Some notes:
• Most initcall and uptime timings are with NFS-root fs.

• (IDE is present (probed and detected) but not mounted).
• Started at 4.91 seconds of uptime, at first shell 

prompt.



 

My Hardware (2)
• Old ARM Eval board

• OSK - OMAP 5912 at 192 MHZ
• 32 meg. RAM and 32 meg. of NOR Flash
• MontaVista distribution (3.1 preview kit) for 

ARM
• Linux 2.6.23.17 (with patches)

L

• Notes
• Some tests done with Linux 2.6.27

• Started at uptime: 5.42
• This is after RC scripts, but before first login



 

Instrumentation



 

Why Instrumentation
• Very important principle:

• Measure and find the worst problems first, or you just end 
up wasting a lot of time

Premature optimization is the root of all evil.
- Donald Knuth                             



 

Instrumentation
• System-wide:

• Uptime (!!)
• grabserial

• Kernel Measurement
• Printk-times
• initcall_debug
• KFT

• User space measurement
• Bootchart
• Strace
• Process trace - Tim’s quick hack
• Linux Trace Toolkit



 

Uptime
• Easiest time measurement ever:

• Add the following to /sbin/init or rc.local, or wherever you "finish" 
booting:

• Note: Use of "echo" is wasteful, I'll get back to this later...
• Values produced are:

• Wall time since timekeeping started
• Time spent in the idle process (process 0)

T

• My x86 starting value:
• For kernel, nfs fs mount, and short RC script
• uptime: 4.91 3.04

• My ARM starting value
• For kernel, flash fs mount, short RC script, some services:
• uptime: 5.42 1.56

echo -n "uptime:" ; cat /proc/uptime



 

X86 user-space init overview
• On X86, /sbin/init is a shell script that:

• Mounts /proc and /sys
• Remounts root filesystem rw
• Configures the loopback interface (ifconfig lo)
• Runs /etc/rc.local
• Starts syslogd, klogd, telnetd
• Runs ‘free’
• Runs a shell



 

ARM user-space init overview
• OSK has a “real” /sbin/init that processes /

etc/inittab
• Init runs /etc/init.d/rcS with:

• Mounts /proc
• Configured loopback interface (ifconfig lo)
• Mounts /tmp
• Touches a bunch of files in /tmp
• Starts syslogd, klogd, inetd, thttpd

• Also does a ‘sleep 1’ !!)

A

• Creates /dev/dsp nodes
• Then inittab spawns a console getty



 

grabserial
• Utility for watching serial console output
• Is run on host machine, not target

• Captures serial output and echos it
• Can apply a timestamp to each line seen

• Easy to use:
• Ex: grabserial –t –d /dev/ttyUSB0 –m “Starting 

kernel”



 

grabserial Example Output
[   22.774152] ## Booting image at 10000000 ...
[   22.776073]    Image Name:   Linux-2.6.27-00002-g1646475-dirt
[   22.780302]    Image Type:   ARM Linux Kernel Image (uncompressed)
[   22.784842]    Data Size:    1321228 Bytes =  1.3 MB
[   22.787127]    Load Address: 10008000
[   22.791150]    Entry Point:  10008000
[   22.792627]    Verifying Checksum ... OK
[   24.068948] OK
[   24.069267]
[   24.069367] Starting kernel ...
[    0.001231]
[    0.001334] Uncompressing Linux.......................................
.......... done, booting the kernel.
[    5.434655] serial console detected.  Disabling virtual terminals.
[    5.437749] init started:  BusyBox v0.60.2 (2004.04.16-00:49+0000) multi
-call binary
[    5.607621] 3.17 0.28
[    5.787597] mount: Mounting /tmpfs on /tmp failed: Invalid argument
[    6.947394] mknod: /dev/dsp: File exists
[    7.072378] 4.64 0.28
[    8.268232]
[    8.268373] MontaVista(R) Linux(R) Professional Edition 3.1, Preview Kit
[    8.291287]
[    8.291381] (none) login: root



 

grabserial Notes
• Pros:

• Doesn’t put any instrumentation on target
• Doesn’t slow down target – only consumes host cpu 

cycles
• Cons:

• Kernel queues up printk messages during very early 
init

• To measure time of kernel bootup events, you have to 
have kernel messages turned on

• (I will talk about this later)
• Bit of a pain to install.

• Grabserial is a python program.  It requires the python 
serial.py module, which is not shipped with python by default



 

Kernel Measurement
• Printk-times
• Initcall_debug
• Kernel Function Trace



 

Printk times
• Method to put timestamp on every printk
• Is better with a good resolution clock
• How to activate (use one of the following):

• Compile kernel with: 
CONFIG_PRINTK_TIMES=y

• Use “time=1” on kernel command line
• Or, to turn on dynamically:

• “echo Y >/sys/module/printk/parameters/time”



 

Printk Times Example
• Try it right now

• If you have a laptop (or are reading this 
presentation on a Linux desktop) try this:

• su root
• echo Y >/sys/module/printk/parameters/time
• <plug in a USB stick>
• dmesg

• To see relative times (deltas):
• Use ‘show_delta’ script
• Located in ‘scripts’ directory in Linux source tree
• dmesg | linux_src/scripts/show_delta /proc/self/fd/0

• (OK – I should change show_delta to be a filter)

(



 

Printk Times Sample Output
On ARM:

[    0.000000] Linux version 2.6.23.17-alp_nl-g679161dd (tbird@crest) (gcc version 4.1.1) …
[    0.000000] CPU: ARM926EJ-S [41069263] revision 3 (ARMv5TEJ), cr=00053177
[    0.000000] Machine: TI-OSK
[    0.000000] Memory policy: ECC disabled, Data cache writeback
[    0.000000] On node 0 totalpages: 8192
[    0.000000]   DMA zone: 64 pages used for memmap
…
[    0.000000] OMAP GPIO hardware version 1.0
[    0.000000] MUX: initialized M7_1610_GPIO62
[    0.000000] MUX: Setting register M7_1610_GPIO62
[    0.000000]       FUNC_MUX_CTRL_10 (0xfffe1098) = 0x00000000 -> 0x00000000
[    0.000000]       PULL_DWN_CTRL_4 (0xfffe10ac) = 0x00000000 -> 0x01000000
[    0.000000] PID hash table entries: 128 (order: 7, 512 bytes)
[  715.825741] Console: colour dummy device 80x30
[  715.825999] Dentry cache hash table entries: 4096 (order: 2, 16384 bytes)
[  715.826490] Inode-cache hash table entries: 2048 (order: 1, 8192 bytes)
[  715.832736] Memory: 32MB = 32MB total
[  715.832832] Memory: 28052KB available (3852K code, 396K data, 124K init)
[  715.833493] SLUB: Genslabs=22, HWalign=32, Order=0-1, MinObjects=4, CPUs=1, Nodes=1
[  715.833595] Calibrating delay loop (skipped)... 95.64 BogoMIPS preset
[  715.834196] Mount-cache hash table entries: 512
[  715.836419] CPU: Testing write buffer coherency: ok
[  715.847232] NET: Registered protocol family 16
[  715.860679] OMAP DMA hardware version 1
[  715.860773] DMA capabilities: 000c0000:00000000:01ff:003f:007f
[  715.868239] USB: hmc 16, usb2 alt 0 wires
[  715.904668] SCSI subsystem initialized



 

Printk Times Notes:
• On ARM, notice that timestamps are zero until clock is 

initialized
• On X86, timestamps are available immediately since it 

uses TSC, which is a built-in counter on the CPU
• On many embedded platforms, you need to fix the clock 

handling to get good timestamp values
• Default printk_clock() returns jiffies

• Only has 4 ms or 10 ms resolution)

O

• Can call sched clock(), but you need to make sure not to call it 
too early

• Newest kernel (2.6.27) uses cpu_clock()

N

• For older kernels, I have a patch for some ARM platforms:
• safe_to_call_sched_clock.patch



 

initcall_debug
• A good portion of bootup time is spent in 

‘initcalls’
• There’s a flag already built into the kernel to 

show initcall information during startup
• On boot command line, use: initcall_debug=1
• After booting, do:

dmesg -s 256000 | grep "initcall" | sed "s/\
(.*\)after\(.*\)/\2 \1/g" | sort -n 

• NOTE: It’s a good idea to increase the printk log 
buffer size

• Do this by increasing LOGBUF_SHIFT from
14 (16K) to 18 (256K)



 

Initcall_debug Example Output

• Problem routines:
• psmouse_init - unused driver!!
• pnp_system_init - ??
• pcibios_assign_resources - ??
• ehci_hcd_init, uhci_hcd_init - part of USB initialization
• serial8250_init - serial driver initialization
• piix_init – IDE disk driver init
• ip_auto_config - dhcp process

24 msecs [    2.237177] initcall acpi_button_init+0x0/0x51 returned 0
28 msecs [    0.763503] initcall init_acpi_pm_clocksource+0x0/0x16c returned 0
32 msecs [    0.348241] initcall acpi_pci_link_init+0x0/0x43 returned 0
33 msecs [    0.919004] initcall inet_init+0x0/0x1c7 returned 0
33 msecs [    5.282722] initcall psmouse_init+0x0/0x5e returned 0
54 msecs [    2.979825] initcall e100_init_module+0x0/0x4d returned 0
71 msecs [    0.650325] initcall pnp_system_init+0x0/0xf returned 0
91 msecs [    0.872402] initcall pcibios_assign_resources+0x0/0x85 returned 0
187 msecs [    4.369187] initcall ehci_hcd_init+0x0/0x70 returned 0
245 msecs [    2.777161] initcall serial8250_init+0x0/0x100 returned 0
673 msecs [    5.098052] initcall uhci_hcd_init+0x0/0xc1 returned 0
830 msecs [    4.067279] initcall piix_init+0x0/0x27 returned 0
1490 msecs [    8.290606] initcall ip_auto_config+0x0/0xd70 returned 0



 

Kernel Function Trace (KFT)
• Instruments every kernel function entry and 

exit
• Can filter by time duration of functions
• VERY handy for finding boot latencies in early 

startup
• Unfortunately, this is a patch that was never 

mainlined
• See http://elinux.org/Kernel_Function_Trace

• I would like to integrate KFT functionality into 
ftrace, but haven’t had time yet

• It’s been on my “to do” list for years



 

KFT Trace Results Example
Entry  Delta PID         Function                Called At    1      0   0               start_kernel  L6+0x0   14   8687   0                 setup_arch  start_kernel+0x35   39    891   0               setup_memory  setup_arch+0x2a8   53    872   0 register_bootmem_low_pages  setup_memory+0x8f   54    871   0               free_bootmem  register_bootmem_low_pages+0x95   54    871   0          free_bootmem_core  free_bootmem+0x34  930   7432   0                paging_init  setup_arch+0x2af  935   7427   0            zone_sizes_init  paging_init+0x4e 

$ ~/work/kft/kft/kd -n 30 kftboot-9.lstFunction                  Count Time     Average  Local------------------------- ----- -------- -------- --------do_basic_setup                1  1159270  1159270       14do_initcalls                  1  1159256  1159256      627__delay                     156   619322     3970        0delay_tsc                   156   619322     3970   619322__const_udelay              146   608427     4167        0probe_hwif                    8   553972    69246      126do_probe                     31   553025    17839       68ide_delay_50ms              103   552588     5364        0
isapnp_init                   1   383138   383138       18



 

User-Space Measurement
• Bootchart
• Strace
• Process trace - Tim’s quick hack
• Linux Trace Toolkit



 

Bootchart
• Tool to display a nice diagram of 

processes in early boot
• Starts a daemon in early init
• Daemon collects information via /proc, and 

puts it into files in /var/log
• Has a tool to post-process the collected 

information, and prepare a nice diagram
• PNG, SVG, or EPS

• Find it at: http://www.bootchart.org/



 

Bootchart 
Example Output



 

strace
• Strace can be used to collect timing 

information for a process
• strace –tt 2>/tmp/strace.log thttpd …

• Can use to see where time is being spent in 
application startup

• Can also collect system call counts (-c)
• Can see time spent in each system call (-T)
• Great for finding extraneous operations

• Eg. Wasteful operations, like scanning invalid 
paths for files, opening a file multiple times, etc.



 

strace Example Output
00:00:07.186340 mprotect(0x4001f000, 20480, PROT_READ|PROT_WRITE) = 000:00:07.200866 mprotect(0x4001f000, 20480, PROT_READ|PROT_EXEC) = 000:00:07.221679 socketcall(0x1, 0xbe842c70) = 3
00:00:07.235626 fcntl64(3, F_SETFD, FD_CLOEXEC) = 0
00:00:07.248718 socketcall(0x3, 0xbe842c70) = -1 EPROTOTYPE (Protocol wrong type for socket)00:00:07.264434 close(3)                = 000:00:07.286956 socketcall(0x1, 0xbe842c70) = 300:00:07.292816 fcntl64(3, F_SETFD, FD_CLOEXEC) = 0
00:00:07.305603 socketcall(0x3, 0xbe842c70) = 000:00:07.327575 brk(0)                  = 0x2400000:00:07.345397 brk(0x25000)            = 0x2500000:00:07.360290 brk(0)                  = 0x2500000:00:07.422485 open("/etc/thttpd/thttpd.conf", O_RDONLY) = 4
00:00:07.438049 fstat64(4, {st_mode=S_IFREG|0644, st_size=17592186044416, ...})= 000:00:07.474121 old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x4001700000:00:07.490203 read(4, "#-------------------------------"..., 4096) = 1457
00:00:07.508544 read(4, "", 4096)       = 000:00:07.530151 close(4)                = 000:00:07.548675 munmap(0x40017000, 4096) = 0
00:00:07.561645 open("/etc/localtime", O_RDONLY) = -1 ENOENT (No such file or directory)00:00:07.585235 open("/etc/thttpd/throttle.conf", O_RDONLY) = 4
00:00:07.599182 gettimeofday({7, 603149}, NULL) = 000:00:07.613983 fstat64(4, {st_mode=S_IFREG|0644, st_size=17592186044416, ...})= 000:00:07.637084 old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x40017000
00:00:07.650604 read(4, "# thttpd 2.21b\n# Main throttle c"..., 4096) = 45300:00:07.669586 read(4, "", 4096)       = 000:00:07.691589 close(4)                = 0
00:00:07.708099 munmap(0x40017000, 4096) = 0



 

strace Miscellaneous Notes
• Strace can follow children
• Strace adds of overhead to the execution of the 

program
• Good for relative timings, not absolute

• Can’t get counts for a program that doesn’t end
• If someone knows how to do this, let me know!

• I couldn’t figure out how to trace the whole 
system init

• I tried replacing /etc/init.d/rcS in /etc/inittab with 
“strace –f -tt 2>/tmp/strace.log /etc/init.d/rcS ”

• It didn’t work



 

Process Trace
• Process trace = Tim’s own quick-and-dirty 

tracer
• Why?

• Bootchart has problems:
• Too much overhead for embedded
• Reads lots of /proc frequently during boot

• I envisioned a kind of “Bootchart lite”
• Adds printks to fork, exec and exit in the 

kernel - Very simple
• Adds a script to process the dmesg output



 

Process Trace Example Output
[   37.162963] exec: 1 -> /sbin/init
[   38.189819] fork: 1 -> 15[   38.203155] exec: 15 -> /etc/init.d/rcS[   38.244598] fork: 15 -> 16[   38.251708] exec: 16 -> /bin/mount[   38.300262] exit: 16 - real 0.056 user 0.007 sys 0.039 nonrun 0.009[   38.302429] fork: 15 -> 17[   38.309509] exec: 17 -> /bin/cat[   38.331481] exit: 17 - real 0.029 user 0.007 sys 0.015 nonrun 0.006[   38.333312] fork: 15 -> 18[   38.340362] exec: 18 -> /bin/mount[   38.464355] exit: 14 - real 1.481 user 0.000 sys 0.390 nonrun 1.091[   38.464752] fork: 18 -> 19[   38.466979] exit: 18 - real 0.134 user 0.015 sys 0.007 nonrun 0.110

PPid  Pid   Program                  Start    Duration Active   Idle----- ----- --------------------- -------- -------- -------- --------    0     1            /sbin/init    0.000    0.000    0.000    0.000    0     2               unknown    0.000    0.000    0.000    0.000    2     3              unknown*    0.000    0.000    0.000    0.000. . .    15    23            /bin/touch   38.644    0.106    0.014    0.092   15    31       /usr/sbin/inetd   39.216    0.122    0.046    0.076   15    18            /bin/mount   38.333    0.134    0.022    0.112   15    25            /bin/touch   38.775    0.228    0.116    0.112    1    14       [worker_thread]   36.983    1.482    0.390    1.092    1    15       /etc/init.d/rcS   38.190   33.367    0.116   33.251

 Result of: “linux_src/scripts/procgraph –s d /target/tmp/bootprocs.msg”



 

Process Trace Notes
• ‘procgraph’ script is badly named

• It doesn’t produce a graph
• I intended to copy Arjan’s bootgraph program, 

but didn’t have time
• May be finished sometime soon

• It doesn’t replace bootchart, since it 
doesn’t show cpu or I/O utilization

• It’s good enough to find some problems
• Like unexpected fork and execs



 

Linux Trace Toolkit
• Very nice tool for tracing “major” system 

events
• Good for showing process startup and 

interaction
• Has been out-of-mainline for many years 
• See http://ltt.polymtl.ca/



 

Other Trace Systems
• trace_boot (being worked on right now)

• Similar to process trace, but more 
comprehensive

• Watches process schedules also
• See fastboot git tree
• Also search for "fastboot" subject lines on 

LKML
• SystemTap

• Requires kernel loadable modules
• Requires module insertion (user space must 

be up)
• Should be easy to write a process trace tapset



 

Techniques for Reducing 
Bootup Time



 

Reduction Techniques for the 
Kernel



 

Reduction Techniques for the 
Kernel

• quiet console
• Eliminate unused drivers and features
• Deferred module initialization
• Reducing probing delays
• Filesystem tricks
• async initcall



 

quiet console
• Kernel spends significant time outputing 

chars to serial port during boot
• Can eliminate with simple runtime switch
• Add “quiet” to kernel command line
• Savings:

• X86 savings: 1.32 seconds
• ARM savings: 0.45 seconds

• Can still see all messages after booting 
with ‘dmesg’

• May also affect VGA console, but I haven’t 
measured



 

Eliminate Unused Features
• “The fastest code is the code you don’t run!”
• Linux kernel defconfigs include lots of features not 

needed in product
• They try to include all features of a platform or board

• Should eliminate as much as possible from kernel using 
CONFIG options

• This helps two ways:
• Reduces the amount of initialization in the kernel
• Reduces the kernel size, which reduces the time it takes the 

bootloader to load the kernel image
• Can look at Linux-tiny pages for ideas of things you can 

safely eliminate
• Also, use initcall_debug to see lots of modules you 

probably don’t need



 

Example Unused Feature
• I found that CONFIG_HOTPLUG was 

turned on in the X86 defconfig
• Booting my X86 machine with Linux 

v2.6.27, there are 809 calls to execve 
/sbin/hotplug, during boot

• I eliminated these by turning 
CONFIG_HOTPLUG=n

• X86 savings: 1.34 seconds



 

Deferred module initialization
• Deferred module loading

• Compile drivers as modules, and insmod after 
main boot

• Deferred initcall
• Statically link modules (CONFIG_FOO=y)
• Change module init routine to be run later, on 

demand
• Add trigger for deferred initcalls, after main 

boot sequence
• Patch is available to provide support for this 

feature



 

Deferred initcall Howto
• Find modules that are not required for core 

functionality of product
• Ex: USB on a camera – uhci_hcd_usb, ehci_hcd_init

• Change module init routine declaration
• module_init(foo_init) to
• deferred_module_init(foo_init)

• Modules marked like this are not initialized during 
kernel boot

• After main init, do:
• echo 1 >/proc/deferred_initcalls

• Deferred initcalls are run
• Also .init section memory is freed by kernel



 

Using deferred_module_init() 
(USB modules)

• Used deferred_module_init()  on 
ehci_hcd_init and uhci_hcd_init

• Changed:
• module_init(ehci_hcd_init) to 
• deferred_modle_init(echi_hcd_init)
• Same change for uhci_hcd_init

• X86 savings: 530 ms



 

Using deferred_module_init() 
(piix_init)

• Used deferred_module_init(piix_init)
• X86 savings: 670 ms

• Total savings from just these three 
deferred_module_init()s = 1.2 seconds



 

Reduce Probing
• Reduce probe delays

• Can often reduce probe delay on known hardware
• Example: IDE probe, especially for flash devices 

masquerading as IDE block devices
• It makes no sense to wait 50 milliseconds for the disk 

to respond on a solid state disk
• Eliminate probes for non-existent hardware 

• Look at kernel command line options for drivers you 
use

• USB, IDE, PCI, network
• Pass operational parameters directly to driver, which 

causes driver to bypass probing
• See Documentation/kernel-parameters.txt



 

Reducing Probing Delays
• Preset LPJ – next page
• Network delays for IP autoconfig
• Passing device parameters from firmware



 

Preset-lpj
• Time to calibrate “loops_per_jiffy”

 can be long
• Can specify the value for lpj on kernel 

command line
• This bypasses the runtime calibration

• How much time is saved depends on 
platform, CPU speed, HZ, etc.
• ARM savings: 192 ms
• X86 savings: 19 ms



 

Preset-lpj howto
• Example on ARM:

• On target (example on ARM):
• $ dmesg | grep -A 2 Bogo >/tmp/boot.txt

• On host:

• Add to kernel command line: "lpj=478208"

• New timings:

$ linux/scripts/show_delta /target/osk/tmp/boot.txt
[715.833569 < 715.833569 >] Calibrating delay loop... 95.64 BogoMIPS (lpj=478208)
[716.025733 < 0.192164 >] Mount-cache hash table entries: 512
[716.027787 < 0.002054 >] CPU: Testing write buffer coherency: ok

[715.833595 < 715.833595 >] Calibrating delay loop (skipped)... 95.64 BogoMIPS preset
[715.834196 < 0.000601 >] Mount-cache hash table entries: 512
[715.836419 < 0.002223 >] CPU: Testing write buffer coherency: ok



 

Reducing Network Delays
• Example of finding a bogus delay and shortening it
• Generic mainline code has to work with every 

conceivable crummy piece of hardware
• Delays are often too long for specific hardware
• Patch on next page shows reduction in delay for IP 

autoconfig
• X86 savings: 1.4 seconds 



 

Patch to Reduce Network Delay

diff --git a/net/ipv4/ipconfig.c b/net/ipv4/ipconfig.c
index 42065ff..e42d83f 100644
--- a/net/ipv4/ipconfig.c
+++ b/net/ipv4/ipconfig.c
@@ -86,8 +86,10 @@
 #endif

 /* Define the friendly delay before and after opening net devices */
-#define CONF_PRE_OPEN          500     /* Before opening: 1/2 second */
-#define CONF_POST_OPEN         1       /* After opening: 1 second */
+/*#define CONF_PRE_OPEN                500     /* Before opening: 1/2 second */
+/*#define CONF_POST_OPEN               1       /* After opening: 1 second */
+#define CONF_PRE_OPEN          5       /* Before opening: 5 milli seconds */
+#define CONF_POST_OPEN         10      /* After opening: 10 milli seconds */

 /* Define the timeout for waiting for a DHCP/BOOTP/RARP reply */
 #define CONF_OPEN_RETRIES      2       /* (Re)open devices twice */
@@ -1292,7 +1294,7 @@ static int __init ip_auto_config(void)
                return -1;

        /* Give drivers a chance to settle */
-       ssleep(CONF_POST_OPEN);
+       msleep(CONF_POST_OPEN);

        /*
         * If the config information is insufficient (e.g., our IP address or



 

Passing Device Params from 
Firmware

• Have firmware initialize hardware
• It can sometimes do it faster because it 

doesn’t probe so much
• Have firmware pass information to kernel, 

for kernel driver to avoid probing and 
initializing hardware

• Sony used this in “snapshot boot”
• This is very firmware and hardware-

specific
• Don’t count on mainlining your work

• Devicetree does this in a general way??



 

Filesystem Tricks
• Partition filesystem into read-only portion 

and read/write portion
• Read-only file systems mount faster

• Mount filesystem faster:
• Ex: Use UBIFS
• Ex: Use CONFIG_JFFS2_SUMMARY



 

Filesystem Mount Time 
Comparison

• Next slide stolen shamelessly from Michael 
Opdenacker’s presentation comparing 
flash filesystems

• JFFS2 mount of 8M filesystem partition is 
over 1 second

• UBIFS mount of 8M partition is under .2 
seconds

• Squashfs mount of 8M partition is under 50 
milliseconds (it looks like)



 

Filesystem Mount Time 
Comparison

• See slide stolen shamelessly from Michael 
Opdenacker’s presentation comparing 
flash filesystems

• JFFS2 mount of 8M filesystem partition is 
over 1 second

• UBIFS mount of 8M partition is under .2 
seconds

• Squashfs mount of 8M partition is under 50 
milliseconds (it looks like)



 

async initcall
• Arjan Van de Ven wrote a system to allow 

aynchronous calling of initcalls
• Allows initcalls in parallel

• Patches were put into fastboot.git tree
• Unfortunately, patch was rejected for 

2.6.28 merge – Linus didn’t like it
• Back to the drawing board

• Point of story: Likely there will be some new 
async capabilities for module initialization 
sometime soon



 

Reduction Techniques
for User-space



 

Reduction Techniques for 
User-space

• Adjusting user-space init
• Use custom init
• Refactor RC scripts
• Use builtins with busybox ash

• Readahead
• Prelinking
• Execute In Place (XIP)



 

Use custom init
• Should use busybox ‘init’ program instead of full-

blown ‘init’
• Probably already doing this, but good thing to check

• Kernel executes /sbin/init by default
• Can change on kernel command line:

• Try this sometime:   “init=/bin/sh”
• Can have /sbin/init be a shell script

• No login prompt, no getty, etc.
• Even better, make it a compiled program

• No interpreter at boot time



 

Refactor RC scripts
• If you must use RC scripts, at least take 

out the junk
• Use ‘set –x’ to see all commands run
• Remove conditional code
• Eliminate unneeded actions

• e.g. echo of completion status
• Start sub-processes in parallel so that idle 

and busy portions of applications can 
intersect
• Watch out for load order dependencies



 

Use builtins with busybox ash
• Old versions of busybox did fork and exec for commands 

from shell interpreter
• Ex. Echo “foo” – overhead 33 ms

• Newer busybox has support to execute echo, test and ‘[‘ 
directly

• The commands are in the same binary
• No need to instantiate another instance of busybox for these 

commands
• Process trace will tell you if you are exec’ing ‘echo’ or ‘[‘
• To fix this, use latest busybox and set config:

• busybox 1.10 has (in shell/Config.in):
• CONFIG_ASH_BUILTIN_ECHO
• CONFIG_ASH_BUILTIN_TEST



 

Readahead
• Basic idea:

• While system is doing other stuff, read blocks that will 
soon be needed

• In Arjan’s testing, Readahead cut boot time from 
7 seconds to 5 seconds

• sReadahead code is now included in moblin, I’m 
told

• See moblin.org



 

Prelinking
• A good portion of application initialization time is 

spent resolving symbols to dynamic libraries
• Can reduce the time spent during dynamic 

linking
• Use prelink on applications to reduce linking time
• Philips reported 30% reduction in application 

load time, per application



 

XIP = Execute In Place
• Kernel XIP reduces bootloader time
• Application XIP is to reduce application load 

times
• New flash filesystem: AXFS

• See Jared Hulbert’s presentation and YouTube 
videos from OLS

• http://ols.fedoraproject.org/OLS/Reprints-2008/hu
lbert-reprint.pdf

• http://www.youtube.com/watch?v=fu6Yj7iKEiA
• http://www.youtube.com/watch?v=HUqFrA4FYd



 

Final Results
• X86 final boot time:

• User-space init complete: .90 seconds
• ARM final boot time:

• User-space init complete: 3.25 seconds
• Sony record:

• Time for kernel boot (to userspace) in 110 
milliseconds on a 192 MHZ ARM processor



 

Conclusions
• 1 second boot is within reach

• Depending, of course, on your application initialization 
time

• Should be able to boot embedded kernel in under 1 
second

• It takes a lot of elbow grease, but it’s getting 
easier



 

Resources
• Arjan Van de Ven’s talk at LPC

• “LPC: Booting Linux in 5 Seconds”
http://lwn.net/Articles/299483/

• New fastboot git tree:
• "What's in fastboot.git for 2.6.28“

http://lwn.net/Articles/299591/
• Christopher Hallinan's talk at MV Vision
• elinux wiki – Boot Time development portal

• Stuff for this presentation:
http://elinux.org/Tims_Fastboot_Tools
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