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Abstract

We develop a new edge detection algorithm that tack-
les two important issues in this long-standing vision prob-
lem: (1) holistic image training and prediction; and (2)
multi-scale and multi-level feature learning. Our proposed
method, holistically-nested edge detection (HED), performs
image-to-image prediction by means of a deep learning
model that leverages fully convolutional neural networks
and deeply-supervised nets. HED automatically learns rich
hierarchical representations (guided by deep supervision on
side responses) that are important in order to resolve the
challenging ambiguity in edge and object boundary detec-
tion. We significantly advance the state-of-the-art on the
BSD500 dataset (ODS F-score of .782) and the NYU Depth
dataset (ODS F-score of .746), and do so with an improved
speed (0.4 second per image) that is orders of magnitude
faster than some recent CNN-based edge detection algo-
rithms.

1. Introduction

In this paper, we tackle the problem of detecting edges
and object boundaries in natural images, which is both fun-
damental and of great importance to a variety of computer
vision areas ranging from traditional tasks such as visual
saliency, segmentation, object detection/recognition, track-
ing and motion analysis, medical imaging, structure-from-
motion and 3D reconstruction, to modern applications like
autonomous driving, mobile computing, and image-to-text
analysis. It has been long understood that precisely local-
izing edges in natural images involves visual perception of
various “levels” [16, 25]. A relatively comprehensive data
collection and cognitive study [26] shows that while dif-
ferent subjects do have somewhat different preferences re-
garding where to place the edges and boundaries, there was
nonetheless impressive consistency between subjects, e.g.
reaching F-score 0.80 in the consistency study [26].

The history of computational edge detection is extremely

Zhuowen Tu
Dept. of CogSci and Dept. of CSE
University of California, San Diego
9500 Gilman Drive, La Jolla, CA 92093

ztu@ucsd.edu

(g) Canny: 0 = 2
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Figure 1. llustration of the proposed HED algorithm. In the first row:
(a) shows an example test image in the BSD500 dataset [26]; (b) shows its
corresponding edges annotated by human subjects; (c) displays the result
by HED. In the second row: (d), (e), and (f), respectively, show side edge
responses from layers 2, 3, and 4 of our convolutional neural networks. In
the third row: (g), (h), and (i), respectively, show edge responses from the
Canny detector [4] at the scales 0 = 2.0, 0 = 4.0, and 0 = 8.0. HED
show its clear advantage in consistency over Canny.

(i) Canny: 0 =8

rich; we now highlight a few representative works that have
proven to be of great practical importance. Broadly speak-
ing, one may categorize works into a few groups such as
I: early pioneering methods like the Sobel detector [18],
zero-crossing [25, 35], and the widely adopted Canny de-
tector [4]; methods driven by II: information theory on top
of features arrived at through careful manual design, such
as Statistical Edges [20], Pb [26], and gPb [!]; and III:
heavily learning-based methods that are still reliant on fea-
tures of human design, such as BEL [5], Multi-scale [28],
Sketch Tokens [22], and Structured Forests [60]. In addition,
there has been a recent wave of development using Con-
volutional Neural Networks that emphasize the importance
of automatic hierarchical feature learning, including N*-
Fields [9], DeepContour [32], DeepEdge [2], and CSCNN
[17]. Prior to this explosive development in deep learn-
ing, the Structured Forests method (typically abbreviated



SE) [6] emerged as one of the most celebrated systems for
edge detection, thanks to its state-of-the-art performance on
the BSD500 dataset [26] (with, e.g., F-score of .746) and
its practically significant speed of 2.5 frames per second.
Recent CNN-based methods [9, 32, 2, 17] have demon-
strated promising F-score performance improvements over
SE. Even so, there remains room for improvement in these
CNN-based methods, certainly in F-score performance, but
even more so in speed — at present, time to make a pre-
diction ranges from several seconds [9] to a few hours [2]
(even when using modern GPUs).

Here, we develop an end-to-end edge detection system,
holistically-nested edge detection (HED), that automati-
cally learns the type of rich hierarchical features that are
crucial if we are to approach the human ability to resolve
ambiguity in natural image edge and object boundary de-
tection. We acknowledge that it is slightly inaccurate to
use the term “nested” in referring to those meaningful edge
maps produced as side outputs — we intend to emphasize
that many parts of the path along which each prediction is
made are common to each of these edge maps, with succes-
sive edge maps including more. This integrated learning of
hierarchical features is in distinction to previous multi-scale
approaches [38, 39, 28] in which scale-space edge fields are
neither automatically learned nor connected hierarchically.
Figure 1 gives an illustration of an example image together
with the human subject ground truth annotation, as well as
results by the proposed HED edge detector (and also the re-
sponses in the individual layers), and results from the Canny
edge detector with different scale parameters. Canny de-
tection results at different scales are not only not directly
connected, they also exhibit edge shift and inconsistency.

The proposed holistically-nested edge detection (HED)
tackles two critical issues: (1) holistic image training and
prediction; and (2) nested multi-scale feature learning, in-
spired by the fully convolutional neural networks [24] and
by the deeply-supervised nets [21] that touch on, respec-
tively, image-to-image classification and deep layer super-
vision (to “guide” early classification results). We find that
the favorable characteristics of these underlying techniques
manifest in HED being both accurate and computationally
efficient.

2. Holistically-Nested Edge Detection

In this section, we describe in detail the network struc-
ture of our proposed edge detection system. We start by dis-
cussing related neural-network-based approaches, particu-
larly those that emphasize multi-scale and multi-level fea-
ture learning. The task of edge and object boundary detec-
tion is intrinsically challenging. After decades of research,
there have emerged a number of properties that a researcher
in the field might generally agree are key and that are likely
to play a role in a successful system: (1) carefully designed

and/or learned features [26, 5], (2) multi-scale response fu-
sion [38, 30, 28], (3) engagement of different levels of vi-
sual perception [16, 25, 37, 15] such as mid-level Gestalt
law information [7], (4) structural information [6] and con-
text [36], (5) holistic image prediction [23], (6) 3D geome-
try [13], and (7) occlusion boundaries [14].

The Structured Forests method [6] primarily focusses
on three of these aspects: using a large number of manu-
ally designed features (property 1), fusing multi-scale re-
sponses (property 2), and incorporating structural informa-
tion (property 4). A recent wave of work using CNNs for
patch-based edge prediction [9, 32, 2, 17] share an alter-
native common thread that focusses on three aspects: au-
tomatic feature learning (property 1), multi-scale response
fusion (property 2), and possible engagement of different
levels of visual perception (property 3). However, due
to the lack of deep supervision (that we include in our
method), the multi-scale responses produced at the hidden
layers in [2, 17] are less semantically meaningful, since
feedback must be back-propagated through the intermedi-
ate layers. More importantly, their patch-to-pixel or patch-
to-patch strategy results in significantly downgraded train-
ing and prediction efficiency. With some slight abuse of the
term “holistically-nested”, we emphasize here that we are
producing an end-to-end edge detection system, a strategy
inspired by fully convolutional neural networks [24], but
with additional deep supervision on top of trimmed VGG
nets [34] (shown in Figure 3). In the absence of deep super-
vision, a fully convolutional network [24] (FCN) produces
a less satisfactory result (e.g. F-score .745 on BSD500)
than HED, since edge detection demands highly accurate
edge pixel localization. One thing worth mentioning is that
our image-to-image training and prediction strategy still has
not explicitly engaged contextual information, since con-
straints on the neighboring pixel labels are not directly en-
forced in HED. In addition to the speed gain over patch-
based CNN edge detection methods, the performance gain
is largely due to the following three aspects: (1) FCN-like
image-to-image training allows us to simultaneously train
on significantly larger amount of samples; (2) deep super-
vision in our model guides the learning of more transparent
features; (3) upsampling in the side-output layers implicitly
introduce guides the learning of more global information.

2.1. Existing multi-scale and multi-level NN

Due to the nature of hierarchical learning in the deep
convolutional neural networks, the concept of multi-scale
and multi-level learning might differ from situation to sit-
uation. For example, multi-scale learning can be “inside”
the neural network, in the form of increasingly larger recep-
tive fields and downsampled (strided) layers. In this “in-
side” case, the feature representations learned in each layer
are naturally multi-scale. On the other hand, multi-scale
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Figure 2. Nlustration of different multi-scale deep learning settings. (a) is multi-stream architecture; (b) is skip-layer net architecture; (c) is a single model
running on multi-scale inputs; (d) separate training of different networks; (e) is our proposed holistically-nested architectures, where multiple side outputs

are added.

learning can be “outside” of the neural network, for exam-
ple by “tweaking the scales” of input images. While these
two variants have some notable similarities, we have seen
both of them applied to different tasks.

We continue by next formalizing the possible configura-
tions of multi-scale deep learning into 4 categories, namely,
multi-stream learning, skip-net learning, a single model run-
ning on multiple inputs, and training of independent net-
works. Having these possibilities in mind will help make
clearer the ways in which our proposed holistically-nested
network approach differs from previous efforts and will help
to highlight the important benefits in terms of representation
and efficiency.

Multi-stream learning [3] [27] A typical multi-stream
learning architecture is illustrated in Fig 1 (a). Note that
the multiple (parallel) network streams have different num-
bers of parameters and receptive field sizes, and thus cor-
respond to multiple scales. Input data are simultaneously
fed into multiple streams, after which the concatenated fea-
ture responses produced by the various streams are fed into
a global output layer to produce the final result.

Skip-layer network learning Examples of this form of
network are [24][2][31] [9]. The key concept in “skip-
layer” network learning is shown in Fig 1 (b). Instead of
training multiple parallel streams, the topology for the skip-
net architecture centers on a primary stream. Links are
added to incorporate the feature responses from different
levels of the primary network stream, and these responses
are then combined in a shared output layer.

The common point in the two settings above is that, in
both of the architectures, there is only one output layer so a
single prediction is produced. However, in edge detection, it
is often favorable (and, indeed, prevalent) to obtain multiple
predictions and average the edge maps together.

Single model on multiple inputs To get multi-scale pre-
dictions, one can also run a single network on multiple
(scaled) input images, illustrated in Fig 1 (c). This strat-
egy can happen at both the training stage (as data aug-
mentation) and at the testing stage (as “ensemble testing”).
This approach is particularly common in non-deep-learning
based methods [0]. Note that ensemble testing impairs
the prediction efficiency of learning systems, with deeper
models[2][9] possibly suffering more.

Training independent networks As an extreme variant to

Fig 1 (a), one might pursue Fig 1 (d), in which multi-scale
predictions are made by training multiple independent net-
works with different depths and different output loss layers.
This is clearly impractical considering the factor by which
this duplication would multiply the amount of resources re-
quired for training.

Holistically-nested networks We list all of these vari-
ants to help clarify the distinction between existing ap-
proaches and our proposed holistically-nested network ap-
proach, illustrated in Fig 1 (e). As one may already notice,
there is significant redundancy in existing approaches, both
as regards representational power and computational effi-
ciency. Our proposed holistically-nested network is a rela-
tively simple variant that is able to produce predictions from
multiple scales. The architecture can be interpreted as a
“holistically-nested” version of the “independent networks”
approach in Fig 1 (d); this perspective is what motivates our
name. Our architecture comprises a single-stream deep net-
work with multiple side outputs. We note that this archi-
tecture resembles several previous works, particularly the
deeply-supervised net approach in which the authors show
that hidden layer supervision can improve both optimization
and generalization for image classification tasks.

2.2. Formulations

Here we formulate our approach for edge prediction. We
denote our input training data set by S = {(I;,G;),i =

.. N'}, where sample I; denotes the raw input image and
G; denotes the corresponding ground truth binary edge map
for sample I,. We subsequently drop the subscript ¢ for
notational simplicity, since we consider each image holis-
tically and independently. The goal of our edge detection
framework is to learn feature layers that minimize the side
output layer classification error. Suppose in the network we
have M side-output layers. Each side-output layer is asso-
ciated with a classifier, in which the corresponding weights
are denoted as w = (w1 ... w(M)). For simplicity, we
denote the collection of all the other network layer parame-
ters as W. We consider the objective function

M
Z amgside (17 G'7 W7 W(nl))

m=1
M (l)

= Z amA(G™ G W, w),

m=1

Eside(I7 G7 W7 W) =



where (4. denotes the image-level loss function for side-
outputs, G(™) is the (predicted) edge map produced by
side-output layer m, upsampled to original size when nec-
essary, A is an “energy function”, (e.g. cross-entropy) com-
puting the loss of the predicted edge map over the ground
truth target, and o, is a hyper-parameter controlling the
loss weight for each individual side-output layer.

Under the hood of image-to-image training, the loss
function is computed over all pixels in an image sample I.
For a typical natural image, the distribution of edge/non-
edge pixels is heavily biased: 90% of the ground truth is
non-edge. A cost-sensitive loss function is proposed in
[17], where additional trade-off parameters are introduced
for biased sampling. Here instead we use a simpler strategy
to automatically balance the loss between positive/negative
classes. We introduce a class-balancing weight 3; on a per-
pixel term basis, where index j is over the image spatial
dimensions of image I. Then we use this class-balancing
weight as a simple way to offset this imbalance between
edge/non-edge. Specifically we define the following class-
balanced cross-entropy loss function used in Equation (1)

I
A== G;logPr(G; =1],1;, W,w)
j=1
I
—(1-5;)> _(1-G;)logPr(G; = 0],1;, W, w),
j=1
2)
where we denote |I|,|I|— and |I|; as total number of all
pixels, non-edge (negative) pixels and edge (positive) pixels

in image I, respectively. 3; = % (when 1 is a positive)

and1 — §; = % (when I is a negative).

2.3. Trimmed Network for Edge Detection

The choice of hierarchy for our framework deserves
some thought. We need the architecture (1) to be deep, so
as to efficiently generate perceptually multi-level features;
and (2) to have multiple stages with different strides, so as to
capture the intrinsic scales of edge maps. We must also keep
in mind the potential difficulty in training such deep neural
networks with multiple stages when starting from scratch.

Recently, VGGNet [34] achieved state-of-the-art perfor-
mance in the ImageNet image classification challenge. We
find that the VGGNet architecture design is a satisfactory
starting point, since it is very deep (16 convolutional lay-
ers), dense (stride-1 convolutional kernels), and has multi-
ple stages (five 2-strided downsampling layers). Other re-
cent work [2] demonstrates that fine-tuning deep neural net-
works pre-trained on general image classification problem
can be helpful to a low-level edge detection task. We find
that the architecture designed in VGGNet is well-suited to
our needs, although we do make the following modifica-
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Figure 3. Illustration of the our network architecture for edge detection,
highlighting the error backpropagation paths. Side-output layers are in-
serted after convolutional layers. Deep supervision is imposed at each side-
output layer, guiding the side-outputs towards edge predictions with the
characteristics we desire. The outputs of HED are multi-scale and multi-
level, as the side-output plane size becomes smaller, and the receptive field
size becomes larger. In the setting of edge detection, one weighted-fusion
layer can be added to automatically learn how to combine outputs from
multiple scales. The whole network is trained with multiple error propaga-
tion paths (dashed lines).

tions: (a) we connect our side output layer to the last convo-
lutional layer in each stage, respectively convl_1, conv2_2,
conv3_3, conv4_3, conv5_3. The side-output layer is im-
plemented as a convolutional layer with kernel size 1 and
number of outputs 1. Therefore the receptive field size of
each of these convolutional layers is identical to the corre-
sponding side-output layer; (b) we cut the last stage of VG-
GNet, including all the fully connected layers and the 5th
pooling layer. The reason for “trimming” the VGGNet is
two-fold. Firstly, because we are expecting meaningful side
outputs with different scales, a layer with stride 32 yields a
too-small output plane with the consequence that the inter-
polated prediction map will be too fuzzy to utilize. Second,
the fully connected layers (even when recast as convolu-
tions) are computationally intensive, so that trimming pool-
ing layer 5 and beyond can significantly reduce the mem-
ory/time cost during both training and testing. At the end
of this process, our HED network architecture has 5 stages,
with strides 1, 2, 4, 8 and 16, respectively, and with dif-
ferent receptive field sizes, all nested in the VGGNet. See
Table 1 for a summary of configurations of receptive field
and neuron stride.

2.4. Weighted-fusion Layer

One natural question is how to best utilize the side-
outputs produced by our framework; while the most
straightforward approach is to simply average all the edge
map predictions, one can also learn a classifier to optimize
the combination weights, either at pixel level (locally con-
nected) or at image level. We add a “weighted-fusion” layer



Table 1. The receptive field and stride size in VGGNet [34]. The
bolded convolutional layers are linked to additional side-output
layers.

layer | ¢e12 pl €22 p2 ¢33
rf size 5 6 14 16 40
stride 1 2 2 4 4
layer | p3 ¢43 p4 53 pS
f size | 44 92 100 196 212
stride 8 8 16 16 32

to the network and link all the side-output layer predictions
and (simultaneously) learns the fusion weight during train-
ing. Denoting this fusion weight as h € RM, our loss func-
tion at the fusion layer Ly, becomes

M
Live(L,G, W, w) = A 7y G, G; W, w)
m=1

With A still being the class-balancing cross-entropy loss
function as defined in Equation (2). The overall loss func-
tion then becomes

‘C(Ia Gv Wa W) = ﬁside (Ia Ga Wa W) + quse(L G7 Wa W)

We train this loss via standard back-propagation stochastic
gradient descent. See section 3 for detailed hyper-parameter
and experiment settings.

Hidden-layer supervision Since we incorporate a
weighted-fusion output layer that connects each side-
output layer, one might argue that the hidden supervision
terms (specifically, fgge(I, G, W, w)) are unnecessary
in this formulation, since now the whole network is
path-connected and the output-layer parameters can be
updated by back-propagation through the weighted-fusion
layer error propagation path. In contrast to this view, we
argue that deep supervision is important to obtain desired
edge maps. The key characteristic of our proposed network
is that each network layer is supposed to play a role as a
singleton network responsible for producing an edge map
at a certain scale. We show qualitative results based on the
two variants discussed above: training with both weighted-
fusion supervision and deep supervision, or training with
weighted-fusion supervision only. We observe that with
deep supervision, the nested side-outputs are meaningful
and agree with expectations, insofar as the successive
edge map predictions are progressively coarse-to-fine,
local-to-global. On the other hand, training with only the
weighted-fusion output loss gives edge predictions that lack
any such discernible order. We also find that many critical
edges are lost at the high-level side output. Our claim is
further supported quantitatively by the experimental results
on benchmark dataset, which will be discussed later.

Figure 4. Two examples illustrating how deep supervision helps side-
output layers produce multi-scale dense predictions. Note that in the left
column, the side outputs become progressively coarser and more “global”,
while critical object boundaries are preserved. In the right column, the
predictions tends to lack any discernible order (e.g. in layers 1 and 2), and
many boundaries are lost in later stages.

3. Experimental Framework

Model Parameters In contrast to fine-tuning a classifica-
tion net to perform a high-level computer vision task like
fine-grained image classification or semantic segmentation,
adapting the classification net to a low-level edge detection
task is much more challenging. Differences in data distri-
bution, ground truth distribution, and loss function all con-
tribute to difficulties in network convergence, even with the
initialization of the pre-trained model. We first use a vali-
dation set and follow the evaluation strategy used in [6] to
tune the deep model hyper-parameters. The parameters we
tune (and the values we choose) are: the size of the mini-
batch (10), learning rate (1e-6), the loss-weight «,,, for each
side-output layer (1), momentum (0.9), initialization of the
nested filters (0), initialization of fusion layer weight (1/5),
weight decay (0.0002), training iterations (10,000; reduce
learning rate by 1/10 after 5,000). We focus on the con-
vergence behavior of the network, since we observe that
whenever training converges, the deviations in F-score on
the validation set tend to be very small. In order to inves-
tigate whether including additional nonlinearity helps, we
also consider a setting in which we add an additional layer
(with 50 filters and a ReLU) before each side-output layer;
we find that performance here is worse. On another note, we
observe that our nested multi-scale framework is insensitive
to input image scales; during our training process, we take
advantage of this by resizing all the images to 400 x 400
to reduce GPU memory usage and to take advantage of ef-
ficient batch processing. In later experiments, we fix the



values of all parameters discussed above and explore other
variants of HED on the fully-independent test set.
Consensus Sampling In our approach, we duplicate the
ground truth at each side-output layer and resize the (down-
sampled) side output to its original scale. Thus there exists
a mismatch in the high-level side-outputs: The edge pre-
dictions are coarse and global, while the ground truth still
contains many weak edges that could even be considered as
noise. This issue leads to problematic convergence behav-
ior, even with the help of a pre-trained model. We observe
that this mismatch leads to back-propagated gradients that
explode at the high-level side-output layers. We can, how-
ever, adjust how we make use of the ground truth labels
in the BSDS dataset to combat this issue. Specifically, the
ground truth labels are provided by multiple annotators and
thus, implicitly, greater labeler consensus indicates stronger
ground truth edges. We adopt a relatively brute-force solu-
tion: we assign a pixel a positive label if and only if it is
labeled as positive by at least three annotators, and put all
other positively labeled pixels with only one or two labeler
consensus into the negative set. This addresses the problem
of gradient explosion in high level side-output layers. For
low level layers, reducing positive pixels brings additional
robustness and prevents the network from being distracted
by weak edges. Though not fully explored in our paper, we
believe that careful handling of consensus levels of ground
truth edge maps can lead to further improvement.

Data Augmentation Data augmentation has proven to be a
crucial technique in deep networks. We rotate the images to
16 different angles and crop the largest rectangle in the ro-
tated image; we also flip the image at each angle, thus aug-
menting the training set by a factor of 32. We find that aug-
menting the data to different scales is unnecessary. During
testing we operate on an image in its original scale. We also
note that “ensemble testing” (testing on rotated/flipped im-
ages and averaging the prediction) yields no improvements
in either F-score or average precision.

3.1. Architecture alternatives

FCN and skip-layer architecture The topology used in the
FCN model differs from our HED model in several aspects.
As we have discussed, while FCN reinterprets the classifi-
cation nets for pixel-wise prediction, it has only one single
stream output. In FCN, the skip net structure is a DAG that
combines coarse, high layer information with fine low layer
information, without explicitly producing multi-scale out-
put predictions. We explore how this architecture can be
used for the edge detection task, under exactly the same ex-
perimental setup as our HED model. We first try to directly
apply the FCN-8s model by replacing the loss function with
cross-entropy for edge detection. This results in a model
that achieves ODS=.725, OIS=.743 and AP = .680. This
unsatisfactory result can be expected since this architecture

is still not fine enough. We further explore whether the per-
formance can be improved by adding even more links from
low-level layers. We then create an FCN-2s network that
adds additional links from the pooll and pool2 layers, the
performance improves to ODS=.745, OIS=.765, AP=.730.
Still, directly applying FCN skip-net topology falls behind
our proposed holistically nested architecture in edge detec-
tion tasks. We feel that, with heavy tweaking of the FCN,
one might also be able to achieve competitive performance
on edge detection, but we value the multi-scale side-outputs
for their ability to provide additional flexibility, especially
for edge detection.

Different pooling function Previous work [2] suggests that
different pooling functions can have a major impact on
the performance for edge detection. We conduct a con-
trolled experiment in which all pooling layers are replaced
by average pooling. In contrast to the observation in [2],
we find using average pooling decrease the performance to
ODS=.741.

In-network linear interpolation Built on top of [24],
side-output prediction upsampling is implemented with in-
network deconvolutional layers. We fix all the deconvolu-
tional layers to linear interpolation. Although [24] points
out that one can learn arbitrary interpolation functions, we
find that learned deconvolutions provide no noticeable im-
provements in our experiments.

Training without deep supervision As we have discussed
in previous section, the deep supervision plays an impor-
tant role in HED. We test the model trained with/without
deep supervision imposed. The model trained without deep
supervision consistently performs worse (At least .01 in F-
score and .02 in AP).

3.2. Implementation

We implement our framework in publicly available Caffe

Library and build on top of the publicly available imple-
mentations of FCN[24] and DSN[21], thus relatively little
engineering hacking is required. In our HED system the
whole network is fine-tuned from an initialization with the
VGG-16 Net pre-trained model.
Running time Training takes about 7 hours on a sin-
gle NVIDIA K40 GPU. Testing is also efficient. For an
320 x 480 image, HED takes 400 ms to make an edge pre-
diction, including the interface overhead. Many edge de-
tectors improve performance by sacrificing efficiency (for
example, by testing on input images from multiple scales
and averaging the results).

4. Results

In this section we report the performance of our proposed
algorithm.
BSDS500 dataset We perform the majority of the exper-
iments on the Berkeley Segmentation Dataset and Bench-
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Figure 5. Results on BSDS500 dataset. Our proposed HED framework
achieve the best result (ODS=.782). Compared to several recent CNN-
based edge detectors, our approach is also orders of magnitude faster. See
Table 2 for detailed information.

Table 2. Results on BSDS500. *BSDS300 results,GPU time
ODS OIS AP FPS

Human .80 .80 - -
Canny .600 .640 580 | 15
Felz-Hutt [8] 610  .640 560 | 10
BEL [5] .660% - - 1/10

gPb-owt-ucm [1] 726 757 696 | 1/240
Sketch Tokens [22] | .727 .746 .780 | 1

SCG [29] 739 758 773 | 1/280
SE-Var [6] 746 767 803 | 2.5
OEF [12] 749 772 817 | -
DeepNets [19] 738 759 758 | 1/5%
N4-Fields [9] 753 769 784 | 1/67
DeepEdge [2] 753 772 807 | 1/10%%
CSCNN [17] 756 775 798 | -
DeepContour [32] 756 773 797 1/307
HED (ours) 782 804 .833 ?/?g’

mark (BSDS 500) [1]. The dataset contains 200 training,
100 validation and 200 testing images. Each image has hand
annotated ground truth contours. Edge detection accuracy
is evaluated using three standard measures: fixed contour
threshold (ODS), per-image best threshold (OIS), and the
average precision (AP). Prior to evaluation, we apply a stan-
dard non-maximal suppression technique to our edge maps
to obtain thinned edges. The results are shown in Figure 5
and Table 2.

Late merging to boost average precision We find that the
weighted-fusion layer output gives best performance in F-
score. However the average precision degrades compared
to directly averaging all the side outputs. This is due to the
fact that during training we are focusing on “global” object
boundaries for the fusion-layer weight learning. However,

Table 3. Results of single and averaged side output in HED on
the BSDS 500 dataset. Each individual side output contributes to
the fused/averaged result. Note that the learned weighted-fusion
(Fusion-output) achieves best F-score, while directly averaging all
of the five layers (Average 1-5) produces better average precision.
Merging those two readily available outputs further boost the per-
formance.

ODS | OIS AP

Side-output 1 595 | 620 582
Side-output 2 .697 715 673
Side-output 3 738 | 756 717

Side-output 4 740 759 .672
Side-output 5 .606 | .611 429
Fusion-output 782 .802 187

Average 1-4 760 784 .800
Average 1-5 774 797 822
Average 2-4 766 788 798
Average 2-5 777 .800 814

Merged result | .782 | .804  .833

because in HED all the side outputs are readily available
after a single test, we can merge the fusion layer output
with the directly averaged counterpart, at no extra cost, to
compensate for the loss in average precision. This simple
heuristic gives us the best performance across all measures
that we report in Figure 5 and Table 2.

More training data Deep models drive advances in com-
puter vision due to large learning capacity and huge training
data. Unfortunately, in edge detection, we are limited by the
number of training images available in the dataset. Here we
want to explore whether adding more training data will al-
low us to further improve the results. To do this, we expand
the training set by random sampling 100 images from the
testing set. We then evaluate the result on the rest 100 test
images. We report the averaged result over 5-fold trials.

From the result we observe that by only adding 100 train-
ing images, the performance improves from ODS=.782 to
ODS=.797 (£.003), and nearly touches the human bench-
mark. We believe that, with even larger annotated dataset,
the performance can be further improved.

Results discussion Table 2 and Figure 5 lists the precision-
recall results obtained by HED relative to other competing
methods. Table 3 summarizes the results produced by each
individual side-output at different scales, as well as differ-
ent combinations of the multi-scale edge maps. We want to
emphasize that all the side-output predictions are obtained
all in one pass, which enables us to fully investigate dif-
ferent configurations of combining the outputs at no extra
cost. There are several interesting observations from the re-
sults. For instance, combination of predictions from multi-
ple scales yields better performance, and all the side-output
layers contribute to the result, either in F-score or averaged
precision. To see this, in Table 3, the side-output layer 1



and layer 5 (the lowest and highest layers) achieve similar
relatively low performance. One might expect these two
side-output layers to not be useful in the averaged results.
However this turns out not to be the case — for exam-
ple, the Average 1-4 achieves ODS=.760 and incorporating
the side-output layer 5, the averaged prediction achieves an
ODS=.774. We find similar phenomenon when considering
other ranges. As mentioned above, the predictions obtained
using different combination strategies are complementary,
and a late merging of the averaged predictions with learned
fusion-layer predictions leads to the best result.

NYUDv2 Dataset The NYU Depth (NYUD) dataset [33]
has 1449 RGB-D images. The dataset was used for edge
detection in [29] and [10]. Here we follow the [6] and per-
form the experiment on the data set processed by [10]. the
NYUD dataset is split into 381 training, 414 validation, and
654 testing images. All images are cropped to the same
dimension, thus we train our network on full resolution im-
ages. Finally following the experimental setup in [ 1] and
[6], the maximum tolerance allowed for correct matches of
edge predictions to ground truth during evaluation increases
from .0075 to .011.

[F=.746] HED (ours)
[F=710] SE+NG+
[F=.695] SE

0.1H [F=.685] gPb+NG

[F=.655] Silberman
[F=.629] gPb-owt-ucm

L L L L L L
0 0.1 0.2 03 04 05 06 07 08 09 1

Figure 6. Precision/recall curves on NYUD dataset. Holistically-Edge
Detection (HED) trained with RGB and HHA feature achieves the best
result (ODS=.746). See Table 4 for additional information.

Table 4. Results on the NYUD dataset [33] 1GPU time
ODS | OIS AP FPS
gPb-ucm .632 .661 .562 1/360
Silberman [33] | .658 .661 - 1/360+
gPb+NG[10] .687 716 .629 1/375

SE[6] .685 699 679 |5

SE+NG+[11] 710 123 738 1/15
HED-RGB 720 J34 734 | 2.5¢%
HED-D .682 .695 702 | 2.5¢%

HED-RGBD 746 761 786 1t

Depth information encoding Following the success in [11]
and [24], we leverage the depth information by utilizing the

HHA feature, which the depth information is embedded into
three-channel feature, i.e. horizontal disparity, height above
ground, and the angle of the local surface normal with the
inferred gravity direction. We use the same architectures
and parameter settings as the experiments on BSDS 500.
We train two different models in parallel, on RGB images
and HHA feature images, and report the results respectively.
Then we directly average the RGB and HHA predictions as
our final result leveraging RGB-D information. We have
tried other approaches to incorporate the depth information,
for example, train on the raw depth channel, or concate-
nate the depth channel with the RGB channel before the first
convolutional layer. None of these attempts yields compet-
itive performance compared to using HHA. The effective-
ness of HHA feature shows that, although deep neural net-
works are capable of automatic feature learning, for depth
data, carefully hand-designed features are still necessary,
especially when very limited training data is available

Results discussion Table 4 and Figure 6 show the
precision-recall evaluations of HED vs other competing
methods. All the network structures for training are kept the
same as for BSDS. During testing we use Average2-4 pre-
diction instead of Fusion-layer output as it yields the best
performance. We do not perform the late merging, since by
combining two sources of edge map predictions (RGB and
HHA), the average precision is already high. Note that the
results achieved by only using RGB modality have already
bypassed all the previous approaches.

5. Discussion and Conclusion

In this paper, we have developed a new convolutional-
neural-network-based edge detection system that demon-
strates state-of-the-art performance on natural images at a
speed of practical importance (e.g. 0.4 second using GPU
and 12 seconds on CPU). Our algorithm builds on top of
the ideas of fully convolutional neural networks and deeply-
supervised nets. We also initialize our network structure
and parameters by adopting a pre-trained trimmed VG-
GNets. Our method shows promising results in perform-
ing image-to-image learning and testing for edge detection
by combining multi-scale and multi-level visual responses,
even though explicit contextual and high-level information
has not been enforced.
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