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Abstract

Real-world videos often have complex dynamics; meth-
ods for generating open-domain video descriptions should
be senstive to temporal structure and allow both input (se-
quence of frames) and output (sequence of words) of vari-
able length. To approach this problem we propose a novel
end-to-end sequence-to-sequence model to generate cap-
tions for videos. For this we exploit recurrent neural net-
works, specifically LSTMs, which have demonstrated state-
of-the-art performance in image caption generation. Our
LSTM model is trained on video-sentence pairs and learns
to associate a sequence of video frames to a sequence of
words in order to generate a description of the event in the
video clip. Our model naturally is able to learn the tem-
poral structure of the sequence of frames as well as the se-
quence model of the generated sentences, i.e. a language
model. We evaluate several variants of our model that ex-
ploit different visual features on a standard set of YouTube
videos and two movie description datasets (M-VAD and
MPII-MD).

1. Introduction

Describing visual content with natural language text has
recently received increased interest, especially describing
images with a single sentence [8, 6, 16, 17, 19,22, 27, 38].
Video description has so far seen less attention despite its
important applications in human-robot interaction, video in-
dexing, and describing movies for the blind. While image
description handles a variable length output sequence of
words, video description also has to handle a variable length
input sequence of frames. Related approaches to video
description have resolved variable length input by holistic
video representations [27, 26, 1 1], pooling over frames [37],
or sub-sampling on a fixed number of input frames [41]. In
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Figure 1. Our S2VT approach performs video description using
a sequence to sequence model. It incorporates a stacked LSTM
which first reads the sequence of frames and then generates a se-
quence of words. The input visual sequence to the model is com-
prised of RGB and/or optical flow CNN outputs.

contrast, in this work we propose a sequence to sequence
model which is trained end-to-end and is able to learn arbi-
trary temporal structure in the input sequence. Our model
is sequence to sequence in a sense that it reads in frames
sequentially and outputs words sequentially.

The problem of generating descriptions in open domain
videos is difficult not just due to the diverse set of ob-
jects, scenes, actions, and their attributes, but also because
it is hard to determine the salient content and describe the
event appropriately in context. To learn what is worth de-
scribing, our model learns from video clips and paired sen-
tences that describe in natural language the events depicted
in video. We use Long Short Term Memory (LSTM) net-
works [12], a type of recurrent neural networks (RNNs)



which have achieved great success on similar sequence-to-
sequence tasks such as speech recognition [ 1 0] and machine
translation [32]. Due to the inherent sequential nature of
videos and language, LSTMs are well-suited for generating
descriptions of events in videos.

The main contribution of this work is to propose a novel
model, S2VT, which learns to directly map a sequence of
frames to a sequence of words. Figure 1 depicts our model.
A stacked LSTM first encodes the frames one by one, tak-
ing as input the output of a Convolutional Neural Network
(CNN) applied to each input frame’s intensity values. Once
all frames are read, the model generates a sentence word
by word. The encoding and decoding of the frame and
word representations are learned jointly from a parallel cor-
pus. To model the temporal aspects of activities typically
shown in videos, we also compute the optical flow [3] be-
tween pairs of consecutive frames. The flow images are also
passed through a CNN and provided as input to the LSTM.
Flow CNN models have been shown to be beneficial for ac-
tivity recognition [29, 8].

To our knowledge, this is the first approach to video
description using a general sequence to sequence model.
This allows our model to (a) handle variable number of in-
put frames, (b) learn and use the temporal structure of the
video and (c) learn a language model to generate natural,
grammatical sentences. Our model is learned jointly and
end-to-end, incorporating both intensity and optical flow
inputs, and does not require an explicit attention model.
We demonstrate that S2VT achieves state-of-the-art perfor-
mance on three diverse datasets, a standard YouTube cor-
pus MSVD) [4] and the M-VAD [35] and MPII Movie De-
scription [26] datasets. Our implementation (based on the
Caffe [15] deep learning framework) and pre-trained mod-
els will be released open source.

2. Related Work

Early work on video captioning considered tagging
videos with metadata [ 1] and clustering captions and videos
[24, 40, 14] for retrieval tasks. Several previous methods
for generating sentence descriptions [18, 11, 34] used a two
stage pipeline that first identifies the semantic content (sub-
ject, verb, object) and then generates a sentence based on
a template. This typically involved training object, action,
scene classifiers using frame features from HOG, SIFT, Ob-
jectBank, CNN, STIP, and/or dense trajectories to identify
candidate objects and actions. They then use a probabilis-
tic graphical model to combine confidences from a lan-
guage model with the visual confidences in order to estimate
the most likely content (subject, verb, object, scene) in the
video, which is then used to generate a sentence. While this
simplified the problem, by detaching content generation,
and surface realization, it is still challenging to select a set
of objects and actions to recognize. Moreover, a template-

based approach for generating the sentence is insufficient to
model the richness of language used in human descriptions
— e.g., which attributes to use and how to combine them
effectively to generate a good description. In contrast, our
approach avoids the separation of content identification and
sentence generation by learning to directly map videos to
full human-provided sentences, learning a language model
simultaneously conditioned on visual features.

Our models take inspiration from the image caption gen-
eration models in [8, 38]. The first step in these approaches
is to generate a fixed length vector representation of an im-
age by extracting features from a CNN. The next step learns
to decode this vector into a sequence of words composing
the description of the image. While any RNN can be used
in principle to decode the sequence, the resulting long-term
dependencies can lead to inferior performance. To mitigate
this issue, LSTM models have been exploited as sequence
decoders, as they are more suited to learning long-range de-
pendencies. In addition, since we are using variable-length
video as input, we use LSTMs as sequence to sequence
transducers, following the language translation models of

[32].

In [37], LSTMs were used to generate video descriptions
by pooling the representations of individual frames. Their
technique extracts CNN features for frames in the video and
then mean-pools the results to get a single feature vector
representing the entire video. They then use an LSTM as
a sequence decoder to generate a description based on this
vector. A major shortcoming of this approach is that this
representation completely ignores the ordering of the video
frames and fails to exploit any temporal information. The
approach in [8] also generates video descriptions using an
LSTM; however, they employ a version of the two-step ap-
proach that uses CRFs to obtain semantic tuples of agent,
activity and object and then use an LSTM to translate this
tuple of words into a sentence. Moreover, they apply their
model to the limited domain of cooking videos while ours
is aimed at generating descriptions for videos “in the wild.”

Contemporaneous with our work, the approach in [41]
also addresses the limitations of [37] in two ways. First,
they employ a 3-D convnet model that incorporates spatio-
temporal motion features. To obtain spatio-temporal fea-
tures, they assume videos are of fixed size W (width) x
H (height) x T (time) and sub-divide the video volume into
non-overlapping cuboids each of dimension (z = 16,y =
12,t = 2). They extract dense trajectory features (HoG,
HoF, MBH) [39] over each volume and further concatenate
these as input to a 3-D convnet. Their 3-D convnet is trained
on large activity classification corpora UCF101, HMDBS1,
and a small portion (50k) of the Sports-1M dataset. Second,
they include an attention mechanism that learns to weight
the frame features non-uniformly conditioned on the previ-
ous word input(s) rather than uniformly weighting features



from all frames as in [37]. The 3-D convnet alone provides
limited performance improvement, but in conjunction with
the attention model it notably improves performance. We
propose a simpler approach to using temporal information
by using an LSTM to encode the sequence of video frames
into a distributed vector representation that is sufficient to
generate a sentential description. Therefore, our direct se-
quence to sequence model does not require an explicit at-
tention mechanism.

Another recent project [31] uses LSTMs to predict the
future frame sequence from an encoding of the previous
frames. Their model is more similar to the language trans-
lation model in [32], which uses one LSTM to encode the
input text into a fixed representation, and another LSTM to
decode it into a different language. However our model is
different from these previous ones, in that we do not use
different LSTMs for encoding and decoding. We employ a
single LSTM that learns both encoding and decoding based
on the inputs it is provided. This allows the LSTM to share
weights between encoding and decoding.

Other related work includes [23, 8], which uses LSTMs
for activity classification, predicting an activity class for the
representation of each image/flow frame. In contrast, our
model generates captions after encoding the complete se-
quence of optical flow images. Specifically, our final model
is an ensemble of the sequence to sequence models trained
on raw images and optical flow images.

3. Approach

We propose a sequence to sequence model for video de-
scription, where the input is the sequence of video frames
(x1,...,z,), and the output is the sequence of words
(Y1,--.,Ym). Naturally, both the input and output are of
variable, potentially different, lengths. In our case, there
are typically many more frames than words.

In our model, we estimate the conditional probability of
an output sequence (y1,...,¥m,) given an input sequence
(x1,...,zy)1.€.

(Y1, Ym|T1, oy Tn) €))

This problem is analogous to machine translation between
natural languages, where a sequence of words in the input
language is translated to a sequence of words in the output
language. Recently, [7, 32] have shown how to effectively
attack this sequence to sequence problem with an LSTM
Recurrent Neural Network (RNN). We extend this paradigm
to inputs comprised of sequences of video frames, signifi-
cantly simplifying prior RNN-based methods for video de-
scription. In the following, we describe our model and ar-
chitecture in detail, as well as our input and output repre-
sentation for video and sentences.

3.1. LSTMs for sequence modeling

The main idea to handle variable-length input and output
is to first encode the input sequence of frames, one at a time,
representing the video using a latent vector representation,
and then decode from that representation to a sentence, one
word at a time.

In the encoding phase, a portion of the conditional prob-
ability (Equation (1)) is computed by generating a fixed
length latent hidden representation (h) based on the entire
sequence of inputs (x1,...,2,). The decoding step then
computes the probabilities of the output sequence of words

W1,---+Ym) as

m
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where the distribution of p(y:|h, y1,...,¥y+—1) is given by a
softmax over all of the words in the vocabulary.

This recursive formulation can be effectively modeled by
an RNN. In our work, we use a Long Short Term Memory
RNN (LSTM), originally proposed in [12], since it is known
to learn long range dependencies more effectively than stan-
dard RNNs. The core of the LSTM model is a memory cell
¢ which, at each time step, encodes the knowledge of the
inputs that have been observed up to that point. The cell is
modulated by sigmoidal gates which have range [0, 1] and
are applied multiplicatively. If a gate evaluates to one, the
LSTM unit accepts the value input via that gate, and if the
gate evaluates to zero the value is discarded. The cell has
three gates to control the input to the cell, the memory main-
tained by the cell, and the value output. The input gate (7)
controls whether the LSTM considers its current input (x;),
the forget gate (f) allows the LSTM to forget or maintain
its previous memory (c;—1), and the output gate (o) decides
how much of the memory to transfer to the hidden state (h;).
These gates enable the LSTM to learn complex long-term
dependencies. Specifically we use the LSTM unit proposed

in [42]:

iy = c(Waize + Whihy—1 + b;) (2)
fi = o(Wapxe + Whphi—1 + by) (3)
o = 0(Waows + Whohi—1 + bo) 4
gt = ¢(Wygxy + Wighi—1 + by) (5)
e =ftOc1+itOg (6)
hy =01 © ¢(ct) @)

where o is the sigmoidal non-linearity, ¢ is the hyperbolic
tangent non-linearity, ® represents the element-wise prod-
uct with the gate value, and the weight matrices denoted by
W;; and biases b; are the trained parameters.
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Figure 2. We propose a stack of two LSTMs that learn a representation of a sequence of frames in order to decode it into a sentence
that describes the event in the video. The top LSTM layer models visual feature inputs. The second LSTM layer models language given
the text input and the hidden representation of the video sequence. We use <BOS> to indicate begin-of-sentence and <EOS> for the
end-of-sentence tag. Zeros are used as a <pad> when there is no input at the time step.

3.2. Sequence to sequence video to text

Our approach, S2VT, is depicted in Figure 2. While
[7, 32] first encode the input sequence to a fixed length vec-
tor using one LSTM and then use another LSTM to map the
vector to a sequence of outputs, we rely on a single LSTM
for both the encoding and decoding stage. This allows pa-
rameter sharing between the encoding and decoding stage.

Our model uses a stack of two LSTMs with 1000 hidden
units each. Figure 2 shows the LSTM stack unrolled over
time. When two LSTMs are stacked together, as in our case,
the hidden representation within the first (top) LSTM (hy)
is provided as the input (x;) to the second LSTM. The first
LSTM layer in our architecture is used to model the visual
frame sequence, and the second layer is used to model the
output word sequence.

Training and Inference In the first several time steps,
the first LSTM layer (Figure 2) receives a sequence of
frames and encodes them while the second LSTM layer
receives the hidden representation (h;) and concatenates it
with the input padding words (zeros), which it then encodes.
There is no loss during this stage when the LSTMs are en-
coding. After all the frames in the video clip are exhausted,
the second LSTM layer is fed the beginning-of-sentence
(<BOS>) tag, which prompts it to start decoding its current
hidden representation to a sequence of words. While train-
ing in the decoding stage, the model maximizes for the log-
likelihood of the predicted output sentence given the hidden
representation of the visual frame sequence, and the previ-
ous words it has seen. For a model with parameters 6 and
output sequence Y = (y1, ..., Ym), this can be formulated
as:

0* = argmax Z log p(Y'|h; 0) (8)
RS

This log-likelihood is optimized over the entire training
dataset using stochastic gradient descent. The loss is com-
puted only when the LSTM is learning to decode. Since
this loss is propagated back in time, the LSTM learns to
generate an appropriate hidden state representation of the
input sequence. The output (2;) of the second LSTM layer
is used to obtain the emitted word (y). We apply a softmax
function to get the probability distribution over the words y’
in the vocabulary V:

exp(IW,20)

yev exp(Wy 2¢)

p(ylze) = 5 ©

We note that, during the decoding phase, the visual frame
representation for the first LSTM layer is simply a vector
of zeros that acts as padding input. We require an explicit
end-of-sentence tag (<EOS>) to terminate each sentence
since this enables the model to define a distribution over
sequences of varying lengths. At test time, during each de-
coding step we choose the word y; with the maximum prob-
ability after the softmax (from Equation 9) until we obtain
the <EOS> token.

3.3. Video and text representation

RGB frames. Similar to previous LSTM-based im-
age captioning efforts [8, 38] and video-to-text approaches
[37,41], we apply a convolutional neural network (CNN) to
input images and provide the output of the top layer as in-
put to the LSTM unit. In this work, we report results using
the output of the fc7 layer (after applying the ReLU non-
linearity) on the Caffe Reference Net (a variant of AlexNet)
and also the 16-layer VGG model [30]. We use CNNs that
are pre-trained on the 1.2M image ILSVRC-2012 object
classification subset of the ImageNet dataset [28] and made



available publicly via the Caffe ModelZoo.! Each input
video frame is scaled to 256x256, and is cropped down to a
random 227x227 region. It is then processed by the CNN.
We remove the original last fully-connected classification
layer and learn a new linear embedding of the features to a
500 dimensional space. The lower dimension features form
the input to the LSTM.

Optical Flow. In addition to CNN outputs from raw im-
age (RGB) frames, we also incorporate optical flow mea-
sures as input sequences to our architecture. Others [23, 8]
have shown that incorporating optical flow information to
LSTMs improves activity classification. As many of our
descriptions are activity centered, we explore this option
for video description as well. We follow the approach in
[8, 9] and first extract classical variational optical flow fea-
tures [3]. We then create flow images (as seen in Figure 1)
in a manner similar to [9], by centering = and y flow values
around 128 and multiplying by a scalar such that flow values
fall between 0 and 255. We also calculate the flow magni-
tude and add it as a third channel to the flow image. We
then use a CNN [9] initialized with weights trained on the
UCF101 video dataset to classify optical flow images into
101 activity classes. The fc6 layer activations of the CNN
are embedded in a lower 500 dimensional space which is
then given as input to the LSTM. The rest of the LSTM ar-
chitecture remains unchanged for flow inputs.

Text input. The target output sequence of words are
represented using one-hot vector encoding (1-of-N coding,
where N is the size of the vocabulary). Similar to the treat-
ment of frame features, we learn and embed words to a
lower 500 dimensional space which are then given as in-
put to the LSTM stack. When considering the output of the
LSTM we apply a softmax over the complete vocabulary as
in Equation 9.

4. Experimental Setup

In the following we describe how we evaluate our ap-
proach. We first describe the datasets we use, then the eval-
uation protocol, and then the details of our models.

4.1. Video description datasets

We report results on three video description corpora,
namely the Microsoft Video Description corpus (MSVD)
[4], the MPII Movie Description Corpus (MPII-MD) [26],
and the Montreal Video Annotation Dataset (M-VAD) [35].
They form the three largest parallel corpora with open do-
main video and natural language description. While MSVD
is based on short web videos with short single sentence de-
scription, MPII-MD and M-VAD contain Hollywood movie
snippets with descriptions sourced form script data and au-
dio description/DVS.

https://github.com/BVLC/caffe/wiki/Model-Zoo

4.1.1 Microsoft Video Description Corpus (MSVD)

The Microsoft Video description corpus [4], is a collection
of about 2,000 YouTube video clips, each 10 seconds to
25 seconds in duration. Amazon Mechanical Turk workers
who were employed to collect the videos were instructed
to pick small video clips depicting a single activity. The
videos were then used to elicit short sentence descriptions
from annotators. The original corpus has multi-lingual de-
scriptions, in this work we use only the English descriptions
which amount to about 40 sentences for each video. We use
the training splits from [37] which consists of 1,200 videos
for training, 100 for validation and 670 for test. With re-
gard to text data, the training split has about 48.7k train-
ing sentences, 27.7k sentences in test and 4.3k sentences
in the validation set. We do minimal pre-processing on the
text by converting all text to lower case, tokenizing the sen-
tences and removing punctuation. This yields a vocabulary
of 12,594 words for the entire YouTube description dataset.
In each video, we sample every tenth frame as done by [37].

4.1.2 MPII Movie Description Dataset (MPII-MD)

MPII-MD [26] contains around 68,000 video clips extracted
from 94 Hollywood movies. Each clip is accompanied with
a single sentence description which is sourced from movie
scripts and audio description (AD) data. The AD or De-
scriptive Video Service (DVS) track is an additional audio
track that is added to the movies to describe explicit visual
elements in a movie for the visually impaired. Although the
movie snippets are manually aligned to the descriptions, the
data is very challenging due to the high diversity of visual
and textual content. Typically most snippets only have sin-
gle reference sentence. We use the training/validation/test
split provided by the authors and extract every fifth frame
(videos are shorter than MSVD, averaging 94 frames).

4.1.3 Montreal Video Annotation Dataset (M-VAD)

The M-VAD movie description corpus [35] is another recent
collection of about 49,000 short video clips from 92 movies.
It is similar to MPII-MD, but only contains AD data and
only provides automatic alignment. We use the same setup
as for MPII-MD.

4.2. Evaluation Metrics

Quantitative evaluation of the models are performed us-
ing the METEOR [2] metric which was originally pro-
posed to evaluate machine translation results. The ME-
TEOR score is computed based on the alignment between
a given hypothesis sentence and a set of candidate refer-
ence sentences. METEOR computes the alignment by com-
paring exact token matches, stemmed tokens, paraphrase
matches, as well as semantically similar matches using
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WordNet synonyms. This semantic aspect of METEOR
distinguishes from others such as BLEU [25], ROUGE-
L [20], or CIDEr [36]. The authors of CIDEr [36] evaluated
these four measures for image description. They showed
that METEOR is always better than BLEU and ROUGE
and outperforms CIDEr when the number of references are
small (CIDEr is comparable to METEOR when the num-
ber of references are large). In the case of MPII-MD and
M-VAD we have typically only a single reference. We thus
decided to use METEOR in all our evaluations. Our models
are evaluated on METEOR version 1.5 2. We use the code®
released with the Microsoft COCO Evaluation Server [5] to
obtain the scores for all our models reported in this paper.

4.3. Experimental details of our models

All our models take as input either the raw RGB frames
directly feeding into the CNN (as in the case of our RGB
models), or pre-processed optical flow images as described
in Section 3.3. In all of our models, we unroll the LSTM
to a fixed 80 time steps during training. We found this to
be a good trade-off between memory consumption and the
ability to provide many frames (videos) to the LSTM. It al-
lowed us to fit multiple videos in a single mini-batch — up
to 8 for AlexNet and up to 3 for flow models. We note
that 94% of the YouTube training videos satisfied this limit
(with frames sampled at the rate of 1 in 10). At test time,
we do not constrain the length of the video and our model
does not truncate video frames. For videos with fewer than
80 time steps (of words and frames), we pad the remaining
inputs with zeros. For longer videos, we truncate the num-
ber of frames to ensure that sum of the number of frames
and words is within this limit. As described above we use
pre-trained AlexNet and VGG model, which we fine-tune.
For VGG we fix all layers below fc7 to reduce memory con-
sumption and allow faster training.

We compare our sequence to sequence LSTM architec-
ture with RGB image features extracted from both AlexNet,
and the 16-layer VGG network. In order to compare fea-
tures from the VGG network with previous models, we in-
clude the performance of the mean pooled model proposed
in [37] using output of the fc7 layer from the 16 layer VGG
as a baseline. All our sequence to sequence models are
referenced in Table 1 under S2VT. Our first variant, RGB
(AlexNet) is the end-to-end model that uses AlexNet on
RGB frames. Flow (AlexNet) refers to the model that is
obtained by training on optical flow images. RGB (VGG)
refers to the model with the 16-layer VGG model on RGB
image frames. Our final model is an ensemble of the RGB
(VGG) and Flow (AlexNet) where the prediction at each
time step is a weighted average of the prediction from the
individual models.

2http://www.cs.cmu.edu/~alavie/METEOR
3https://qithub.com/tylin/cocofcaption

Model METEOR

FGM [34] 23.9 (1)
Mean pool

- AlexNet [37] 26.9 (2)
- VGG 27.7 (3)
- AlexNet COCO pre-trained [37] 29.1 (4)
- GNet [41] 28.7 (5)
Soft-attention

- GoogleNet [41] 29.0 (6)
- GoogleNet + 3D-CNN [41] 29.6 (7)
S2VT (ours)

- RGB (AlexNet) 27.9 (8)
- Flow (AlexNet) 24.3 (9)
-RGB (VGG) 29.2 (10)
- RGB (VGG) + Flow (AlexNet) 29.8 (11)

Table 1. MSVD dataset (METEOR in %, higher is better).

4.4. Related approaches

We compare our sequence to sequence models against
the factor graph model (FGM) in [34], the mean-pooled
models in [37] and the Soft-Attention models proposed in
[+1].

FGM proposed in [34] uses a two step approach to first ob-
tain confidences on subject, verb, object and scene elements
and then combines this with confidences from a language
model using a factor graph to infer the most likely (subject,
verb, object, scene) tuple in the video. It then generates a
sentence based on a template.

Mean Pool model proposed in [37] pools AlexNet fc7 layer
features across all frames to create a fixed length vector rep-
resentation of the video. Following this, it uses an LSTM
to decode the vector into a sequence of words. They fur-
ther propose training their model on the Flickr30k [13] and
MSCOCO [21] image-caption datasets and fine-tuning on
the YouTube video dataset for a significant improvement
in performance. We compare our models against their ba-
sic mean pooled model and their best model obtained from
fine-tuning on Flickr30k and COCO datasets. We also com-
pare against the GoogleNet [33] variant of the mean-pooled
model reported in [41].

Soft-Attention model in [4 1] is a combination of weighted
attention over a fixed set of video frames with input features
from GoogleNet and a 3D-convnet trained on HoG, HoF
and MBH features from an activity classification model.

5. Discussion

This section discussses the result of our evaluation
shown in Tables 1, 2, and 3.
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Approach METEOR
SMT (best variant) [26] 5.6
S2VT: RGB (VGG), ours 6.3

Table 2. MPII Movie Description dataset. METEOR in %, higher
is better.

5.1. MSVD dataset

Table 1 shows the results on the MSVD dataset. The
upper part shows results of related approaches and the lower
part different variants of our S2VT approach.

Our basic S2VT AlexNet model on RGB video frames
(line 8 in Table 1) achieves 27.9% METEOR and improves
over the basic mean pooled model proposed by [37] (line 2,
26.9%) as well as VGG mean pooled model (line 3, 27.7%).
This suggests that our sequence to sequence model even
with the less powerful AlexNet features is able to encode
video frames well and can exploit the temporal structure.

Our S2VT model which uses flow images (line 9)
achieves only 24.3% METEOR but improves the perfor-
mance of our VGG model from 29.2%(line 10) to 29.8%
(line 11), when combined. A reason for the low perfor-
mance of the flow model could be that optical flow features
even for the same activity can vary significantly with con-
text e.g. the flow features for a person eating pizza would
be very different from “a cow eating grass” although the ac-
tion performed in both cases is “eating”. It is also possible
that the model only receives very weak signals with regard
to the kind of activities depicted in YouTube videos. For
example, some commonly used verbs such as “play” can be
polysemous and can refer to playing a musical instrument
(“A man is playing a guitar”) or playing a sport (“A boy is
playing golf”). However, integrating RGB with the Flow
model allows the LSTM to relate actions with the objects
improving the quality of the descriptions.

Our ensemble using both RGB and Flow achieves a score
comparable and slightly better than the best model proposed
in [41], Soft-attention with GoogleNet + 3D-CNN (line 7).
The edge that our model has is only modest, this is likely
due to the much stronger 3D-CNN features (as the differ-
ence to GoogleNet alone, line 6, suggest). Thus, the clos-
est comparison between the Soft Attention Model [41] and
our S2VT is arguably ours with VGG (line 10) vs. their
GoogleNet only model (line 6). Figure 3 shows descrip-
tions generated by our model on some of the videos in the
MSVD YouTube video dataset. We note that many of the
descriptions generated are relevant. In the next section we
evaluate on the much more challenging movie description
datasets.

Approach METEOR
Soft-attention (GNet + 3D-CNN) [41]* 4.1
S2VT: RGB (VGG), ours

- trained on M-VAD 5.6
- trained on MPII-MD & M-VAD 6.7

Table 3. M-VAD dataset. METEOR in %, higher is better. *We
note that we report results using the predictions provided by [41]
but using the COCO Evaluation scripts.

5.2. Movie description datasets

For the much larger and more challenging datasets MPII-
MD and M-VAD we use our single best model, namely
S2VT trained on RGB frames and VGG. On both datasets
we clearly outperform the state of the art on this dataset. For
MPII-MD, reported in Table 2, we improve over the SMT
approach from [26] from 5.6 to 6.3. Note that we compute
METEOR on the all variants examined in [26], and only
report the best variant with respect to METEOR.

On M-VAD we achieve 5.6% METEOR which signif-
icantly outperforms the Soft-attention (GNet + 3D-CNN)
[41] which achieves 4.1%. *

In addition to training only on the respective training
sets, we also joined the training sections of both datasets in
order to exploit more data for learning the input encoding of
frames. This increases the performance on M-VAD further
to 6.7% METEOR. In Figure 4 we present descriptions gen-
erated by the combined model on some sample clips from
the M-VAD dataset.

Additional examples of video clips and generated sen-
tences for the MPII-MD dataset can be viewed at https:
//youtu.be/XTg0huTxj1M and the M-VAD dataset can
be viewed at https://youtu.be/pEROmjzSYaM.

6. Conclusion

This paper proposed a novel approach to movie descrip-
tion. In contrast to related work, we construct video descrip-
tions using a sequence to sequence model, where frames are
first read sequentially and then words are generated sequen-
tially. This allows us to handle variable-length input and
output while simultaneously modeling the temporal struc-
ture. Our model achieves state-of-the-art performance on
the MSVD dataset, and outperforms related work on two
large and very challenging movie description datasets. De-
spite its conceptual simplicity, our model significantly bene-
fits from additional data, suggesting that it has a high model
capacity, and is able to learn complex temporal structure in
the input and output sequences on challenging movie de-
scription datasets.

441 report 5.6% for their soft attention model (GNet + 3D-CNN) and
their best result is 5.73% METEOR with non-attention (GNet + 3D-CNN)
using a different evaluation script.


https://youtu.be/XTq0huTXj1M
https://youtu.be/XTq0huTXj1M
https://youtu.be/pER0mjzSYaM

Correct descriptions. Relevant but incorrect Irrelevant descriptions.
descriptions.

"

S2VT: A herd of zebras are walking in a field. |S2VT: A man is cutting a piece of a pair of a paper.

S2VT: A cat is trying to get a small board.

Y]

S2VT: A man is shooting a gun at a target. S2VT: A man is spreading butter on a tortilla. | S2VT: A black clip to walking through a path.
(a) (b) (c)
Figure 3. MSVD YouTube video dataset. We present examples where S2VT model (RGB on VGG net) generates correct descriptions
involving different objects and actions for several videos (column a). The center column (b) shows examples where the model predicts
relevant but incorrect descriptions. The last column (c) shows examples where the model generates descriptions that are irrelevant to the
event in the video.

.

(4) (®)

™) @ 3)

(6a) (6b)
Soft Attention (GNet+3D-conv_ ): S2VT (MPII+MVAD): DVS: (1) now, at night, our view glides over a highway,
(1) at night, SOMEONE and SOMEONE (1) Now at a street a car pulls up a street and a its lanes glittering from the lights of traffic below.
step into the parking lot. group of a large man in a distance. (2) someone's suv cruises down a quiet road.
(2) now the van drives away (2) Someone pulls off his car and pulls off. (3) then turn into a parking lot .
(3) they drive away (3) Someone sits in a car. (4) aneon palm tree glows on a sign that reads
(4) they drive off (4) Someone sits in a car, and walks up to the street. 0asis motel
(5) they drive off (5) Someone sits on the bench , then sits in a driveway. (5) someone parks his suv in front of some rooms
(6) at the end of the street, SOMEONE  (6) Someone and someone step out of the car. (6) he climbs out with his briefcase , sweeping his
sits with his eyes closed . Someone and someone walk away. cautious gaze around the area.

Figure 4. M-VAD Movie corpus: We show a representative frame from 6 contiguous clips from the movie “Big Mommas: Like Father, Like
Son”. Soft Attention (GNet + 3D-Conv) are sentences from the model in [41]. S2VT (MPII+MVAD) represents the sentences generated
by our model trained on both the MPII and M-VAD datasets. DVS represents the original ground truth sentences in the dataset for each
clip.
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