
The Grails Framework
Authors: The Grails Team

Version: 6.2.0

Table of Contents

1 Introduction
1.1What's new in Grails 6?

1.1.1Updated Dependencies
2Getting Started

2.1 Installation Requirements
2.2Downloading and Installing
2.3Creating an Application
2.4Creating a Simple Web Application with Grails
2.5Using Interactive Mode
2.6Getting Set Up in an IDE
2.7Grails Directory Structure and Convention over Configuration
2.8Running and Debugging an Application
2.9Testing an Application
2.10Deploying an Application
2.11Supported Java EE Containers
2.12Creating Artefacts
2.13Generating an Application

3Upgrading from the previous versions
3.1Upgrading from Grails 5 to Grails 6
3.2Upgrading from Grails 4 to Grails 5
3.3Upgrading from Grails 3.3.x to Grails 4

4Configuration
4.1Basic Configuration

4.1.1Options for the YML format Config
4.1.2Built in options
4.1.3Logging

4.1.3.1Logger Names
4.1.3.2Masking Request Parameters From Stacktrace Logs
4.1.3.3External Configuration File

4.1.4GORM
4.1.5Configuring an HTTP proxy

4.2The Application Class
4.2.1Executing the Application Class
4.2.2Customizing the Application Class
4.2.3The Application LifeCycle

4.3Environments
4.4The DataSource

4.4.1DataSources and Environments
4.4.2Automatic Database Migration
4.4.3Transaction-aware DataSource Proxy

4.4.4Database Console
4.4.5Multiple Datasources

4.5Versioning
4.6Dependency Resolution

5The Command Line
5.1 Interactive Mode
5.2Creating Custom Commands
5.3Creating a Grails Project

6Object Relational Mapping (GORM)
6.1Quick Start Guide

6.1.1Basic CRUD
6.2Further Reading on GORM

7The Web Layer
7.1Controllers

7.1.1Understanding Controllers and Actions
7.1.2Controllers and Scopes
7.1.3Models and Views
7.1.4Redirects and Chaining
7.1.5Data Binding
7.1.6Responding with JSON
7.1.7More on JSONBuilder
7.1.8Responding with XML
7.1.9Uploading Files
7.1.10Command Objects
7.1.11Handling Duplicate Form Submissions
7.1.12Simple Type Converters
7.1.13Declarative Controller Exception Handling

7.2Groovy Server Pages
7.3URL Mappings

7.3.1Mapping to Controllers and Actions
7.3.2Mapping to REST resources
7.3.3Redirects In URL Mappings
7.3.4Embedded Variables
7.3.5Mapping to Views
7.3.6Mapping to Response Codes
7.3.7Mapping to HTTP methods
7.3.8Mapping Wildcards
7.3.9Automatic Link Re-Writing
7.3.10Applying Constraints
7.3.11Named URL Mappings
7.3.12Customizing URL Formats
7.3.13Namespaced Controllers

7.4CORS
7.5 Interceptors

7.5.1Defining Interceptors
7.5.2Matching Requests with Interceptors
7.5.3Ordering Interceptor Execution

7.6Content Negotiation
8Traits

8.1Traits Provided by Grails

8.1.1WebAttributes Trait Example
9REST

9.1Domain classes as REST resources
9.2Mapping to REST resources
9.3Linking to REST resources from GSP pages
9.4Versioning REST resources
9.5 Implementing REST controllers

9.5.1Extending the RestfulController super class
9.5.2 Implementing REST Controllers Step by Step
9.5.3Generating a REST controller using scaffolding

9.6Calling REST Services with HttpClient
9.7The REST Profile
9.8 JSON Views

9.8.1Getting Started
9.8.2Creating JSON Views
9.8.3 JSON View Templates
9.8.4Rendering Domain Classes with JSON Views
9.8.5 JSON Views by Convention

9.9Customizing Response Rendering
9.9.1Customizing the Default Renderers
9.9.2 Implementing a Custom Renderer
9.9.3Using GSP to Customize Rendering

9.10Hypermedia as the Engine of Application State
9.10.1HAL Support
9.10.2Atom Support
9.10.3Vnd.Error Support

9.11Customizing Binding of Resources
9.12RSS and Atom

10Asynchronous Programming
11Validation

11.1Declaring Constraints
11.2Validating Constraints
11.3Sharing Constraints Between Classes
11.4Validation on the Client
11.5Validation and Internationalization
11.6Applying Validation to Other Classes

12The Service Layer
12.1Declarative Transactions

12.1.1Transactions and Multi-DataSources
12.1.2Transactions Rollback and the Session

12.2Scoped Services
12.3Dependency Injection and Services

13Static Type Checking And Compilation
13.1The GrailsCompileStatic Annotation
13.2The GrailsTypeChecked Annotation

14Testing
14.1Unit Testing
14.2 Integration Testing
14.3Functional Testing

15 Internationalization

15.1Understanding Message Bundles
15.2Changing Locales
15.3Reading Messages
15.4Scaffolding and i18n

16Security
16.1Securing Against Attacks
16.2Cross Site Scripting (XSS) Prevention
16.3Encoding and Decoding Objects
16.4Authentication
16.5Security Plugins

16.5.1Spring Security
17Plugins

17.1Creating and Installing Plugins
17.2Plugin Repositories
17.3Providing Basic Artefacts
17.4Evaluating Conventions
17.5Hooking into Runtime Configuration
17.6Adding Methods at Compile Time
17.7Adding Dynamic Methods at Runtime
17.8Participating in Auto Reload Events
17.9Understanding Plugin Load Order
17.10The Artefact API

17.10.1Asking About Available Artefacts
17.10.2Adding Your Own Artefact Types

18Grails and Spring
18.1Configuring Additional Beans
18.2Runtime Spring with the Beans DSL
18.3The BeanBuilder DSL Explained
18.4Property Placeholder Configuration
18.5Property Override Configuration
18.6Spring Boot Actuators

19Scaffolding
20Deployment

20.1Standalone
20.2Container Deployment (e.g. Tomcat)
20.3Deployment Configuration Tasks

21Contributing to Grails
21.1Report Issues in Github's issue tracker
21.2Build From Source and Run Tests
21.3Submit Patches to Grails Core
21.4Submit Patches to Grails Documentation

1 Introduction
Many modern web frameworks in the Java space are more complicated than needed and
don’t embrace the Don’t Repeat Yourself (DRY) principles.

Dynamic frameworks like Rails and Django helped pave the way to a more modern way of
thinking about web applications. Grails builds on these concepts and dramatically reduces
the complexity of building web applications on the Java platform. What makes it different,

however, is that it does so by building on already established Java technologies like Spring
and Hibernate.

Grails is a full stack framework and attempts to solve as many pieces of the web
development puzzle through the core technology and its associated plugins. Included out the
box are things like:

GORM - An easy to use Object Mapping library with support for , , SQL MongoDB Neo4j
and .more

View technologies for as well as rendering HTML JSON

A controller layer built on Spring Boot

A plugin system featuring .hundreds of plugins

Flexible profiles to .create applications with AngularJS, React and more

An interactive command line environment and build system based on Gradle

An embedded container which is configured for on the fly reloadingTomcat

All of these are made easy to use through the power of the language and theGroovy
extensive use of Domain Specific Languages (DSLs)

This documentation will take you through getting started with Grails and building web
applications with the Grails framework.

In addition to this documentation there are that walk you throughcomprehensive guides
various aspects of the technology.

Finally, Grails is far more than just a web framework and is made up of various
sub-projects. The following table summarizes some other key projects in the eco-system
with links to documentation.

Table 1. Grails Ecosystem Projects
Project Description

GORM for Hibernate An Object Mapping implementation for SQL
databases

GORM for MongoDB An Object Mapping implementation for the
MongoDB Document Database

GORM for Neo4j An Object Mapping implementation for
Neo4j Graph Database

JSON Views A View technology for rendering JSON on
the server side

Groovy Server Pages A View technology for rendering HTML and
other markup on the server

http://gorm.grails.org
http://gorm.grails.org/latest/hibernate
http://gorm.grails.org/latest/mongodb
http://gorm.grails.org/latest/neo4j
http://gorm.grails.org
https://gsp.grails.org
http://views.grails.org
http://www.spring.io
http://plugins.grails.org
http://start.grails.org/#/index
http://gradle.org
http://tomcat.apache.org
http://groovy-lang.org
http://guides.grails.org
http://gorm.grails.org/latest/hibernate
http://gorm.grails.org/latest/mongodb
http://gorm.grails.org/latest/neo4j
http://views.grails.org
http://gsp.grails.org

Async Framework Asynchronous programming abstraction with
support for RxJava, GPars and more

1.1 What's new in Grails 6?

This section covers all the new features introduced in Grails 6

Overview

Grails framework 6 updates Spring Boot to version 2.7. We recommend checking the
following Spring technologies release notes for more information.

Spring Boot 2.7

The minimum Java version required to run Grails 6 has been updated to Java 11.

Support for Micronaut Environments in application.yml

The support has been introduced for Micronaut’s Environments concept within the
 file. This feature allows developers to define environment-specificapplication.yml

configurations seamlessly, aiding in smoother transitions between different operational
environments like development, testing, and production.

1.1.1 Updated Dependencies

Grails 6.2.0 ships with the following dependency upgrades:

Groovy 3.0.11

Micronaut 3

Micronaut for Spring 4

GORM 8

Spring Framework 5.3

Spring Boot 2.7

Gradle 7.6.1

Spock 2.1-groovy-3.0

Grails Testing Support 3

2 Getting Started

2.1 Installation Requirements

http://async.grails.org
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.7-Release-Notes

Before installing Grails you will need a Java Development Kit (JDK) installed with the
minimum version denoted in the table below. Download the appropriate JDK for your
operating system, run the installer, and then set up an environment variable called JAVA_HOME
pointing to the location of this installation.

Grails version JDK version (minimum)

6 11

5 8

To automate the installation of Grails we recommend which greatly simplifiesSDKMAN
installing and managing multiple Grails versions.

On some platforms (for example macOS) the Java installation is automatically detected.
However in many cases you will want to manually configure the location of Java. For
example, if you’re using bash or another variant of the Bourne Shell:

export JAVA_HOME=/Library/Java/Home
export PATH="$PATH:$JAVA_HOME/bin"

On Windows you would have to configure these environment variables in My
Computer/Advanced/Environment Variables

2.2 Downloading and Installing

The first step to getting up and running with Grails is to install the distribution.

The best way to install Grails on *nix systems is with which greatly simplifiesSDKMAN
installing and managing multiple Grails versions.

Install with SDKMAN

To install the latest version of Grails using SDKMAN, run this on your terminal:

$ sdk install grails

You can also specify a version

$ sdk install grails 6.2.0

You can find more information about SDKMAN usage on the SDKMAN Docs

Manual installation

For manual installation follow these steps:

Download a binary distribution of Grails and extract the resulting zip file to a location of
your choice

Set the GRAILS_HOME environment variable to the location where you extracted the zip

Unix/Linux

This is typically a matter of adding something like the following export

http://sdkman.io
https://sdkman.io
https://sdkman.io/usage
https://github.com/grails/grails-core/releases

 to your profileGRAILS_HOME=/path/to/grails

This can be done by adding to your profileexport PATH="$PATH:$GRAILS_HOME/bin"

Windows

Copy the path to the bin directory inside the grails folder you have downloaded, for
example,

C:\path_to_grails\bin

Go to Environment Variables, you can typically search or run the command below, the type
env and then Enter

Start + R

Edit the Path variable on User Variables / System Variables depending on your choice.

Paste the copied path in the Path Variable.

If Grails is working correctly you should now be able to type in the terminalgrails --version

window and see output similar to this:

Grails Version: 6.2.0

2.3 Creating an Application

To create a Grails application you first need to familiarize yourself with the usage of the
 command which is used in the following manner:grails

$ grails <<command name>>

Run to create an application:create-app

$ grails create-app myapp

This will create a new directory inside the current one that contains the project. Navigate to
this directory in your console:

$ cd myapp

2.4 Creating a Simple Web Application with Grails

Step 1: Create a New Project

Open your command prompt or terminal.

Navigate to the directory where you want to create your Grails project:

$ cd your_project_directory

Create a new Grails project with the following command:

$ grails create-app myapp

Step 2: Access the Project Directory

Change into the "myapp" directory, which you just created:

$ cd myapp

Step 3: Start Grails Interactive Console

Start the Grails interactive console by running the "grails" command:

$ grails

Step 4: Create a Controller

In the Grails interactive console, you can use auto-completion to create a controller. Type
the following command to create a controller named "greeting":

grails> create-controller greeting

This command will generate a new controller named "GreetingController.groovy" within the
grails-app/controllers/myapp directory. You might wonder why there is an additional
"myapp" directory. This structure aligns with conventions commonly used in Java
development, where classes are organized into packages. Grails automatically includes the
application name as part of the package structure. If you do not specify a package, Grails
defaults to using the application name.

For more detailed information on creating controllers, you can refer to the documentation on
the page.create-controller

Step 5: Edit the Controller

Open the "GreetingController.groovy" file located in the "grails-app/controllers/myapp"
directory in a text editor.

Add the following code to the "GreetingController.groovy" file:

 myapppackage

 {class GreetingController

 () {def index
 render "Hello, Congratulations for your first Grails application!"
 }
}

The action is simply a method. In this particular case, it calls a special method provided by
Grails to the page.render

Step 6: Run the Application

Grails framework now relies on Gradle tasks for running the application. To start the
application, use the following Gradle command:bootRun

$./gradlew bootRun

Your application will be hosted on port 8080 by default. You can access it in your web
browser at:

http://localhost:8080/

Now, it’s important to know that the welcome page is determined by the following URL
mapping:

http://localhost:8080/

1.

1.

2.

1.

 {class UrlMappings
 mappings = {static
 {"/ controller$ / action$?/ id$?(. format$)?"
 constraints {
 // apply constraints here
 }
 }

 (:)"/" view "/index"
 (:)"500" view '/error'
 (:)"404" view '/notFound'
 }
}

This mapping specifies that the root URL ("/") should display the "index.gsp" view, which is
located at "grails-app/views/index.gsp." This "index.gsp" file serves as your welcome or
landing page. The other entries in the mapping handle error pages for HTTP status codes
500 and 404.

Grails URL Convention Based on Controller and Action Name

Grails follows a URL convention that relies on the names of controllers and their actions.
This convention simplifies the creation and access of various pages or functionalities within
your web application.

In the provided code example:

 myapppackage

 {class GreetingController

 () {def index
 render "Hello, Congratulations for your first Grails application!"
 }
}

The class represents a controller in Grails.GreetingController

Inside the controller, there’s an action defined as a method. In Grails, actions areindex

essentially methods within a controller that handle specific tasks or respond to user requests.

Now, let’s understand how the Grails URL convention works based on this controller and
action:

Controller Name in URL:

The controller name, in this case, "GreetingController," is used in the URL. However, the
convention capitalizes the first letter of the controller name and removes the "Controller"
suffix. So, "GreetingController" becomes "greeting" in the URL.

Action Name in URL:

By default, if you don’t specify an action in the URL, Grails assumes the "index" action. So,
in this example, accessing the URL /greeting

See the end of the section of the user guide to find out more oncontrollers and actions
default actions.

Optional: Set a Context Path

If you want to set a context path for your application, create a configuration property in the
"grails-app/conf/application.yml" file:

:server
 :servlet
 : context-path /myapp

With this configuration, the application will be available at:

http://localhost:8080/myapp/

Alternatively, you can set the context path from the command line when using Gradle to run
a Grails application. Here’s how you can do it:

$./gradlew bootRun -Dgrails.server.servlet.context-path=/your-context-path

Replace with the desired context path for your Grails application. This/your-context-path

command sets the context path directly via the system-Dgrails.server.servlet.context-path

property.

For example, if you want your application to be available at "http://localhost:8080/myapp,"
you can use the following command:

$./gradlew bootRun -Dgrails.server.servlet.context-path=/myapp

This allows you to configure the context path without modifying the application’s
configuration files, making it a flexible and convenient option when running your Grails
application with Gradle.

Optional: Change Server Port

If port 8080 is already in use, you can start the server on a different port using the
 system-property:grails.server.port

$./gradlew bootRun -Dgrails.server.port=9090

Replace "9090" with your preferred port.

Note for Windows Users

If you encounter an error related to the Java process or filename length, you can use the
 flag or add to your "build.gradle" file.--stacktrace grails { pathingJar = true }

It may also be necessary to enclose the system properties in quotes on Windows:

./gradlew bootRun "-Dgrails.server.port=9090"

Conclusion

Your Grails application will now display a "Hello, Congratulations on your first Grails
application!" message when you access it in your web browser.

Remember, you can create multiple controllers and actions to build more complex web
applications with Grails. Each action corresponds to a different page accessible through
unique URLs based on the controller and action names.

2.5 Using Interactive Mode

The Grails Command-line Interface (CLI) offers an interactive mode, which you can access
by entering "grails" in your Terminal application or Linux Command Line.

Once you’re in the command-line interface, you can enhance your efficiency by utilizing the
TAB key for auto-completion. For instance:

http://localhost:8080/myapp/

grails> create
create-app create-plugin create-webapp
create-controller create-restapi
create-domain-class create-web-plugin

This interactive mode provides a convenient way to explore available Grails commands and
options, making your Grails development workflow more efficient and user-friendly.

For more information on the capabilities of interactive mode, refer to the section on
 in the user guide.Interactive Mode

2.6 Getting Set Up in an IDE

Because Grails is built upon the (Spring Boot), the build tool, andSpring Framework Gradle
the programming language, it is possible to develop Grails application using mostGroovy
popular JVM Integrated Development Environments (IDEs). Some IDEs offer more
specialized support for Grails, while others may offer basic support for managing
dependencies/plugins, running Gradle tasks, code-completion and syntax highlighting.

1. IntelliJ IDEA

IntelliJ IDEA is a widely used IDE for Grails development. It offers comprehensive support
for Groovy and Grails, including features like code-completion, intelligent code analysis,
and seamless integration with Grails artefacts.

IntelliJ IDEA also provides powerful database tools that work with Grails' GORM (Grails
Object Relational Mapping) seamlessly. It offers both a Community (free) and Ultimate
(paid) edition, with the latter offering more advanced Grails support, including an embedded
version of the , and view resolution for both GSPs and JSON views.Grails Forge

IntelliJ IDEA Website

2. Visual Studio Code (VS Code)

Visual Studio Code is a lightweight, open-source code editor developed by Microsoft. While
it’s not a full-fledged IDE, it offers powerful extensions for Grails and Groovy development.
You can install extensions like and to enhance your Grailscode-groovy Grails for VS Code
developer experience.

VS Code provides features such as syntax highlighting, code navigation, and integrated
terminal support. It’s a great choice for developers who prefer a lightweight and
customizable development environment.

Visual Studio Code (VS Code)

3. STS (Spring Tool Suite)

The (STS) is set of IDE tools designed for Spring FrameworkSpring Tool Suite
development, with versions based on both VS Code and Eclipse. This section focuses on the
Eclipse version.

STS can work as an effective Grails developer platform when used with the Groovy
 plugin (which can be installed using the Eclipse Marketplace). STSDevelopment Tools

does not offer specific support for Grails artefacts or GSP views.

Spring Tool Suite (STS)

https://spring.io
https://gradle.org/
https://groovy-lang.org
https://start.grails.org
https://www.jetbrains.com/idea/
https://marketplace.visualstudio.com/items?itemName=marlon407.code-groovy
https://marketplace.visualstudio.com/items?itemName=GDOTecnologia.gfvscode
https://code.visualstudio.com/
https://spring.io/tools
https://marketplace.eclipse.org/content/groovy-development-tools
https://marketplace.eclipse.org/content/groovy-development-tools
https://spring.io/tools/sts

1.

1.

2.

3.

4.

5.

6.

7.

8.

9.

2.

3.

4. Netbeans

Apache does not offer specific support for Grails, but it will import GrailsNetbeans
applications as Gradle projects and provides reasonable editing support for Groovy and GSP
views.

5. TextMate, VIM, and More

There are several excellent text editors that work nicely with Groovy and Grails. Here are
some references:

A is available for Groovy / Grails support in .bundle Textmate

A can be installed via Sublime Package Control for the .plugin Sublime Text Editor

The extension offers basic support for Grails development in Emacs.emacs-grails

See for some helpful tips on how to set up VIM as your Grails editor of choice.this post

These text editors, along with the provided extensions and configurations, can enhance your
Groovy and Grails development experience, offering flexibility and customization to meet
your coding preferences.

2.7 Grails Directory Structure and Convention over
Configuration

Grails adopts the "convention over configuration" approach to configure itself. In this
approach, the name and location of files are used instead of explicit configuration.
Therefore, it’s essential to become familiar with the directory structure provided by Grails.
Here’s a breakdown of the key directories and links to relevant sections:

grails-app - Top-Level Directory for Groovy Sources

conf - Configuration Sources

controllers - - Responsible for the "C" in MVC (Model-View-Controller).Web Controllers

domain - - Represents the "M" in MVC.Application Domain

i18n - Supports .Internationalization (i18n)

services - The .Service Layer

taglib - .Tag Libraries

utils - Houses Grails-specific utilities.

views - or - Responsible for the "V" in MVC.Groovy Server Pages (GSP) JSON Views

commands - - Create your own Grails CLI commands.Custom Grails Commands

src/main/groovy - Supporting Sources

src/test/groovy - Unit Tests

https://netbeans.apache.org
https://github.com/textmate/groovy-grails.tmbundle
http://macromates.com
https://packagecontrol.io/packages/Grails
http://www.sublimetext.com
https://github.com/lifeisfoo/emacs-grails
http://www.objectpartners.com/2012/02/21/using-vim-as-your-grails-ide-part-1-navigating-your-project/
http://views.grails.org/latest

4.

1.

2.

3.

src/integration-test/groovy - - For testing Grails applications at theIntegration Tests
integration level.

Understanding this directory structure and its conventions is fundamental to efficient Grails
development.

2.8 Running and Debugging an Application

Grails applications can be executed using the built-in application server using the bootRun
command. By default, it launches a server on port 8080:

$./gradlew bootRun

To specify a different port, you can set the system property as follows:-Dgrails.server.port

$./gradlew bootRun -Dgrails.server.port=8081

For debugging a Grails app, you have two options. You can either right-click on the
 class in your IDE and select the appropriate debugging action, or you canApplication.groovy

run the app with the following command and then connect a remote debugger to it:

$./gradlew bootRun --debug-jvm

For more information on the command, please refer to the bootRun bootRun section of the
.Grails reference guide

2.9 Testing an Application

Grails offers a convenient feature where you can automatically generate unit and integration
tests for your application using the commands. These generated tests are stored increate-*

the and directories. However, it is yoursrc/test/groovy src/integration-test/groovy

responsibility to populate these tests with the appropriate test logic. You can find
comprehensive guidance on crafting valid test logic in the section dedicated to Unit and

.Integration Tests

To initiate the execution of your tests, including both unit and integration tests, you can
utilize the Gradle task. Follow these steps:check

Open your terminal or command prompt and navigate to your Grails project’s root directory.

Execute the following Gradle command:

$./gradlew check

By running the task, you ensure that all tests in your Grails project, including the onescheck

you’ve created and populated with test logic, are executed. This comprehensive testing
approach contributes significantly to the robustness and overall quality of your application.

Viewing Test Reports: After running your tests, Grails generates test reports that provide
valuable insights into the test results. You can typically find these reports in the

 directory of your Grails project. Open these reports in a web browser tobuild/reports/tests

view detailed information about test outcomes, including passed, failed, and skipped tests.

Remember, testing is not just a process; it’s a fundamental practice that enhances your
Grails application’s reliability. Viewing test reports helps you analyze and understand the

test results, making it easier to identify and address any issues.

By following these testing practices and reviewing test reports, you can deliver a
high-quality Grails application to your users with confidence.

2.10 Deploying an Application

Grails applications offer multiple deployment options.

For traditional container deployments, such as Tomcat or Jetty, you can generate a Web
Application Archive (WAR) file using the Gradle task as follows:war

$./gradlew war

This task generates a WAR file with a suffix within the directory, ready for-plain build/libs

deployment according to your container’s guidelines.

By default, the task runs in the environment. You can specify a differentwar production

environment, such as , by overriding it in the Gradle command:development

$./gradlew -Dgrails.env=dev war

If you prefer not to use a separate Servlet container, you can create and run the Grails WAR
file as a regular Java application:

$./gradlew bootWar
$ java -jar build/libs/mywar-0.1.war

When deploying Grails, ensure that your container’s JVM runs with the option and-server

sufficient memory allocation. Here are recommended VM flags:

-server -Xmx1024M

2.11 Supported Java EE Containers

The Grails framework requires that runtime containers support Servlet 3.0 and above. By
default, Grails framework applications are bundled with an embedded Tomcat server. For
more information, please see the section of this documentation.Deployment

In addition, read the for tips on how to deploy Grails to various popular CloudGrails Guides
services.

2.12 Creating Artefacts

Grails provides a set of useful CLI commands for various tasks, including the creation of
essential artifacts such as controllers and domain classes. These commands simplify the
development process, although you can achieve similar results using your preferred
Integrated Development Environment (IDE) or text editor.

For instance, to create the foundation of an application, you typically need to generate a
domain model using Grails Commands:

$ grails create-app myapp
$ cd myapp
$ grails create-domain-class book

https://guides.grails.org/

Executing these commands will result in the creation of a domain class located at
, as shown in the following code:grails-app/domain/myapp/Book.groovy

 myapppackage

 {class Book
}

The Grails CLI offers numerous other commands that you can explore in the Grails
command line reference guide.

Using interactive mode enhances the development experience by providing auto-complete
and making the process smoother.

2.13 Generating an Application

Quick Start with Grails Scaffolding

To quickly initiate your Grails project, you can employ the Gradle task. This taskrunCommand

allows you to generate the essential structure of an application swiftly. Specifically, when
running the following command, you can create a (including its unit tests) and thecontroller
associated for your application:views

$./gradlew runCommand -Pargs="generate-all myapp.Book"

3 Upgrading from the previous versions

3.1 Upgrading from Grails 5 to Grails 6

Upgrade Instructions for Grails and Related Dependencies

To ensure compatibility with Grails 6, you must update the following versions in your
project:

1. Java 11 as Baseline:

Starting from Grails 6, Java 11 serves as the baseline requirement for the framework. When
upgrading to Grails 6, ensure that your project is configured to use Java 11. This
compatibility with Java 11 allows you to take advantage of the latest features, security
enhancements, and performance improvements provided by Java 11.

Please make sure to update your project’s Java version to 11 before proceeding with the
Grails 6 upgrade. Doing so will ensure a seamless transition to the latest version of Grails
and enable you to enjoy all the benefits that Java 11 has to offer.

2. The New Grails CLI:

Grails 6 comes with a completely revamped and highly efficient Command Line Interface
(CLI) that enables you to generate applications and plugins at a remarkable speed. For
instance, you can now use the new CLI to create a new Grails 6 application with the
following command:

grails create-app my-app

The new CLI also allows you to generate plugins easily. For example, to create a new plugin
named "my-plugin," you can use the following command:

grails create-plugin my-plugin

One notable improvement in Grails 6 is that it no longer supports certain commands that
performed redundant tasks, such as the outdated command. Instead, itgrails run-app

recommends using the Gradle task for running your application, which offers betterbootRun

performance and functionality.

For example, to run your Grails 6 application, you can use the following command:

./gradlew bootRun

As a result of these improvements, the new CLI provides a more streamlined and efficient
way to work with Grails applications and plugins.

Additionally, in order to fully embrace the improvements in Grails 6, it is advised to remove
the old Grails wrapper files and from your project root folder. This ensures./grailsw ./grails

that you solely rely on the enhanced capabilities of the new CLI.

Overall, Grails 6 offers a significantly improved development experience with its new CLI,
optimized commands, and advanced features for generating applications and plugins.

3. Setting Grails Version and Grails Gradle Plugin:

To upgrade to Grails 6, it’s important to configure the appropriate versions in the
 file as shown below:gradle.properties

gradle.properties
grailsVersion=6.0.0
grailsGradlePluginVersion=6.0.0

By specifying the above versions, you’ll gain access to the latest features, improvements,
and bug fixes introduced in Grails 6. Upgrading to this version empowers your application
with enhanced performance and improved security. Additionally, it allows you to leverage
the latest advancements in the Grails framework for a more efficient and secure
development experience.

4. GORM Version:

If your project utilizes GORM, ensure to update the version in the file asgradle.properties

demonstrated below:

gradle.properties
gormVersion=8.0.0

By upgrading to GORM 8.0.0, you will benefit from essential updates and optimizations.
This upgrade guarantees seamless interactions with your database and enhances your data
management experience. Staying current with GORM allows you to take advantage of the
latest database features and improvements, thereby optimizing the performance and
functionality of your application.

5. Gradle Version:

Grails 6 uses Gradle 7.6.2 which offers performance improvements, bug fixes, and new
features over previous versions. Upgrading to the latest Gradle version helps accelerate your
build processes and ensures compatibility with other dependencies.

5.1. Upgrade to Gradle 7.6.2

Run the following command to update the Gradle wrapper to the desired version (e.g.,
Gradle 7.6.2):

./gradlew wrapper --gradle-version 7.6.2

This command will download the specified Gradle version and update the Gradle wrapper
settings in your project.

5.2. Check Gradle Version:

After the command finishes, you can verify that the Gradle version has been updated by
checking the file located in the directory. The gradle-wrapper.properties gradle/wrapper

 in the file should now point to the Gradle 7.6.2 distribution:distributionUrl

distributionUrl=https\://services.gradle.org/distributions/gradle-7.6.2-bin.zip

5.3. Build the Project:

After updating the Gradle wrapper, you can now build your Grails project using the updated
Gradle version:

./gradlew build

This will initiate the build process with the new Gradle version.

6. Embracing Modern Plugin Management with Grails 6

In Gradle, there are two main ways to add plugins to your project: the block and the plugins

 statement.apply plugin

Grails 6 introduces a significant change in how plugins are managed by adopting the Gradle
 block instead of the traditional statements. This shift streamlines theplugins apply plugin

project’s build configuration and brings it more in line with modern Gradle conventions.
New Grails projects will now utilize the block to manage plugin dependencies andplugins

configurations.

Using the Block in Grails 6:plugins

With the new approach, adding plugins to a Grails 6 project is more explicit and organized.
In your file, you can declare plugins within the block, specifying thebuild.gradle plugins

plugin’s ID and version.

Here’s an example of adding the plugin using the block:views-json plugins

build.gradle
plugins {
 id version 'org.grails.plugins.views-json' '3.0.0'
}

Managing Multiple Plugins:

The block allows you to add multiple plugins, each on its own line. This enhancesplugins

clarity and makes it easier to manage plugin dependencies.

build.gradle
plugins {
 id version 'org.grails.plugins.views-json' '3.0.0'
 // Add other plugins as needed
}

1.

Moving Older Applications to the New Approach:

If you are migrating an older Grails application to Grails 6, you can update the plugin
declarations from to the block. For example, if your previous applicationapply plugin plugins

used the plugin, you can modify the build.gradle as follows:views-json

Before (Using):apply plugin

build.gradle
apply : plugin 'org.grails.plugins.views-json'

After (Using Block in Grails 6):plugins

build.gradle
plugins {
 id version 'org.grails.plugins.views-json' '3.0.0'
}

By migrating to the block, your Grails 6 project will adhere to modern Gradleplugins

conventions, making it easier to manage plugin dependencies and configurations. This new
approach maintains consistency and enhances the overall structure of the project, ensuring a
smoother and more efficient development process.

6.2. Use the pluginManagement Block

Moving from in the file to the block in the apply plugin build.gradle pluginManagement

 file is a significant change introduced in Grails 6. This change is part ofsettings.gradle

Grails' effort to adopt the Gradle approach for better plugin version controlpluginManagement

and consistency across projects.

In the previous versions of Grails (before Grails 6), developers used to apply plugins
directly in the file using the syntax. For example:build.gradle apply plugin

build.gradle
buildscript {
 repositories {
 maven { url }"https://plugins.gradle.org/m2/"
 maven { url }"https://repo.grails.org/grails/core"
 }
 dependencies {
 classpath "org.grails:grails-gradle-plugin: grailsGradlePluginVersion$ "
 classpath "org.grails.plugins:hibernate5:7.3.0"
 classpath "org.grails.plugins:views-gradle:2.3.2"
 }
}

version "0.1"
group "hellorestapi"

apply :plugin "eclipse"
apply :plugin "idea"
apply :plugin "war"
apply :plugin "org.grails.grails-web"
apply :plugin "org.grails.plugins.views-json"

However, with Grails 6, the recommended practice is to move plugin declarations to the
 block in the file. The block acts as a centralpluginManagement settings.gradle pluginManagement

place to manage plugin versions for all projects within a multi-project build.

Configuring Plugins in the pluginManagement Block:

Here’s how you can declare the plugin in the block:views-json pluginManagement

Open the file in your Grails 6 project.settings.gradle

2. Add the block with the plugin declaration:pluginManagement views-json

settings.gradle
pluginManagement {
 repositories {
 // Add the Grails plugin repository to resolve the views-json plugin
 maven { url }"https://repo.grails.org/grails/core"
 // Other repositories can be added here if needed
 }

 // Declare the views-json plugin and its version
 plugins {
 id version 'org.grails.plugins.views-json' '3.0.0'
 // Other plugins can be declared here
 }
}

By including the plugin in the block, Grails 6 will ensure that allviews-json pluginManagement

projects within the multi-project build use the specified version of the plugin. Thisviews-json

promotes consistency in JSON rendering across different projects and simplifies
maintenance and version control.

Moving Older Applications to the New Approach:

If you are migrating an older Grails application to Grails 6, you can update the plugin
declarations from to the block in the file, as shown in theapply plugin plugins build.gradle

previous section.

By adopting the block and declaring the plugin in the pluginManagement views-json

 file, you ensure consistent usage of the plugin across all projects in the Grailssettings.gradle

6 ecosystem. This approach simplifies plugin version control and improves the overall
development experience when working with JSON responses in your Grails applications.

6.3 Grails Adoption of "buildSrc" Folder for Buildscript Dependencies

In previous versions of Grails (before Grails 6), managing buildscript dependencies, such as
the plugin, was typically done directly in the main file. This enablesviews-gradle build.gradle

Gradle compilation of JSON views for production environment. Developers would define
the repositories and dependencies needed for the buildscript within the block:buildscript

build.gradle
buildscript {
 repositories {
 mavenCentral()
 }
 dependencies {
 // Example: views-gradle plugin
 classpath "org.grails.plugins:views-gradle:3.0.0"
 }
}

// Apply the views-json plugin
apply : plugin 'views-json'

// Other configurations and dependencies

This approach meant that the buildscript dependencies were mixed with the rest of the
project’s configurations, making the file longer and potentially harder tobuild.gradle

maintain. As a result, the buildscript section might become cluttered with various plugin
dependencies and other build logic.

With the introduction of Grails 6, there is a significant improvement in managing buildscript
dependencies through the use of the folder. This dedicated folder provides a morebuildSrc

organized approach to handle buildscript dependencies, custom Gradle plugins, and
extensions specific to the project.

1.

2.

3.

Benefits of Grails 6 Adoption of "buildSrc" Folder

Modular Build Configuration: The folder acts as a separate mini-project withinbuildSrc

your Grails application, allowing you to encapsulate build logic, plugins, and dependencies.
This separation of concerns improves the organization and modularity of the build
configuration.

Streamlined Buildscript Management: By moving buildscript dependencies to ,buildSrc

you can keep the main file clean and focused on the application’s specificbuild.gradle

requirements. This reduces clutter and promotes a more concise and clear build script.

Better Collaboration: The approach simplifies collaboration within developmentbuildSrc

teams. Build logic can be centralized and shared across projects, enabling a consistent and
efficient development workflow.

Update from Grails 5

The new Grails 6 application uses . The buildSrc directory can host abuildSrc/build.gradle

build script if additional configuration is needed (e.g. to apply plugins or to declare
dependencies). The folder in a Grails project follows a specific tree layout, whichbuildSrc

includes the file. Here’s how the tree layout looks like:build.gradle

buildSrc/
 build.gradle
 src/
 main/
 groovy/

Let’s walk through how to manage the plugin using the folder inviews-gradle buildSrc

Grails 6:

Step 1: Create buildSrc Folder:

In the root directory of your Grails 6 project, create a new folder named .buildSrc

Step 2: Add buildSrc Script:

Inside the folder, create a build.gradle file and specify the pluginbuildSrc views-gradle

dependency:

buildSrc/build.gradle
repositories {
 mavenCentral()
}

dependencies {
 implementation "org.grails.plugins:views-gradle:3.0.0"
}

Step 3: Remove apply plugin Statement:

In the main file, remove the block and the statementbuild.gradle buildscript apply plugin

related to , as it is now managed in the folder:views-gradle buildSrc

build.gradle
buildscript {
 repositories {
 mavenCentral()
 }
 dependencies {
 classpath "org.grails.plugins:views-gradle:3.0.0"
 }
}

// No need to apply views-json plugin here
// Remove the apply plugin statement for views-json if it was previously present
apply : plugin 'views-json'

// ... Other configurations and dependencies

By using the folder, developers can separate buildscript dependencies and custombuildSrc

plugin configurations from the main file. This leads to a cleaner and morebuild.gradle

concise build script, which is easier to maintain and understand. Additionally, the buildSrc
approach encourages modularity, as build logic and custom plugins can be centralized and
shared across projects, fostering better collaboration and consistency within development
teams.

7. GORM for MongoDB Sync Driver:

The GORM for MongoDB is updated to support the latest mongodb-driver-sync. If you are
using GORM for MongoDB and making use of specific MongoDB Driver or low-level
Mongo API features, consider checking the .Upgrading to the 4.0 Driver guide

This update ensures seamless integration with MongoDB, access to new features, and
improved performance while interacting with your MongoDB database.

8. Asset Pipeline Plugin:

In Grails 6, there is an update to the Asset Pipeline Plugin, which is now version 4.3.0. The
Asset Pipeline Plugin is a crucial component in Grails applications, responsible for
managing frontend assets like stylesheets, JavaScript files, and images. The update to
version 4.3.0 brings several improvements and new features to enhance the management and
processing of frontend assets in your Grails projects.

The asset-pipeline plugin 4.3.0 offers new features for managing and processing your
frontend assets, ensuring they are efficiently bundled and served to your users.

9. Spring 5.3:

Grails 6 is built on Spring 5.3.27. If your project uses Spring-specific features, refer to the
.Upgrading to Spring 5.3 guide

Spring 5.3 introduces enhancements and fixes to the Spring framework, providing you with
the latest improvements in dependency injection, web frameworks, and other Spring-related
functionalities.

10. Spring Boot 2.7:

Grails 6 updates to Spring Boot 2.7. For more information, consult the Spring Boot 2.7
Release Notes

Spring Boot 2.7 comes with new features, performance enhancements, and compatibility
improvements, making it a solid foundation for your Grails application.

11. Micronaut 3.9.3:

Grails 6 is shipped with Micronaut 3.9.3. If you are using specific Micronaut features, refer
to the .Upgrading to Micronaut 3.x guide

Micronaut 3.9.3 brings new capabilities, improvements, and bug fixes, empowering your
application with a powerful and lightweight microservices framework.

https://mongodb.github.io/mongo-java-driver/4.0/upgrading/
https://github.com/spring-projects/spring-framework/wiki/Upgrading-to-Spring-Framework-5.x#upgrading-to-version-53
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.7-Release-Notes
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.7-Release-Notes
https://docs.micronaut.io/3.9.3/guide/index.html#upgrading

12. Micronaut for Spring 4.5.1:

Grails 6 is updated to use Micronaut for Spring 4.5.1. For more information, check out the
.release notes

Micronaut for Spring 4.5.1 provides seamless integration between Micronaut and Spring,
allowing you to leverage the strengths of both frameworks in your Grails project.

3.2 Upgrading from Grails 4 to Grails 5

Bump up Grails Version

You will need to upgrade your Grails version defined in as:gradle.properties

gradle.properties
...
grailsVersion=5.2.0
...

Apache Groovy 3.0.7

Grails 5.1.1 provide support for Groovy 3. We would recommend you to please check the
 to update your application in case you are using a specificRelease notes for Groovy 3

feature which might not work in Groovy 3.

Define groovyVersion in to force the application to use Groovy 3.gradle.properties

Grails 5.1 app’s gradle.properties

gradle.properties
...
groovyVersion=3.0.7
...

Bump up GORM Version

If you were using , you will need to update the version defined in as:GORM gradle.properties

gradle.properties
...
gormVersion=7.2.0
...

Bump up gradle version

Grails 5.2.x uses gradle 7.2

gradle-wrapper.properties
...
distributionUrl=https\://services.gradle.org/distributions/gradle-7.2-bin.zip
...

Also you can run this command

./gradlew wrapper --gradle-version 7.2

GORM for MonogDB Sync Driver

The GORM for MongoDB is updated to support latest mongodb-driver-sync. If you are

https://github.com/micronaut-projects/micronaut-spring/releases/tag/v4.5.1
https://groovy-lang.org/releasenotes/groovy-3.0.html
http://gorm.grails.org

using GORM for MongoDB and doing something specific to MongoDB Driver or low level
Mongo API then you might want to take a look at Upgrading to the 4.0 Driver

Bump up Asset Pipeline plugin version

The previous version of asset-pipeline is not supported with Grails 5.0 as it is compiled with
a version of Groovy which is binary incompatible with Groovy 3. So, please update the
plugin version to 3.2.4.

Disabled StringCharArrayAccessor by default

The previous version of Grails use the which is enabled by default andStringCharArrayAccessor

provides optimized access to internals. In Grails 5.0 it is disabled by defaultjava.lang.String

but you can enable it by setting a system property with name stringchararrayaccessor.disabled
and value .false

Enabling StringCharArrayAccessor would show IllegalReflectiveAccess warnings as it
uses reflection to do the optimizations.

Changes in profile.yml and feature.yml files in Grails Profiles

The format of how dependencies are defined in features and profiles has been changed. See
the section on for more information.Application Profiles

Deprecation of dot navigation of Grails configuration

In order to reduce complexity, improve performance, and increase maintainability, accessing
configuration through dot notation (config.a.b.c) has been deprecated. This functionality will
be removed in a future release.

Also, you would see a warning message if you are accessing configuration through the dot
notation.

The recommended way to access configuration is:

grailsApplication.config.getProperty(, .class)"hola" String

Deprecated Classes

org.grails.config.NavigableMap

org.grails.config.NavigableMapConfig

org.grails.config.NavigableMapPropertySource

Spring 5.3

Grails 5.0.0.RC1 is built on Spring 5.3.2 See the if you are usingUpgrading to Spring 5.3
Spring specific features.

Spring Boot 2.4

Grails 5.1.1 updates to Spring Boot 2.6. Please check forSpring Boot 2.6 Release Notes
more information.

Micronaut 3.2.0

https://mongodb.github.io/mongo-java-driver/4.0/upgrading/
http://docs.grails.org/6.2.0/api/org/grails/config/NavigableMap.html
http://docs.grails.org/6.2.0/api/org/grails/config/NavigableMapConfig.html
http://docs.grails.org/6.2.0/api/org/grails/config/NavigableMapPropertySource.html
https://github.com/spring-projects/spring-framework/wiki/Upgrading-to-Spring-Framework-5.x#upgrading-to-version-53
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.6-Release-Notes

Grails 5.1.1 is shipped with Micronaut 3.2.0. Please check the ifUpgrading to Micronaut 3.x
you are using a specific feature.

Micronaut for Spring 4.0.1

Grails 5.1.1 is updated to Micronaut for Spring 4.0.1, please check out forrelease notes
more information.

Gradle 7.x

Compile dependency configuration as well as others have been removed from Gradle
7.x. In previous version they were deprecated.

Replace configurations:

build.gradle
...
 compile -> implementation
 testCompile -> testImplementation
 runtime -> runtimeOnly
...

More information in Gradle upgrade docs Gradle upgrade docs

Plugins in multi-project setup

If you have grails plugins as part of multi-project builds you should also replace the compile
with configuration.implementation

Additionally if your main application relied on the dependencies declared by the plugin you
need to apply further changes.

To make the dependencies available again you have to declare them with configuration.api

You also have to apply the gradle plugin in your plugin project.java-library

More information gradle java-library-plugin

3.3 Upgrading from Grails 3.3.x to Grails 4

Bump up Grails Version

You will need to upgrade your Grails version defined in .gradle.properties

Grails 3 app’s gradle.properties

gradle.properties
...
grailsVersion=3.3.8
...

Grails 4 app’s gradle.properties

gradle.properties
...
grailsVersion=4.0.4
...

https://docs.micronaut.io/3.2.0/guide/index.html#upgrading
https://github.com/micronaut-projects/micronaut-spring/releases/tag/v4.0.1
https://docs.gradle.org/current/userguide/upgrading_version_6.html#sec:configuration_removal
https://docs.gradle.org/current/userguide/java_library_plugin.html

Bump up GORM Version

If you were using , you will need to update the version defined in .GORM gradle.properties

Grails 3 app’s gradle.properties

gradle.properties
...
gormVersion=6.1.10.RELEASE
...

Grails 4 app’s gradle.properties

gradle.properties
...
gormVersion=7.0.4
...

Move GORM DSL Entries to runtime.groovy

GORM DSL entries should be move to . For instance, using following GORMruntime.groovy

configuration in the is not supported and will break the application:application.groovy

grails.gorm.default.mapping = {
 id : generator 'identity'
}

Spring 5 and Spring Boot 2.1

Grails 4.0 is built on Spring 5 and Spring Boot 2.1. See the and migration guide release
 if you are using Spring specific features.notes

Hibernate 5.4 and GORM 7.x

Grails 4.x supports a minimum version of Hibernate 5.4 and GORM 7.x. Several changes
have been made to GORM to support the newer version of Hibernate and simplify GORM
itself.

The details of these changes are covered in the .GORM upgrade documentation

Spring Boot 2.1 Actuator

Please check the documentation since it has changed substantiallySpring Boot Actuator
from Spring Boot 1.5 the version Grails 3.x used.

If you had configuration such as:

grails-app/conf/application.yml - Grails 3.3.x
:endpoints

 : enabled false
 :jmx
 : enabled true
 : unique-names true

replace it with:

grails-app/conf/application.yml - Grails 4.x
:spring

 :jmx
 : unique-names true

:management

http://gorm.grails.org
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Migration-Guide
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.1-Release-Notes
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.1-Release-Notes
http://gorm.grails.org/7.0.x/hibernate/manual/index.html#upgradeNotes
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html

 :endpoints
 : enabled-by-default false

Spring Boot Developer Tools and Spring Loaded

Previous versions of Grails used a reloading agent called . Since this library isSpring Loaded
no longer maintained and does not support Java 11 support for Spring Loaded has been
removed.

As a replacement, Grails 4 applications include dependenciesSpring Boot Developer Tools
in the build script. If you are migrating a Grails 3.x app, please include thebuild.gradle

following set of dependencies:

build.gradle
.
..
...
configurations {
 developmentOnly
 runtimeClasspath {
 extendsFrom developmentOnly
 }
}

dependencies {
 developmentOnly()"org.springframework.boot:spring-boot-devtools"
 ...
 ..
}
...
..
.

Also you should configure the necessary excludes for Spring Developer Tools in
:application.yml

:spring
 :devtools
 :restart
 :exclude
 - grails-app/views/**
 - grails-app/i18n/**
 - grails-app/conf/**

The above configuration prevents the server from restarting when views or message bundles
are changed.

You can use Spring Developer Tools in combination with a browser extension such as the
 to get automatic browser refresh when you change anythingChrome LiveReload extension

in your Grails application.

Spring Boot Gradle Plugin Changes

Grails 4 is built on top of Spring Boot 2.1. Grails 3 apps were built on top of Spring Boot
1.x.

Your Grails 3 app’s may have such configuration:build.gradle

build.gradle
bootRun {
 addResources = true
 ...
}

Grails 4 apps are built on top of Spring Boot 2.1. Starting from Spring Boot 2.0, the
 property no longer exists. Instead, you need to set the sourceResources propertyaddResources

to the source set that you want to use. Typically that’s . This is described insourceSets.main

https://github.com/spring-projects/spring-loaded
https://docs.spring.io/spring-boot/docs/current/reference/html/using-boot-devtools.html
https://chrome.google.com/webstore/detail/livereload/jnihajbhpnppcggbcgedagnkighmdlei

the .Spring Boot Gradle plugin’s documentation

Your Grails 4 app’s can be configured:build.gradle

build.gradle
bootRun {
 sourceResources sourceSets.main
 ...
}

Building executable jars for Grails Plugins

Spring Boot’s new Gradle Plugin:

The bootRepackage task has been replaced with bootJar and bootWar tasks for building
executable jars and wars respectively. Both tasks extend their equivalent standard Gradle jar
or war task, giving you access to all of the usual configuration options and behaviour.

If you had configuration such as:

build.gradle | Grails 3
// enable if you wish to package this plugin as a standalone application
bootRepackage.enabled = false

replace it with:

build.gradle | Grails 4
// enable if you wish to package this plugin as a standalone application
bootJar.enabled = false

Upgrading to Gradle 5

Grails 3 apps by default used 3.5. Grails 4 apps use Gradle 5.Gradle

To upgrade to Gradle 5 execute:

./gradlew wrapper --gradle-version 5.0

Due to changes in Gradle 5, for plugins. Iftransitive dependencies are no longer resolved
your project makes use of a plugin that has transitive dependencies, you will need to add
those explicitly to your file.build.gradle

If you customized your app’s build, other migrations may be necessary. Please check Gradle
 documentation. Especially notice, that default Gradle daemon nowUpgrading your build

starts with 512MB of heap instead of 1GB. Please check Default memory settings changed
documentation.

Groovy language update to 2.5.6

Keep in mind, that with grails 4.0.x there is a minor groovy language upgrade (e.g. 3.3.9.
used groovy 2.4.x), which requires a couple of changes, that are immediately obvious when
trying to compile your source code. However there are also issues with changed
implementations of core linkedlist functions! Check an overview of the breaking changes
here: Breaking changes of Groovy 2.5

Removed date helper functions

Most common issue is that date util functions have been moved to individual project, e.g

https://docs.spring.io/spring-boot/docs/2.0.0.M3//gradle-plugin/reference/html/#running-your-application-reloading-resources
https://spring.io/blog/2017/04/05/spring-boot-s-new-gradle-plugin
http://gradle.org
https://docs.gradle.org/current/userguide/upgrading_version_4.html#rel5.0:pom_compile_runtime_separation
https://docs.gradle.org/current/userguide/upgrading_version_4.html
https://docs.gradle.org/current/userguide/upgrading_version_4.html
https://docs.gradle.org/current/userguide/upgrading_version_4.html#rel5.0:default_memory_settings
https://groovy-lang.org/releasenotes/groovy-2.5.html#Groovy2.5releasenotes-Breakingchanges

new Date().format("ddMMyyyy") no longer works without adding:

build.gradle
dependencies {
 implementation "org.codehaus.groovy:groovy-dateutil:3.0.4"
}

Changed linked list method implementations

Check whether you are using the groovy version of linkedlist implementations:

[].pop() - will no longer remove the last, but the first element of the list. Replace it with
 is recommended.[].removeLast()

[].push(..) - will no longer add to the end, but to the beginning of the list. Replace it with
 is recommended.[].add(..)

H2 Web Console

Spring Boot 2.1 includes native support for the H2 database web console. Since this is
already included in Spring Boot the equivalent feature has been removed from Grails. The
H2 console is therefore now available at instead of the previous URI of ./h2-console /dbconsole

See in the Spring Boot documentation for more information.Using H2’s Web Console

Upgrade Hibernate

If you were using GORM for Hibernate implementation in your Grails 3 app, you will need
to upgrade to Hibernate 5.4.

A Grails 3 such as:build.gradle

build.gradle
dependencies {
...
 implementation "org.grails.plugins:hibernate5"
 implementation "org.hibernate:hibernate-core:5.1.5.Final"
}

will be in Grails 4:

build.gradle
dependencies {
...
 implementation "org.grails.plugins:hibernate5"
 implementation "org.hibernate:hibernate-core:5.4.0.Final"
}

Migrating to Geb 2.3

Geb 1.1.x (a JDK 1.7 compatible version) was the version shipped by default with Grails 3.
Grails 4 is no longer compatible with Java 1.7. You should migrate to Geb 2.3.

In Grails 3, if your build.gradle looks like:

build.gradle
dependencies {
 testCompile "org.grails.plugins:geb:1.1.2"
 testRuntime "org.seleniumhq.selenium:selenium-htmlunit-driver:2.47.1"
 testRuntime "net.sourceforge.htmlunit:htmlunit:2.18"
}

https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#boot-features-sql-h2-console

In Grails 4, you should replace it with:

build.gradle
buildscript {
 repositories {
 ...
 }
 dependencies {
 ...
 classpath "gradle.plugin.com.energizedwork.webdriver-binaries:webdriver-binaries-gradle-plugin: webdriverBinariesVersion$ " (1)
 }
}
...
..

repositories {
 ...
}

apply :plugin "idea"
...
...
apply : plugin "com.energizedwork.webdriver-binaries" (1)

dependencies {
...
 testCompile "org.grails.plugins:geb" (4)
 testRuntime "org.seleniumhq.selenium:selenium-chrome-driver: seleniumVersion$ " (5)
 testRuntime "org.seleniumhq.selenium:selenium-firefox-driver: seleniumVersion$ " (5)
 testRuntime "org.seleniumhq.selenium:selenium-safari-driver: seleniumSafariDriverVersion$ " (5)

 testCompile "org.seleniumhq.selenium:selenium-remote-driver: seleniumVersion$ " (5)
 testCompile "org.seleniumhq.selenium:selenium-api: seleniumVersion$ " (5)
 testCompile "org.seleniumhq.selenium:selenium-support: seleniumVersion$ " (5)
}

webdriverBinaries {
 chromedriver " chromeDriverVersion$ " (2)
 geckodriver " geckodriverVersion$ " (3)
}

tasks.withType(Test) {
 systemProperty , .getProperty()"geb.env" System 'geb.env'
 systemProperty , reporting.file()"geb.build.reportsDir" "geb/integrationTest"
 systemProperty , .getProperty()"webdriver.chrome.driver" System 'webdriver.chrome.driver'
 systemProperty , .getProperty()"webdriver.gecko.driver" System 'webdriver.gecko.driver'
}

gradle.properties
gebVersion=2.3
seleniumVersion=3.12.0
webdriverBinariesVersion=1.4
hibernateCoreVersion=5.1.5.Final
chromeDriverVersion=2.44 (2)
geckodriverVersion=0.23.0 (3)
seleniumSafariDriverVersion=3.14.0

1 Includes .Webdriver binaries Gradle plugin

2 Set the appropriate .Webdriver for Chrome version

3 Set the appropriate .Webdriver for Firefox version

4 Includes the which has a transitive dependency to Grails Geb Plugin dependency geb-spock

. This is the dependency necessary to work with and Spock.Geb

5 Selenium and different driver dependencies.

Create also a file at .Geb Configuration src/integration-test/resources/GebConfig.groovy

src/integration-test/resources/GebConfig.groovy
 import org.openqa.selenium.chrome.ChromeDriver
 import org.openqa.selenium.chrome.ChromeOptions
 import org.openqa.selenium.firefox.FirefoxDriver
 import org.openqa.selenium.firefox.FirefoxOptions
 import org.openqa.selenium.safari.SafariDriver

environments {

 // You need to configure in Safari -> Develop -> Allowed Remote Automation
 safari {
 driver = { SafariDriver() }new

https://plugins.gradle.org/plugin/com.energizedwork.webdriver-binaries
http://chromedriver.chromium.org
https://github.com/mozilla/geckodriver/releases
https://github.com/grails3-plugins/geb
http://www.gebish.org
http://www.gebish.org/manual/current/#configuration

 }

 // run via “./gradlew -Dgeb.env=chrome iT”
 chrome {
 driver = { ChromeDriver() }new
 }

 // run via “./gradlew -Dgeb.env=chromeHeadless iT”
 chromeHeadless {
 driver = {
 ChromeOptions o = ChromeOptions()new
 o.addArguments()'headless'
 ChromeDriver(o)new
 }
 }

 // run via “./gradlew -Dgeb.env=firefoxHeadless iT”
 firefoxHeadless {
 driver = {
 FirefoxOptions o = FirefoxOptions()new
 o.addArguments()'-headless'
 FirefoxDriver(o)new
 }
 }

 // run via “./gradlew -Dgeb.env=firefox iT”
 firefox {
 driver = { FirefoxDriver() }new
 }
}

Deprecated classes

The following classes, which were deprecated in Grails 3.x, have been removed in Grails 4.
Please, check the list below to find a suitable replacement:

Removed Class Alternative

org.grails.datastore.gorm.validation.constraints.UniqueConstraint org.grails.datastore.gorm.validation.constraints.builtin.UniqueConstraint

grails.util.BuildScope

grails.transaction.GrailsTransactionTemplate grails.gorm.transactions.GrailsTransactionTemplate

org.grails.transaction.transform.RollbackTransform org.grails.datastore.gorm.transactions.transform.RollbackTransform

grails.transaction.NotTransactional grails.gorm.transactions.NotTransactional

grails.transaction.Rollback grails.gorm.transactions.Rollback

grails.transaction.Transactional grails.gorm.transactions.Transactional

org.grails.config.FlatConfig

org.grails.core.metaclass.MetaClassEnhancer Use traits instead.

org.grails.core.util.ClassPropertyFetcher org.grails.datastore.mapping.reflect.ClassPropertyFetcher

org.grails.transaction.transform.TransactionalTransform org.grails.datastore.gorm.transactions.transform.TransactionalTransform

grails.core.ComponentCapableDomainClass

grails.core.GrailsDomainClassProperty Use the API insteadorg.grails.datastore.mapping.model.MappingContext

org.grails.core.DefaultGrailsDomainClassProperty

org.grails.core.MetaGrailsDomainClassProperty

org.grails.core.support.GrailsDomainConfigurationUtil
Use the and org.grails.datastore.mapping.model.MappingContext

 APIs insteadorg.grails.datastore.mapping.model.MappingFactory

org.grails.plugins.domain.DomainClassPluginSupport

org.grails.plugins.domain.support.GormApiSupport

org.grails.plugins.domain.support.GrailsDomainClassCleaner Handled by noworg.grails.datastore.mapping.model.MappingContext

grails.validation.AbstractConstraint Use insteadorg.grails.datastore.gorm.validation.constraints.AbstractConstraint

grails.validation.AbstractVetoingConstraint org.grails.datastore.gorm.validation.constraints.AbstractVetoingConstraint

grails.validation.CascadingValidator grails.gorm.validation.CascadingValidator

grails.validation.ConstrainedProperty grails.gorm.validation.ConstrainedProperty

grails.validation.Constraint grails.gorm.validation.Constraint

grails.validation.ConstraintFactory org.grails.datastore.gorm.validation.constraints.factory.ConstraintFactory

grails.validation.VetoingConstraint grails.gorm.validation.VetoingConstraint

grails.validation.ConstraintException

org.grails.validation.BlankConstraint org.grails.datastore.gorm.validation.constraints.BlankConstraint

org.grails.validation.ConstrainedPropertyBuilder org.grails.datastore.gorm.validation.constraints.builder.ConstrainedPropertyBuilder

org.grails.validation.ConstraintDelegate

org.grails.validation.ConstraintsEvaluatorFactoryBean org.grails.datastore.gorm.validation.constraints.eval.ConstraintsEvaluator

org.grails.validation.CreditCardConstraint org.grails.datastore.gorm.validation.constraints.CreditCardConstraint

org.grails.validation.DefaultConstraintEvaluator org.grails.datastore.gorm.validation.constraints.eval.DefaultConstraintEvaluator

org.grails.validation.DomainClassPropertyComparator

org.grails.validation.EmailConstraint org.grails.datastore.gorm.validation.constraints.EmailConstraint

org.grails.validation.GrailsDomainClassValidator grails.gorm.validation.PersistentEntityValidator

org.grails.validation.InListConstraint org.grails.datastore.gorm.validation.constraints.InListConstraint

org.grails.validation.MatchesConstraint org.grails.datastore.gorm.validation.constraints.MatchesConstraint

org.grails.validation.MaxConstraint org.grails.datastore.gorm.validation.constraints.MaxConstraint

org.grails.validation.MaxSizeConstraint org.grails.datastore.gorm.validation.constraints.MaxSizeConstraint

org.grails.validation.MinConstraint org.grails.datastore.gorm.validation.constraints.MinConstraint

org.grails.validation.MinSizeConstraint org.grails.datastore.gorm.validation.constraints.MinSizeConstraint

org.grails.validation.NotEqualConstraint org.grails.datastore.gorm.validation.constraints.NotEqualConstraint

org.grails.validation.NullableConstraint org.grails.datastore.gorm.validation.constraints.NullableConstraint

org.grails.validation.RangeConstraint org.grails.datastore.gorm.validation.constraints.RangeConstraint

org.grails.validation.ScaleConstraint org.grails.datastore.gorm.validation.constraints.ScaleConstraint

org.grails.validation.SizeConstraint org.grails.datastore.gorm.validation.constraints.SizeConstraint

org.grails.validation.UrlConstraint org.grails.datastore.gorm.validation.constraints.UrlConstraint

org.grails.validation.ValidatorConstraint org.grails.datastore.gorm.validation.constraints.ValidatorConstraint

org.grails.validation.routines.DomainValidator Replaced by newer version of commons-validation

org.grails.validation.routines.InetAddressValidator Replaced by newer version of commons-validation

org.grails.validation.routines.RegexValidator Replaced by newer version of commons-validation

org.grails.validation.routines.ResultPair Replaced by newer version of commons-validation

org.grails.validation.routines.UrlValidator Replaced by newer version of commons-validation

grails.web.JSONBuilder groovy.json.StreamingJsonBuilder

Grails-Java8

For those who have added a dependency on the plugin, all you should need to dograils-java8

is simply remove the dependency. All of the classes in the plugin have been moved out to
their respective projects.

Profiles Deprecation

A few of the profiles supported in Grails 3.x will no longer be maintained going forward and
as a result it is no longer possible to create applications when them in the shorthand form.
When upgrading existing projects, it will be necessary to supply the version for these
profiles.

org.grails.profiles:angularjs org.grails.profiles:angularjs:1.1.2

org.grails.profiles:webpack org.grails.profiles:webpack:1.1.6

org.grails.profiles:react-webpack org.grails.profiles:react-webpack:1.0.8

Scheduled Methods

1.

2.

In Grails 3 no configuration or additional changes were necessary to use the Spring
 annotation. In Grails 4 you must apply the annotation to your@Scheduled @EnableScheduling

application class in order for scheduling to work.

4 Configuration
It may seem odd that in a framework that embraces "convention-over-configuration" that we
tackle this topic now. With Grails' default settings you can actually develop an application
without doing any configuration whatsoever, as the quick start demonstrates, but it’s
important to learn where and how to override the conventions when you need to. Later
sections of the user guide will mention what configuration settings you can use, but not how
to set them. The assumption is that you have at least read the first section of this chapter!

4.1 Basic Configuration

Configuration in Grails is generally split across 2 areas: build configuration and runtime
configuration.

Build configuration is generally done via Gradle and the file. Runtimebuild.gradle

configuration is by default specified in YAML in the file.grails-app/conf/application.yml

If you prefer to use Grails 2.0-style Groovy configuration then it is possible to specify
configuration using Groovy’s syntax. Two Groovy configuration files areConfigSlurper
available: and :grails-app/conf/application.groovy grails-app/conf/runtime.groovy

Use for configuration that doesn’t depend on application classesapplication.groovy

Use for configuration that does depend on application classesruntime.groovy

This separation is necessary because configuration values defined in areapplication.groovy

available to the Grails CLI, which needs to be able to load before theapplication.groovy

application has been compiled. References to application classes in willapplication.groovy

cause an exception when these commands are executed by the CLI:

Error occurred running Grails CLI:
startup failed:script14738267015581837265078.groovy: 13: unable to resolve class com.foo.Bar

For Groovy configuration the following variables are available to the configuration script:

Variable Description

userHome Location of the home directory for the
account that is running the Grails application.

grailsHome
Location of the directory where you installed
Grails. If the environment variableGRAILS_HOME

is set, it is used.

The application name as it appears in

http://docs.groovy-lang.org/latest/html/documentation/#_configslurper

appName build.gradle.

appVersion The application version as it appears in
build.gradle.

For example:

my.tmp.dir = " userHome${ }/.grails/tmp"

Accessing Configuration with GrailsApplication

If you want to read runtime configuration settings, i.e. those defined in , useapplication.yml

the object, which is available as a variable in controllers and tag libraries:grailsApplication

 {class MyController
 () {def hello
 recipient = grailsApplication.config.getProperty()def 'foo.bar.hello'

 render "Hello recipient${ }"
 }
}

The property of the object is an instance of the interface andconfig grailsApplication Config
provides a number of useful methods to read the configuration of the application.

In particular, the method (seen above) is useful for efficiently retrievinggetProperty

configuration properties, while specifying the property type (the default type is String)
and/or providing a default fallback value.

 {class MyController

 (Recipient recipient) {def hello
 //Retrieve Integer property 'foo.bar.max.hellos', otherwise use value of 5
 max = grailsApplication.config.getProperty(, ,)def 'foo.bar.max.hellos' Integer 5

 //Retrieve property 'foo.bar.greeting' without specifying type (default is String), otherwise use value "Hello"
 greeting = grailsApplication.config.getProperty(,)def 'foo.bar.greeting' "Hello"

 message = (recipient.receivedHelloCount >= max) ?def
 : "Sorry, you've been greeted the max number of times" " greeting${ }, recipient${ }"
 }

 render message
 }
}

Notice that the instance is a merged configuration based on Spring’s Config PropertySource
concept and reads configuration from the environment, system properties and the local
application configuration merging them into a single object.

GrailsApplication can be easily injected into services and other Grails artifacts:

 import grails.core.*

 {class MyService
 GrailsApplication grailsApplication

 greeting() {String
 recipient = grailsApplication.config.getProperty()def 'foo.bar.hello'
 return "Hello recipient${ }"
 }
}

GrailsConfigurationAware Interface

Accessing configuration dynamically at runtime can have a small effect on application
performance. An alternative approach is to implement the GrailsConfigurationAware

http://docs.grails.org/6.2.0/api/grails/core/GrailsApplication.html
http://docs.grails.org/6.2.0/api/grails/config/Config.html
https://docs.spring.io/spring/docs/5.3.33/javadoc-api/org/springframework/context/annotation/PropertySource.html
http://docs.grails.org/6.2.0/api/grails/core/support/GrailsConfigurationAware.html

interface, which provides a method that accepts the application configurationsetConfiguration

as a parameter when the class is initialized. You can then assign relevant configuration
properties to instance properties on the class for later usage.

The instance has the same properties and usage as the injected configConfig GrailsApplication

object. Here is the service class from the previous example, using GrailsConfigurationAware
instead of injecting :GrailsApplication

 import grails.core.support.GrailsConfigurationAware

 GrailsConfigurationAware {class MyService implements

 recipientString

 greeting() {String
 return "Hello recipient${ }"
 }

 setConfiguration(Config config) {void
 recipient = config.getProperty()'foo.bar.hello'
 }

}

Spring Value Annotation

You can use Spring’s annotation to inject configuration values:Value

 import org.springframework.beans.factory.annotation.*

 {class MyController
 ()@Value '${foo.bar.hello}'
 recipientString

 () {def hello
 render "Hello recipient${ }"
 }
}

In Groovy code you must use single quotes around the string for the value of the Value
annotation otherwise it is interpreted as a GString not a Spring expression.

As you can see, when accessing configuration settings you use the same dot notation as
when you define them.

4.1.1 Options for the YML format Config

The file was introduced in Grails 3.0, and YAML is now the preferred formatapplication.yml

for configuration files.

Using system properties / command line arguments

Suppose you are using the command line argument and you want toJDBC_CONNECTION_STRING

access the same in the yml file then it can be done in the following manner:

:production
 :dataSource
 : url '${JDBC_CONNECTION_STRING}'

Similarly system arguments can be accessed.

You will need to have this in to modify the target if isbuild.gradle bootRun ./gradlew bootRun

used to start the application

bootRun {
 systemProperties = .propertiesSystem
}

https://docs.spring.io/spring/docs/5.3.33/javadoc-api/org/springframework/beans/factory/annotation/Value.html

For testing the following will need to change the task as followstest

test {
 systemProperties = .propertiesSystem
}

External configuration

Grails will read from the or the current directory byapplication.(properties|yml) ./config

default. As Grails is a SpringBoot configuration options are available as well, for
documentation please consult:
https://docs.spring.io/spring-boot/docs/2.7.16/reference/html/features.html#features.external-config.files

4.1.2 Built in options

Grails has a set of core settings that are worth knowing about. Their defaults are suitable for
most projects, but it’s important to understand what they do because you may need one or
more of them later.

Runtime settings

On the runtime front, i.e. , there are quite a few more coregrails-app/conf/application.yml

settings:

grails.enable.native2ascii - Set this to false if you do not require native2ascii conversion of
Grails i18n properties files (default: true).

grails.views.default.codec - Sets the default encoding regime for GSPs - can be one of 'none',
'html', or 'base64' (default: 'none'). To reduce risk of XSS attacks, set this to 'html'.

grails.views.gsp.encoding - The file encoding used for GSP source files (default: 'utf-8').

grails.mime.file.extensions - Whether to use the file extension to dictate the mime type in
 (default: true).Content Negotiation

grails.mime.types - A map of supported mime types used for .Content Negotiation

grails.serverURL - A string specifying the server URL portion of absolute links, including
server name e.g. grails.serverURL="http://my.yourportal.com". See . Also usedcreateLink
by redirects.

grails.views.gsp.sitemesh.preprocess - Determines whether SiteMesh preprocessing happens.
Disabling this slows down page rendering, but if you need SiteMesh to parse the generated
HTML from a GSP view then disabling it is the right option. Don’t worry if you don’t
understand this advanced property: leave it set to true.

grails.reload.excludes and - Configuring these directives determines thegrails.reload.includes

reload behavior for project specific source files. Each directive takes a list of strings that are
the class names for project source files that should be excluded from reloading behavior or
included accordingly when running the application in development with the task. IfbootRun

the directive is configured, then only the classes in that list will begrails.reload.includes

reloaded.

4.1.3 Logging

https://docs.spring.io/spring-boot/docs/2.7.16/reference/html/features.html#features.external-config.files
https://gsp.grails.org/6.2.1/ref/Tags/createLink.html

Since Grails 3.0, logging is handled by the and can beLogback logging framework
configured with the file.grails-app/conf/logback.xml

Since Grails 5.1.2 support for groovy configuration () has beengrails-app/conf/logback.groovy

removed (by logback 1.2.9). It is possible to add back groovy configuration by adding the
 library to your project.logback-groovy-config

For more information on configuring logging refer to the on theLogback documentation
subject.

4.1.3.1 Logger Names

Grails artifacts (controllers, services …) get injected a property automatically.log

Prior to Grails 3.3.0, the name of the logger for Grails Artifact followed the convention
, where type is the type of the artifact, for example, or grails.app.<type>.<className> controllers

, and is the fully qualified name of the artifact.services className

Grails 3.3.x simplifies logger names. The next examples illustrate the changes:

BookController.groovy located at NOT annotated with grails-app/controllers/com/company @Slf4j

Logger Name (Grails 3.3.x or higher) Logger Name (Grails 3.2.x or lower)

com.company.BookController grails.app.controllers.com.company.BookController

BookController.groovy located at annotated with grails-app/controllers/com/company @Slf4j

Logger Name (Grails 3.3.x or higher) Logger Name (Grails 3.2.x or lower)

com.company.BookController com.company.BookController

BookService.groovy located at NOT annotated with grails-app/services/com/company @Slf4j

Logger Name (Grails 3.3.x or higher) Logger Name (Grails 3.2.x or lower)

com.company.BookService grails.app.services.com.company.BookService

BookService.groovy located at annotated with grails-app/services/com/company @Slf4j

Logger Name (Grails 3.3.x or higher) Logger Name (Grails 3.2.x or lower)

com.company.BookService com.company.BookService

http://logback.qos.ch
https://github.com/virtualdogbert/logback-groovy-config
http://logback.qos.ch/manual/groovy.html
http://docs.groovy-lang.org/latest/html/gapi/groovy/util/logging/Slf4j.html
http://docs.groovy-lang.org/latest/html/gapi/groovy/util/logging/Slf4j.html
http://docs.groovy-lang.org/latest/html/gapi/groovy/util/logging/Slf4j.html
http://docs.groovy-lang.org/latest/html/gapi/groovy/util/logging/Slf4j.html

BookDetail.groovy located at annotated with src/main/groovy/com/company @Slf4j

Logger Name (Grails 3.3.x or higher) Logger Name (Grails 3.2.x or lower)

com.company.BookDetail com.company.BookDetail

4.1.3.2 Masking Request Parameters From Stacktrace
Logs

When Grails logs a stacktrace, the log message may include the names and values of all of
the request parameters for the current request. To mask out the values of secure request
parameters, specify the parameter names in the configgrails.exceptionresolver.params.exclude

property:

grails-app/conf/application.yml
:grails

 :exceptionresolver
 :params
 :exclude
 - password
 - creditCard

Request parameter logging may be turned off altogether by setting the
 config property to false. The default value is truegrails.exceptionresolver.logRequestParameters

when the application is running in DEVELOPMENT mode and false for all other
environments.

grails-app/conf/application.yml
:grails

 :exceptionresolver
 : logRequestParameters false

4.1.3.3 External Configuration File

If you set the configuration property , you can instruct to use an externallogging.config Logback

configuration file.

grails-app/conf/application.yml
:logging

 : config /Users/me/config/logback.groovy

Alternatively, you can supply the configuration file location with a system property:

$./gradlew -Dlogging.config=/Users/me/config/logback.groovy bootRun

Or, you could use an environment variable:

$ export LOGGING_CONFIG=/Users/me/config/logback.groovy
$./gradlew bootRun

4.1.4 GORM

http://docs.groovy-lang.org/latest/html/gapi/groovy/util/logging/Slf4j.html

Grails provides the following GORM configuration options:

grails.gorm.failOnError - If set to , causes the method on domain classes to throw a true save()

 if fails during a save. This option may also begrails.validation.ValidationException validation
assigned a list of Strings representing package names. If the value is a list of Strings then the
failOnError behavior will only be applied to domain classes in those packages (including
sub-packages). See the method docs for more information.save

For example, to enable failOnError for all domain classes:

:grails
 :gorm
 : failOnError true

and to enable failOnError for domain classes by package:

:grails
 :gorm
 :failOnError
 - com.companyname.somepackage
 - com.companyname.someotherpackage

4.1.5 Configuring an HTTP proxy

To setup Grails to use an HTTP proxy there are two steps. Firstly you need to configure the
 CLI to be aware of the proxy if you wish to use it to create applications and so on.grails

This can be done using the environment variable, for example on Unix systems:GRAILS_OPTS

export GRAILS_OPTS="-Dhttps.proxyHost=127.0.0.1 -Dhttps.proxyPort=3128 -Dhttp.proxyUser=test -Dhttp.proxyPassword=test"

The default profile repository is resolved over HTTPS so and https.proxyPort https.proxyUser

are used, however the username and password are specified with and http.proxyUser

http.proxyPassword

For Windows systems the environment variable can be configured under My
.Computer/Advanced/Environment Variables

With this configuration in place the command can connect and authenticate via agrails

proxy.

Secondly, since Grails uses Gradle as the build system, you need to configure Gradle to
authenticate via the proxy. For instructions on how to do this see the Gradle user guide

.section on the topic

4.2 The Application Class

Every new Grails application features an class within the directory.Application grails-app/init

The class subclasses the class and features a Application GrailsAutoConfiguration static void

 method, meaning it can be run as a regular application.main

4.2.1 Executing the Application Class

There are several ways to execute the class, if you are using an IDE then you canApplication

simply right click on the class and run it directly from your IDE which will start your Grails
application.

This is also useful for debugging since you can debug directly from the IDE without having
to connect a remote debugger when using the command from the./gradlew bootRun --debug-jvm

https://docs.gradle.org/current/userguide/build_environment.html#sec:accessing_the_web_via_a_proxy
https://docs.gradle.org/current/userguide/build_environment.html#sec:accessing_the_web_via_a_proxy
http://docs.grails.org/6.2.0/api/grails/boot/config/GrailsAutoConfiguration.html

command line.

You can also package your application into a runnable WAR file, for example:

$./gradlew bootWar
$ java -jar build/libs/myapp-0.1.war

This is useful if you plan to deploy your application using a container-less approach.

4.2.2 Customizing the Application Class

There are several ways in which you can customize the class.Application

Customizing Scanning

By default Grails will scan all known source directories for controllers, domain class etc.,
however if there are packages in other JAR files you wish to scan you can do so by
overriding the method of the class:packageNames() Application

 GrailsAutoConfiguration {class Application extends
 @Override
 < > packageNames() {Collection String
 .packageNames() + []super 'my.additional.package'
 }

 ...
}

Registering Additional Beans

The class can also be used as a source for Spring bean definitions, simply defineApplication

a method annotated with the and the returned object will become a Spring bean. TheBean
name of the method is used as the bean name:

 GrailsAutoConfiguration {class Application extends
 @Bean
 MyType myBean() {
 MyType()return new
 }

 ...
}

4.2.3 The Application LifeCycle

The class also implements the interface which allApplication GrailsApplicationLifeCycle
plugins implement.

This means that the class can be used to perform the same functions as a plugin.Application

You can override the such as , andregular plugins hooks doWithSpring doWithApplicationContext

so on by overriding the appropriate method:

 GrailsAutoConfiguration {class Application extends
 @Override
 Closure doWithSpring() {
 {->
 mySpringBean(MyType)
 }
 }

 ...
}

4.3 Environments

https://docs.spring.io/spring/docs/5.3.33/javadoc-api/org/springframework/context/annotation/Bean.html
http://docs.grails.org/6.2.0/api/grails/core/GrailsApplicationLifeCycle.html

Per Environment Configuration

Grails supports the concept of per environment configuration. The and application.yml

 files in the directory can use per-environment configurationapplication.groovy grails-app/conf

using either YAML or the syntax provided by . As an example consider theConfigSlurper
following default definition provided by Grails:application.yml

:environments
 :development
 :dataSource
 : dbCreate create-drop
 : url jdbc:h2:mem:devDb;MVCC=TRUE;LOCK_TIMEOUT=10000;DB_CLOSE_ON_EXIT=FALSE
 :test
 :dataSource
 : dbCreate update
 : url jdbc:h2:mem:testDb;MVCC=TRUE;LOCK_TIMEOUT=10000;DB_CLOSE_ON_EXIT=FALSE
 :production
 :dataSource
 : dbCreate update
 : url jdbc:h2:prodDb;MVCC=TRUE;LOCK_TIMEOUT=10000;DB_CLOSE_ON_EXIT=FALSE
 :properties
 : jmxEnabled true
 : initialSize 5
 ...

The above can be expressed in Groovy syntax in as follows:application.groovy

dataSource {
 pooled = false
 driverClassName = "org.h2.Driver"
 username = "sa"
 password = ""
}
environments {
 development {
 dataSource {
 dbCreate = "create-drop"
 url = "jdbc:h2:mem:devDb"
 }
 }
 test {
 dataSource {
 dbCreate = "update"
 url = "jdbc:h2:mem:testDb"
 }
 }
 production {
 dataSource {
 dbCreate = "update"
 url = "jdbc:h2:prodDb"
 properties {
 jmxEnabled = true
 initialSize = 5
 }
 }
 }
}

Notice how the common configuration is provided at the top level and then an environments
block specifies per environment settings for the and properties of the .dbCreate url DataSource

Packaging and Running for Different Environments

Grails' has built in capabilities to execute any command within the context ofcommand line
a specific environment. The format is:

grails <<environment>> <<command name>>

In addition, there are 3 preset environments known to Grails: , , and for dev prod test

, and . For example to create a WAR for the environment youdevelopment production test test

would run:

grails test war

To target other environments you can pass a variable to any command:grails.env

http://docs.groovy-lang.org/latest/html/documentation/#_configslurper

./gradlew bootRun -Dgrails.env=UAT

Programmatic Environment Detection

Within your code, such as in a Gant script or a bootstrap class you can detect the
environment using the class:Environment

 import grails.util.Environment

...

switch (Environment.current) {
 Environment.DEVELOPMENT:case
 configureForDevelopment()
 break
 Environment.PRODUCTION:case
 configureForProduction()
 break
}

Per Environment Bootstrapping

It’s often desirable to run code when your application starts up on a per-environment basis.
To do so you can use the file’s support for per-environmentgrails-app/init/BootStrap.groovy

execution:

 init = { ServletContext ctx ->def
 environments {
 production {
 ctx.setAttribute(,)"env" "prod"
 }
 development {
 ctx.setAttribute(,)"env" "dev"
 }
 }
 ctx.setAttribute(,)"foo" "bar"
}

Generic Per Environment Execution

The previous example uses the class internally to execute.BootStrap grails.util.Environment

You can also use this class yourself to execute your own environment specific logic:

Environment.executeForCurrentEnvironment {
 production {
 // do something in production
 }
 development {
 // do something only in development
 }
}

4.4 The DataSource

Since Grails is built on Java technology setting up a data source requires some knowledge of
JDBC (the technology that stands for Java Database Connectivity).

If you use a database other than H2 you need a JDBC driver. For example for MySQL you
would need .Connector/J

Drivers typically come in the form of a JAR archive. It’s best to use the dependency
resolution to resolve the jar if it’s available in a Maven repository, for example you could
add a dependency for the MySQL driver like this:

dependencies {
 runtimeOnly 'mysql:mysql-connector-java:5.1.29'
}

Once you have the JAR resolved you need to get familiar with how Grails manages its

http://docs.grails.org/6.2.0/api/grails/util/Environment.html
http://www.mysql.com/downloads/connector/j/

database configuration. The configuration can be maintained in either
 or . These files contain thegrails-app/conf/application.groovy grails-app/conf/application.yml

dataSource definition which includes the following settings:

driverClassName - The class name of the JDBC driver

username - The username used to establish a JDBC connection

password - The password used to establish a JDBC connection

url - The JDBC URL of the database

dbCreate - Whether to auto-generate the database from the domain model - one of
'create-drop', 'create', 'update', 'validate', or 'none'

pooled - Whether to use a pool of connections (defaults to true)

logSql - Enable SQL logging to stdout

formatSql - Format logged SQL

dialect - A String or Class that represents the Hibernate dialect used to communicate with
the database. See the package for available dialects.org.hibernate.dialect

readOnly - If makes the DataSource read-only, which results in the connection pooltrue

calling on each setReadOnly(true) Connection

transactional - If leaves the DataSource’s transactionManager bean outside the chainedfalse

BE1PC transaction manager implementation. This only applies to additional datasources.

persistenceInterceptor - The default datasource is automatically wired up to the persistence
interceptor, other datasources are not wired up automatically unless this is set to true

properties - Extra properties to set on the DataSource bean. See the Tomcat Pool
documentation. There is also a Javadoc format .documentation of the properties

jmxExport - If , will disable registration of JMX MBeans for all DataSources. By defaultfalse

JMX MBeans are added for DataSources with in properties.jmxEnabled = true

type - The connection pool class if you want to force Grails to use it when there are more
than one available.

A typical configuration for MySQL in may be something like:application.groovy

dataSource {
 pooled = true
 dbCreate = "update"
 url = "jdbc:mysql://localhost:3306/my_database"
 driverClassName = "com.mysql.jdbc.Driver"
 dialect = org.hibernate.dialect.MySQL5InnoDBDialect
 username = "username"
 password = "password"
 type = "com.zaxxer.hikari.HikariDataSource"
 properties {
 jmxEnabled = true
 initialSize = 5
 maxActive = 50
 minIdle = 5
 maxIdle = 25
 maxWait = 10000
 maxAge = * 10 60000
 timeBetweenEvictionRunsMillis = 5000
 minEvictableIdleTimeMillis = 60000
 validationQuery = "SELECT 1"
 validationQueryTimeout = 3

http://docs.jboss.org/hibernate/core/3.6/javadocs/org/hibernate/dialect/package-summary.html
http://tomcat.apache.org/tomcat-7.0-doc/jdbc-pool.html#Common_Attributes
https://tomcat.apache.org/tomcat-7.0-doc/api/org/apache/tomcat/jdbc/pool/PoolConfiguration.html

 validationInterval = 15000
 testOnBorrow = true
 testWhileIdle = true
 testOnReturn = false
 jdbcInterceptors = "ConnectionState;StatementCache(max=200)"
 defaultTransactionIsolation = java.sql.Connection.TRANSACTION_READ_COMMITTED
 }
}

When configuring the DataSource do not include the type or the def keyword before any of
the configuration settings as Groovy will treat these as local variable definitions and they
will not be processed. For example the following is invalid:

dataSource {
 pooled = boolean true // type declaration results in ignored local variable
 ...
}

Example of advanced configuration using extra properties:

dataSource {
 pooled = true
 dbCreate = "update"
 url = "jdbc:mysql://localhost:3306/my_database"
 driverClassName = "com.mysql.jdbc.Driver"
 dialect = org.hibernate.dialect.MySQL5InnoDBDialect
 username = "username"
 password = "password"
 type = "com.zaxxer.hikari.HikariDataSource"
 properties {
 // Documentation for Tomcat JDBC Pool
 // http://tomcat.apache.org/tomcat-7.0-doc/jdbc-pool.html#Common_Attributes
 // https://tomcat.apache.org/tomcat-7.0-doc/api/org/apache/tomcat/jdbc/pool/PoolConfiguration.html
 jmxEnabled = true
 initialSize = 5
 maxActive = 50
 minIdle = 5
 maxIdle = 25
 maxWait = 10000
 maxAge = * 10 60000
 timeBetweenEvictionRunsMillis = 5000
 minEvictableIdleTimeMillis = 60000
 validationQuery = "SELECT 1"
 validationQueryTimeout = 3
 validationInterval = 15000
 testOnBorrow = true
 testWhileIdle = true
 testOnReturn = false
 ignoreExceptionOnPreLoad = true
 // http://tomcat.apache.org/tomcat-7.0-doc/jdbc-pool.html#JDBC_interceptors
 jdbcInterceptors = "ConnectionState;StatementCache(max=200)"
 defaultTransactionIsolation = java.sql.Connection.TRANSACTION_READ_COMMITTED // safe default
 // controls for leaked connections
 abandonWhenPercentageFull = 100 // settings are active only when pool is full
 removeAbandonedTimeout = 120
 removeAbandoned = true
 // use JMX console to change this setting at runtime
 logAbandoned = false // causes stacktrace recording overhead, use only for debugging
 // JDBC driver properties
 // Mysql as example
 dbProperties {
 // Mysql specific driver properties
 // http://dev.mysql.com/doc/connector-j/en/connector-j-reference-configuration-properties.html
 // let Tomcat JDBC Pool handle reconnecting
 autoReconnect=false
 // truncation behaviour
 jdbcCompliantTruncation=false
 // mysql 0-date conversion
 zeroDateTimeBehavior='convertToNull'
 // Tomcat JDBC Pool's StatementCache is used instead, so disable mysql driver's cache
 cachePrepStmts=false
 cacheCallableStmts=false
 // Tomcat JDBC Pool's StatementFinalizer keeps track
 dontTrackOpenResources=true
 // performance optimization: reduce number of SQLExceptions thrown in mysql driver code
 holdResultsOpenOverStatementClose=true
 // enable MySQL query cache - using server prep stmts will disable query caching
 useServerPrepStmts=false
 // metadata caching
 cacheServerConfiguration=true
 cacheResultSetMetadata=true
 metadataCacheSize=100
 // timeouts for TCP/IP
 connectTimeout=15000
 socketTimeout=120000
 // timer tuning (disable)
 maintainTimeStats=false
 enableQueryTimeouts=false
 // misc tuning

 noDatetimeStringSync=true
 }
 }
}

More on dbCreate

Hibernate can automatically create the database tables required for your domain model. You
have some control over when and how it does this through the property, which candbCreate

take these values:

create - Drops the existing schema and creates the schema on startup, dropping existing
tables, indexes, etc. first.

create-drop - Same as , but also drops the tables when the application shuts downcreate
cleanly.

update - Creates missing tables and indexes, and updates the current schema without
dropping any tables or data. Note that this can’t properly handle many schema changes like
column renames (you’re left with the old column containing the existing data).

validate - Makes no changes to your database. Compares the configuration with the existing
database schema and reports warnings.

any other value - does nothing

Setting the setting to "none" is recommended once your schema is relatively stabledbCreate

and definitely when your application and database are deployed in production. Database
changes are then managed through proper migrations, either with SQL scripts or a migration
tool like or . The plugin uses Liquibase.Flyway Liquibase Database Migration

4.4.1 DataSources and Environments

The previous example configuration assumes you want the same config for all
environments: production, test, development etc.

Grails' DataSource definition is "environment aware", however, so you can do:

dataSource {
 pooled = true
 driverClassName = "com.mysql.jdbc.Driver"
 dialect = org.hibernate.dialect.MySQL5InnoDBDialect
 // other common settings here
}

environments {
 production {
 dataSource {
 url = "jdbc:mysql://liveip.com/liveDb"
 // other environment-specific settings here
 }
 }
}

4.4.2 Automatic Database Migration

The property of the definition is important as it dictates what GrailsdbCreate DataSource

should do at runtime with regards to automatically generating the database tables from
 classes. The options are described in the section:GORM DataSource

create

https://flywaydb.org/
http://www.liquibase.org/
http://plugins.grails.org/plugin/grails/database-migration

create-drop

update

validate

no value

In mode is by default set to "create-drop", but at some point indevelopment dbCreate

development (and certainly once you go to production) you’ll need to stop dropping and
re-creating the database every time you start up your server.

It’s tempting to switch to so you retain existing data and only update the schema whenupdate

your code changes, but Hibernate’s update support is very conservative. It won’t make any
changes that could result in data loss, and doesn’t detect renamed columns or tables, so
you’ll be left with the old one and will also have the new one.

Grails supports migrations with Liquibase or Flyway via plugins.

Database Migration

Flyway

4.4.3 Transaction-aware DataSource Proxy

The actual bean is wrapped in a transaction-aware proxy so you will be given thedataSource

connection that’s being used by the current transaction or Hibernate if one is active.Session

If this were not the case, then retrieving a connection from the would be a newdataSource

connection, and you wouldn’t be able to see changes that haven’t been committed yet
(assuming you have a sensible transaction isolation setting, e.g. or better).READ_COMMITTED

4.4.4 Database Console

The is a convenient feature of H2 that provides a web-based interfaceH2 database console
to any database that you have a JDBC driver for, and it’s very useful to view the database
you’re developing against. It’s especially useful when running against an in-memory
database.

You can access the console by navigating to in a browser.http://localhost:8080/h2-console
See the for more information on the optionsSpring Boot H2 Console Documentation
available.

The H2 console is disabled by default (unless you are using Spring Boot’s developer tools)
and must be enabled by configuring the property with a value of spring.h2.console.enabled

.true

The H2 console is only intended for use during development so care should be taken to
ensure that is not set to in production.spring.h2.console.enabled true

4.4.5 Multiple Datasources

By default all domain classes share a single and a single database, but you haveDataSource

http://plugins.grails.org/plugin/grails/database-migration
http://plugins.grails.org/plugin/saw303/org.grails.plugins%3Agrails-flyway
http://h2database.com/html/quickstart.html#h2_console
http://localhost:8080/h2-console
https://docs.spring.io/spring-boot/docs/2.7.16/reference/htmlsingle/#data.sql.h2-web-console

the option to partition your domain classes into two or more data sources.

Configuring Additional DataSources

The default configuration in looks something likeDataSource grails-app/conf/application.yml

this:

:dataSource
 : pooled true
 : jmxExport true
 : driverClassName org.h2.Driver
 : username sa
 :password

:environments
 :development
 :dataSource
 : dbCreate create-drop
 : url jdbc:h2:mem:devDb;MVCC=TRUE;LOCK_TIMEOUT=10000;DB_CLOSE_ON_EXIT=FALSE
 :test
 :dataSource
 : dbCreate update
 : url jdbc:h2:mem:testDb;MVCC=TRUE;LOCK_TIMEOUT=10000;DB_CLOSE_ON_EXIT=FALSE
 :production
 :dataSource
 : dbCreate update
 : url jdbc:h2:prodDb;MVCC=TRUE;LOCK_TIMEOUT=10000;DB_CLOSE_ON_EXIT=FALSE
 :properties
 : jmxEnabled true
 : initialSize 5

This configures a single with the Spring bean named . To configure extraDataSource dataSource

data sources, add a block (at the top level, in an environment block, or both, justdataSources

like the standard definition) with a custom name. For example, this configurationDataSource

adds a second , using MySQL in the development environment and Oracle inDataSource

production:

:dataSource
 : pooled true
 : jmxExport true
 : driverClassName org.h2.Driver
 : username sa
 :password

:dataSources
 :lookup
 : dialect org.hibernate.dialect.MySQLInnoDBDialect
 : driverClassName com.mysql.jdbc.Driver
 : username lookup
 : password secret
 : url jdbc:mysql://localhost/lookup
 : dbCreate update

:environments
 :development
 :dataSource
 : dbCreate create-drop
 : url jdbc:h2:mem:devDb;MVCC=TRUE;LOCK_TIMEOUT=10000;DB_CLOSE_ON_EXIT=FALSE
 :test
 :dataSource
 : dbCreate update
 : url jdbc:h2:mem:testDb;MVCC=TRUE;LOCK_TIMEOUT=10000;DB_CLOSE_ON_EXIT=FALSE
 :production
 :dataSource
 : dbCreate update
 : url jdbc:h2:prodDb;MVCC=TRUE;LOCK_TIMEOUT=10000;DB_CLOSE_ON_EXIT=FALSE
 :properties
 : jmxEnabled true
 : initialSize 5
 ...
 :dataSources
 :lookup
 : dialect org.hibernate.dialect.Oracle10gDialect
 : driverClassName oracle.jdbc.driver.OracleDriver
 : username lookup
 : password secret
 : url jdbc:oracle:thin:@localhost:1521:lookup
 : dbCreate update

You can use the same or different databases as long as they’re supported by Hibernate.

If you need to inject the datasource in a Grails artefact, you can do it like this:lookup

 dataSource_lookupDataSource

While defining multiple data sources, one of them be named "dataSource". This ismust
required because Grails determines which data source is the default by determining which
one is named "dataSource".

Configuring Domain Classes

If a domain class has no configuration, it defaults to the standard . SetDataSource 'dataSource'

the property in the block to configure a non-default . For example,datasource mapping DataSource

if you want to use the domain to use the , configure it like this:ZipCode 'lookup' DataSource

 {class ZipCode

 codeString

 mapping = {static
 datasource 'lookup'
 }
}

A domain class can also use two or more data sources. Use the property with adatasources

list of names to configure more than one, for example:

 {class ZipCode

 codeString

 mapping = {static
 datasources([,])'lookup' 'auditing'
 }
}

If a domain class uses the default and one or more others, use the special name DataSource

 to indicate the default :'DEFAULT' DataSource

 {class ZipCode

 codeString

 mapping = {static
 datasources([,])'lookup' 'DEFAULT'
 }
}

If a domain class uses all configured data sources, use the special value :'ALL'

 {class ZipCode

 codeString

 mapping = {static
 datasource 'ALL'
 }
}

Namespaces and GORM Methods

If a domain class uses more than one then you can use the namespace implied byDataSource

each name to make GORM calls for a particular . For example, considerDataSource DataSource

this class which uses two data sources:

 {class ZipCode

 codeString

 mapping = {static
 datasources([,])'lookup' 'auditing'
 }
}

The first specified is the default when not using an explicit namespace, so in thisDataSource

case we default to . But you can call GORM methods on the 'auditing' with'lookup' DataSource

the name, for example:DataSource

 zipCode = ZipCode.auditing.get()def 42
...
zipCode.auditing.save()

As you can see, you add the to the method call in both the static case and theDataSource

instance case.

Hibernate Mapped Domain Classes

You can also partition annotated Java classes into separate datasources. Classes using the
default datasource are registered in . To specify that angrails-app/conf/hibernate.cfg.xml

annotated class uses a non-default datasource, create a file for thathibernate.cfg.xml

datasource with the file name prefixed with the datasource name.

For example if the class is in the default datasource, you would register that in Book

:grails-app/conf/hibernate.cfg.xml

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE hibernate-configuration PUBLIC
 '-//Hibernate/Hibernate Configuration DTD 3.0//EN'
 'http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd'>
<hibernate-configuration>
 <session-factory>
 =<mapping class 'org.example.Book'/>
 </session-factory>
</hibernate-configuration>

and if the class is in the "ds2" datasource, you would register that in Library

:grails-app/conf/ds2_hibernate.cfg.xml

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE hibernate-configuration PUBLIC
 '-//Hibernate/Hibernate Configuration DTD 3.0//EN'
 'http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd'>
<hibernate-configuration>
 <session-factory>
 =<mapping class 'org.example.Library'/>
 </session-factory>
</hibernate-configuration>

The process is the same for classes mapped with hbm.xml files - just list them in the
appropriate hibernate.cfg.xml file.

Services

Like Domain classes, by default Services use the default and DataSource

. To configure a Service to use a different , use the static PlatformTransactionManager DataSource

 property, for example:datasource

 {class DataService

 datasource = static 'lookup'

 someMethod(...) {void
 ...
 }
}

A transactional service can only use a single , so be sure to only make changes forDataSource

domain classes whose is the same as the Service.DataSource

Note that the datasource specified in a service has no bearing on which datasources are used
for domain classes; that’s determined by their declared datasources in the domain classes
themselves. It’s used to declare which transaction manager to use.

If you have a domain class in and a domain class in , if Foo dataSource1 Bar dataSource2

 uses , a service method that saves a new and a new will only beWahooService dataSource1 Foo Bar

transactional for since they share the same datasource. The transaction won’t affect the Foo

 instance. If you want both to be transactional you’d need to use two services and XABar

datasources for two-phase commit, e.g. with the Atomikos plugin.

Transactions across multiple data sources

Grails does not by default try to handle transactions that span multiple data sources.

You can enable Grails to use the Best Effort 1PC pattern for handling transactions across
multiple datasources. To do so you must set the

 setting to in grails.transaction.chainedTransactionManagerPostProcessor.enabled true application.yml

:

:grails
 :transaction
 :chainedTransactionManagerPostProcessor
 : enabled true

The is fairly general but can fail in some circumstances that theBest Efforts 1PC pattern
developer must be aware of.

This is a non-XA pattern that involves a synchronized single-phase commit of a number of
resources. Because the is not used, it can never be as safe as an transaction, but is2PC XA
often good enough if the participants are aware of the compromises.

The basic idea is to delay the commit of all resources as late as possible in a transaction so
that the only thing that can go wrong is an infrastructure failure (not a business-processing
error). Systems that rely on Best Efforts 1PC reason that infrastructure failures are rare
enough that they can afford to take the risk in return for higher throughput. If
business-processing services are also designed to be idempotent, then little can go wrong in
practice.

The BE1PC implementation was added in Grails 2.3.6. . Before this change additional
datasources didn’t take part in transactions initiated in Grails. The transactions in additional
datasources were basically in auto commit mode. In some cases this might be the wanted
behavior. One reason might be performance: on the start of each new transaction, the
BE1PC transaction manager creates a new transaction to each datasource. It’s possible to
leave an additional datasource out of the BE1PC transaction manager by setting transactional

 in the respective configuration block of the additional dataSource. Datasources with = false

 will also be left out of the chained transaction manager (since 2.3.7).readOnly = true

By default, the BE1PC implementation will add all beans implementing the Spring
 interface to the chained BE1PC transaction manager. For example,PlatformTransactionManager

a possible bean in the Grails application context would be added to theJMSTransactionManager

Grails BE1PC transaction manager’s chain of transaction managers.

You can exclude transaction manager beans from the BE1PC implementation with this
configuration option:

:grails
 :transaction
 :chainedTransactionManagerPostProcessor
 : enabled true
 : blacklistPattern '.*'

The exclude matching is done on the name of the transaction manager bean. The transaction
managers of datasources with or will be skipped andtransactional = false readOnly = true

using this configuration option is not required in that case.

https://www.javaworld.com/article/2077963/open-source-tools/distributed-transactions-in-spring-with-and-without-xa.html
https://docs.spring.io/spring/docs/5.3.33/javadoc-api//org/springframework/transaction/PlatformTransactionManager.html
https://docs.spring.io/spring/docs/5.3.33/javadoc-api//org/springframework/jms/connection/JmsTransactionManager.html

XA and Two-phase Commit

When the Best Efforts 1PC pattern isn’t suitable for handling transactions across multiple
transactional resources (not only datasources), there are several options available for adding
XA/2PC support to Grails applications.

The contains information about integrating the JTA/XASpring transactions documentation
transaction manager of different application servers. In this case, you can configure a bean
with the name manually in or file.transactionManager resources.groovy resources.xml

4.5 Versioning

Detecting Versions at Runtime

You can detect the application version using Grails' support for application metadata using
the class. For example within there is an implicit GrailsApplication controllers

 variable that can be used:grailsApplication

 version = grailsApplication.metadata.getApplicationVersion()def

You can retrieve the version of Grails that is running with:

 grailsVersion = grailsApplication.metadata.getGrailsVersion()def

or the class:GrailsUtil

 import grails.util.GrailsUtil
...
def grailsVersion = GrailsUtil.grailsVersion

4.6 Dependency Resolution

Dependency resolution is handled by the , all dependencies are defined inGradle build tool
the file. Refer to the for more information.build.gradle Gradle user guide

5 The Command Line
The Grails New Command-Line Interface (CLI) has undergone significant changes
compared to its previous versions, primarily focusing on code generation. One notable
alteration is the removal of APIs for invoking Gradle for tasks related to building using
Gradle Tooling APIs. This shift in responsibility aligns with the framework’s evolution and
its integration with the Gradle build system.

Accessing the Grails CLI

The Grails CLI (Command Line Interface) can be swiftly and effortlessly accessed by
simply typing the following command into your terminal or command prompt:

grails

This command allows developers to quickly initiate the Grails CLI and begin working with
the framework, making it an easy entry point for those looking to start their Grails projects.

The New Grails CLI! is the preferred method for initiating new Grails projects. This

https://docs.spring.io/spring/docs/5.3.33//transaction.html#transaction-application-server-integration
http://docs.grails.org/6.2.0/api/grails/core/GrailsApplication.html
http://gradle.org

command-line interface offers various options for creating projects, enabling you to select
your preferred build tools, test frameworks, GORM implementation, and more.
Additionally, the CLI provides commands for generating essential components like
controllers and domain classes.

The Grails Forge Website

You can also begin your Grails application without the need to install the Grails CLI by
visiting . This web-based platform allows you to initiate Grailsthe Grails Forge website
projects conveniently, bypassing the installation of the CLI.

Understanding the New Grails Command-line Interface (CLI)

Once the Grails CLI has been successfully installed, you can activate it using the "grails"
command. For example:

grails create-app myapp

A Grails framework CLI project is recognizable by the presence of the "grails-cli.yml" file,
which is automatically generated at the project’s root if it was created using the CLI. This
file contains information about the project’s profile, default package, and other variables.

Here is an example of a "grails-cli.yml" configuration for a default Grails web application:

: applicationType web
: defaultPackage com.example
: testFramework spock
: sourceLanguage groovy

: buildTool gradle
: gormImpl gorm-hibernate5

: servletImpl spring-boot-starter-tomcat
:features

 - app-name
 - asset-pipeline-grails
 - base
 - geb
 - gorm-hibernate5
 - gradle
 - grails-application
 - grails-console
 - grails-dependencies
 - grails-gorm-testing-support
 - grails-gradle-plugin
 - grails-gsp
 - grails-url-mappings
 - grails-web
 - grails-web-testing-support
 - h2
 - logback
 - micronaut-inject-groovy
 - readme
 - scaffolding
 - spock
 - spring-boot-autoconfigure
 - spring-boot-starter
 - spring-boot-starter-tomcat
 - yaml

This "grails-cli.yml" configuration sets the default values for various aspects of the Grails
web application, including the application type, default package, test framework, source
language, build tool, GORM implementation, servlet implementation, and a list of enabled
features.

Grails Default Package Configuration

The project’s default package is determined based on the project’s name. For instance,
running the following command:

grails create-app myapp

https://start.grails.org/

Will set the default package to .myapp

If you wish to specify your own default package when creating the application, you can do
so by prefixing the application name with the package like this:

grails create-app com.example.myapp

In this case, "com.example" becomes the default package for your project.

Gradle Build Tool

Grails now utilizes the Gradle Build System for project management. The project’s build
configuration is specified in the file, where you define critical aspects of yourbuild.gradle

project such as its version, required dependencies, and the repositories from which these
dependencies should be sourced. Here’s an example of how this is done:

plugins {
 id version 'org.grails.grails-web' 'x.y.z' // Grails plugin
}

repositories {
 mavenCentral()
}

dependencies {
 implementation 'org.springframework.boot:spring-boot-starter'
 implementation 'org.grails:grails-core'
 // Add more dependencies as needed...
}

grails {
 pathingJar = true
}

Utilizing Gradle Build Tool

To interact with your Grails project and perform various tasks related to building and
running it, you should employ Gradle commands. Here are a few examples:

Building the Grails application:

gradle build

Running the Grails application:

gradle bootRun

Listing available Gradle tasks:

gradle tasks

By invoking these Gradle commands, you can effectively manage your Grails application’s
lifecycle.

It is important to remember that Grails leverages the power of Gradle for streamlined project
management, including build automation and dependency resolution. This approach allows
for greater flexibility and control over your Grails projects.

5.1 Interactive Mode

When you execute the command without any arguments, the Grails Command Linegrails

Interface (CLI) enters interactive mode. In this mode, it functions like a shell, allowing you

to run multiple CLI commands without the need to re-initialize the CLI runtime. This mode
is particularly useful when working with code-generation commands (such as

), creating multiple projects, or exploring various CLI features.create-controller

One of the advantages of interactive mode is the availability of tab-completion. You can
simply press the TAB key to view possible options for a given command or flag. Here’s an
example of the available options in interactive mode:

grails>
--help --verbose -V -v create-app create-domain-class create-restapi create-webapp
--stacktrace --version -h -x create-controller create-plugin create-web-plugin

Help and Information

You can access general usage information for Grails commands using the help flag
associated with a specific command.

grails> create-app -h
Usage: grails create-app [-hivVx] [--list-features] [-g=GORM Implementation] [--jdk=<javaVersion>]
 [-s=Servlet Implementation] [-t=TEST] [-f=FEATURE[,FEATURE...]]... [NAME]
Creates an application
 [NAME] The name of the application to create.
 -f, --features=FEATURE[,FEATURE...]
 The features to use. Possible values: h2, scaffolding, gorm-hibernate5,
 spring-boot-starter-jetty, springloaded, spring-boot-starter-tomcat,
 micronaut-http-client, cache-ehcache, hibernate-validator, postgres,
 mysql, cache, database-migration, grails-gsp, hamcrest, gorm-mongodb,
 assertj, mockito, spring-boot-starter-undertow, micronaut-inject-groovy,
 github-workflow-java-ci, jrebel, testcontainers, sqlserver,
 grails-console, views-markup, asset-pipeline-grails, views-json,
 gorm-neo4j, asciidoctor, embedded-mongodb, grails-web-console,
 logbackGroovy, mongo-sync, shade, geb, properties
 -g, --gorm=GORM Implementation
 Which GORM Implementation to configure. Possible values: hibernate,
 mongodb, neo4j.
 -h, --help Show this help message and exit.
 -i, --inplace Create a service using the current directory
 --jdk, --java-version=<javaVersion>
 The JDK version the project should target
 --list-features Output the available features and their descriptions
 -s, --servlet=Servlet Implementation
 Which Servlet Implementation to configure. Possible values: none, tomcat,
 jetty, undertow.
 -t, --test=TEST Which test framework to use. Possible values: junit, spock.
 -v, --verbose Create verbose output.
 -V, --version Print version information and exit.
 -x, --stacktrace Show full stack trace when exceptions occur.

You can also obtain a list of available features by using the --list-features flag with any of
the create commands.

grails> create-app --list-features
Available Features
(+) denotes the feature is included by default
 Name Description
 ---------------------------------- ---------------
 CI/CD
 github-workflow-java-ci [PREVIEW] Adds a Github Actions Workflow to Build and Test Grails Application

 Cache
 cache The Grails Cache plugin provides powerful and easy to use caching functionality to Grails applications and plugins.
 cache-ehcache The Grails Cache Ehcache plugin extends the Cache plugin and uses Ehcache as the storage provider for cached content.

 Client
 micronaut-http-client Adds support for the Micronaut HTTP client

 Configuration
 properties Creates a properties configuration file

 Database
 database-migration Adds support for Liquibase database migrations. The Database Migration plugin helps you manage database changes while developing Grails applications.
 embedded-mongodb Executes an embedded mongo database for integration or functional testing
 gorm-hibernate5 (+) Adds support for Hibernate5 using GORM
 gorm-mongodb Configures GORM for MongoDB for Groovy applications
 gorm-neo4j Configures GORM for Neo4j for Groovy applications
 h2 (+) Adds the H2 driver and default config
 mongo-sync Adds support for the MongoDB Synchronous Driver
 mysql Adds the MySQL driver and default config
 postgres Adds the PostgresSQL driver and default config
 sqlserver Adds the SQL Server driver and default config
 testcontainers Use Testcontainers to run a database or other software in a Docker container for tests

 Development Tools
 assertj AssertJ fluent assertions framework
 hamcrest Hamcrest matchers for JUnit
 jrebel Adds support for class reloading with JRebel (requires separate JRebel installation)
 springloaded Adds support for class reloading with Spring Loaded

 Documentation
 asciidoctor Adds support for creating Asciidoctor documentation

 Logging
 logbackGroovy Gives you the ability to use groovy to configure logback instead of XML.

 Management
 grails-web-console A web-based Groovy console for interactive runtime application management and debugging

 Other
 geb (+) This plugins configure Geb for Grails framework to write automation tests.
 grails-console (+) Starts the Grails console, which is an extended version of the regular Groovy console.
 micronaut-inject-groovy (+) micronaut-inject-groovy
 scaffolding (+) The Grails® framework Scaffolding plugin replicates much of the functionality from Grails 2, but uses the fields plugin instead.

 Packaging
 shade Adds the ability to build a Fat/Shaded JAR

 Server
 spring-boot-starter-jetty spring-boot-starter-jetty
 spring-boot-starter-tomcat (+) spring-boot-starter-tomcat
 spring-boot-starter-undertow spring-boot-starter-undertow

 Validation
 hibernate-validator Adds support for the Hibernate Validator
 mockito Mockito test mocking framework for JUnit

 View Rendering
 asset-pipeline-grails (+) The Asset-Pipeline is a plugin used for managing and processing static assets in JVM applications primarily via Gradle (however not mandatory). Read more at https://github.com/bertramdev/asset-pipeline
 grails-gsp (+) grails-gsp
 views-json JSON views are written in Groovy, end with the file extension gson and reside in the grails-app/views directory. They provide a DSL for producing output in the JSON format.
 views-markup Markup views are written in Groovy, end with the file extension gml and reside in the grails-app/views directory. They provide a DSL for producing output in the XML.

5.2 Creating Custom Commands

In Grails, a custom command is a piece of functionality that you can add to your Grails
application and execute via the command-line interface (CLI). These commands are not part
of the core Grails framework but are extensions you can create to perform specific tasks or
operations that are unique to your application’s requirements. Custom commands are a
powerful way to automate various tasks, interact with your application, and perform
administrative functions from the command line. When you run custom commands, they
cause the Grails environment to start, giving you full access to the application context and
the runtime, allowing you to work with the application’s resources, services, and
configuration as needed within your custom command.

There are several reasons why you might want to write a custom command for your Grails
application:

Automating Tasks: Custom commands allow you to automate routine tasks, such as data
migration, database updates, or batch processing, by encapsulating the logic in a command
that can be executed on-demand.

Administrative Operations: You can use custom commands for administrative tasks like user
management, system maintenance, and configuration management, making it easier to
manage your application in different environments.

Integration: Custom commands can be used to integrate your Grails application with other
systems or services. For example, you can create a command to synchronize data with an
external API.

Customized Workflows: If your application has unique workflows or processes, custom
commands provide a way to execute these workflows from the command line.

In Grails, you can create custom commands by implementing the

 trait. By default, this trait requires your command to implementGrailsApplicationCommand
the handle() method as following:

boolean handle()

Commands defined this way still have access to the execution context via a variable called
"executionContext."

Here’s a step-by-step guide on how to create custom commands using the
GrailsApplicationCommand trait with examples, and how to run these commands.

In Grails, you can create custom commands by implementing the GrailsApplicationCommand
trait. Custom commands allow you to add functionality to your Grails application that can
be executed via the command-line interface (CLI). Here’s a step-by-step guide on how to
create custom commands using the trait with examples, and how toGrailsApplicationCommand

run these commands.

Step 1: Create a Custom Command

To create a custom command, you need to create a Groovy class that implements the
 trait. This trait provides methods for command execution. Let’sGrailsApplicationCommand

create a simple example command that greets the user:

// grails-app/commands/com/example/GreetCommand.groovy
 com.examplepackage

 import grails.cli.GrailsApplicationCommand

 GrailsApplicationCommand {class GreetCommand implements

 getName() {String
 return "greet"
 }

 getDescription() {String
 return "Greet the user"
 }

 handle() {boolean
 println()"Hello, user!"
 return true // Return true to indicate successful execution
 }
}

In this example, we’ve created a class that implements the GreetCommand

 trait. It provides a method to define the command name, a GrailsApplicationCommand getName()

 method for a brief description, and the method to specify the code togetDescription() run()

execute when the command is run.

Step 2: Build Your Grails Application

Before you can use the runCommand task, ensure you have built your Grails application
using the following command:

./gradlew assemble

This command will compile your application and make it ready for running custom
commands.

Step 3: Run the Custom Command

To run the custom command, use Gradle’s runCommand task. Open your terminal and
navigate to your Grails application’s root directory. Then, run the custom command with the

https://docs.grails.org/latest/api/grails/dev/commands/GrailsApplicationCommand.html

following Gradle command:

./gradlew runCommand -Pargs="greet"

In the command above, replace "greet" with the name of your custom command. This will
execute the GreetCommand, and you will see the output.

Here’s the expected final output when you run the greet command:

Hello, user!

Additional Features: Command Arguments and Options

Grails also supports command-line arguments and options for custom commands. You can
define these in your command class by implementing the interface.GrailsApplicationCommand

Here’s an example of a command that takes a name as an argument and an optional --loud
option to make the greeting louder:

// grails-app/commands/com/example/GreetCommand.groovy
 com.examplepackage

 import grails.cli.GrailsApplicationCommand

 GrailsApplicationCommand {class GreetCommand implements

 getName() {String
 return "greet"
 }

 getDescription() {String
 return "Greet the user with options"
 }

 handle() {boolean
 args = commandLine.argsdef
 name = args.size() > ? args[] : String 0 0 "user"
 loud = args.contains()boolean "--loud"

 (loud) {if
 println()"HELLO, name$! (LOUD)"
 } {else
 println()"Hello, name$!"
 }

 return true
 }
}

Now you can run the command with arguments and options:greet

Greet the user with the default message
./gradlew runCommand -Pargs="greet"

Greet a specific user
./gradlew runCommand -Pargs="greet Alice"

Greet loudly
./gradlew runCommand -Pargs="greet --loud"

Greet a specific user loudly
./gradlew runCommand -Pargs="greet Alice --loud"

This allows you to create more versatile and interactive custom commands for your Grails
application.

In summary, creating custom commands in Grails using the trait is aGrailsApplicationCommand

powerful way to extend your application’s functionality beyond the web interface. You can
define the command’s name, description, and logic, and then execute it from the command
line, optionally passing arguments and options as needed.

Using the in the Grails Custom CommandsexecutionContext

In Grails, the executionContext is a runtime context object that provides valuable

information about the current execution environment of a Grails application. It includes
details such as the application’s environment (e.g., development, production, test) and
allows developers to access this context within custom commands.

Custom commands in Grails can use the executionContext to make informed decisions and
perform specific tasks based on the current runtime environment. For example, developers
can write conditional logic in custom commands that execute differently in production,
development, or testing environments. This flexibility enables custom commands to adapt
and behave differently depending on the context in which they are run, making them
versatile tools for managing and extending Grails applications.

Suppose you have a Grails application that manages customer data, and you want to create a
custom command to perform data backup. In this scenario, you may want the backup
process to behave differently depending on whether you’re running it in a development,
staging, or production environment.

Here’s an example of how you can create a custom command that uses the executionContext
to determine the backup behavior:

// grails-app/commands/com/example/BackupCommand.groovy
 com.examplepackage

 import grails.cli.GrailsApplicationCommand

 GrailsApplicationCommand {class BackupCommand implements

 getName() {String
 return "backup"
 }

 getDescription() {String
 return "Backup customer data"
 }

 handle() {boolean
 // Access the executionContext to determine the environment
 environment = executionContext.environmentdef

 (environment ==) {if "production"
 // Perform a full backup in the production environment
 println()"Performing a full backup of customer data (Production)"
 // Add production-specific backup logic here
 } {else
 // Perform a partial backup in other environments
 println()"Performing a partial backup of customer data (Non-production)"
 // Add non-production backup logic here
 }

 return true // Return true to indicate successful execution
 }
}

In this example:

The custom command, named , is created to back up customer data.BackupCommand

It checks the to determine the current environment.executionContext

If the environment is "production," it performs a full backup with production-specific logic.

In all other environments, it performs a partial backup with non-production logic.

When you run this custom command using , it will adapt./gradlew runCommand -Pargs="backup"

its behavior based on whether you’re in a production or non-production environment,
demonstrating how the can be used to make environment-specific decisionsexecutionContext

in a realistic scenario.

How to Create a Custom Command from a Grails Plugin

1.

2.

3.

4.

5.

You can create custom commands not only within your Grails application but also from a
Grails plugin. Here’s how to do it:

Create a Grails Plugin: If you don’t already have a Grails plugin, you can create one using
Grails' plugin generation commands. For example:

grails create-plugin my-plugin

Define the Command: Inside your Grails plugin, define the custom command by creating a
Groovy class that implements the trait or interface, providing theGrailsApplicationCommand

necessary methods like , , and .getName() getDescription() handle()

Build and Package the Plugin: To publish the plugin, you should use the Gradle
maven-publish plugin. Update your plugin’s build.gradle file to include the following
configuration:

publishing {
 publications {
 mavenJava(MavenPublication) {
 from components.java
 }
 }
 repositories {
 maven {
 url "file://path/to/your/local/repo" // Adjust the path accordingly
 }
 }
}

Then, you can publish the plugin to your local repository:

./gradlew publishToMavenLocal

Add the Plugin as a Dependency: Instead of using the grails install-plugin command, you
should add the plugin as a dependency in your Grails application’s build.gradle file. Include
the following dependency:

dependencies {
 // ...
 implementation 'com.example:my-plugin:1.0.0' // Replace with your plugin's group and version
 // ...
}

Make sure to replace "com.example:my-plugin:1.0.0" with the appropriate group and
version for your plugin

Run the Custom Command: Now, you can run the custom command from your Grails
application’s root directory using the Gradle task, as previously explained:runCommand

./gradlew runCommand -Pargs="your-command-name"

Replace with the name of the custom command you defined in your"your-command-name"

plugin.

By following these steps, you can create and run custom commands from a Grails plugin,
extending the functionality of your Grails application as needed. This approach allows you
to modularize your custom functionality and share it across multiple Grails projects if
necessary.

5.3 Creating a Grails Project

Creating a project is the primary usage of the CLI. The primary command for creating a new
project is create-app, which creates a standard Grails web application that communicates
over HTTP. For other types of application, see the documentation below.

Command Description Options

create-app /
create-webapp

Creates a
Grails web
application

-jdk, --java-version

-s, --servlet

-g, --gorm

-t, --test

-f, --features

-i, --inplace

create-restapi

Creates a
Grails
REST API
application

-jdk, --java-version

-s, --servlet

-g, --gorm

-t, --test

-f, --features

-i, --inplace

create-plugin

Creates a
Grails
Plugin
application

-jdk, --java-version

-s, --servlet

-g, --gorm

-t, --test

-f, --features

-i, --inplace

create-web-plugin

Creates a
Grails Web
Plugin
application

-jdk, --java-version

-s, --servlet

-g, --gorm

-t, --test

-f, --features

-i, --inplace

| Flag | Description | Example

The command flagscreate-

The "create-*" commands are used to produce a fundamental Grails project, allowing for the
inclusion of optional flags to select additional features, to customize GORM settings, an
embedded servlet, the test framework, and the Java version.

Flag Description Example

-jdk,
--java-version

The JDK version the project
should target

--java-version 11

-s, --servlet

Which Servlet
Implementation to configure.
Possible values: none,
tomcat, jetty, undertow.

--servlet=tomcat

-g, --gorm

Which GORM
Implementation to configure.
Possible values: hibernate,
mongodb, neo4j.

--gorm hibernate

-t, --test
Which test framework to
use. Possible values: junit,
spock.

--test spock

-f, --features

The features to use. Possible
values: h2, gorm-hibernate5,
spring-boot-starter-jetty,
springloaded,
micronaut-http-client,
cache-ehcache,
hibernate-validator, postgres,
mysql, cache,
database-migration,
grails-gsp, hamcrest,
gorm-mongodb, assertj,
mockito,
spring-boot-starter-undertow,
micronaut-inject-groovy,
github-workflow-java-ci,
jrebel, testcontainers,
sqlserver, grails-console,
views-markup, views-json,
gorm-neo4j, asciidoctor,
embedded-mongodb,
grails-web-console,
logbackGroovy,
mongo-sync, shade,
properties

--features github-workflow-java-ci,micronaut-http-client

-i, --inplace Create a project using the
current directory

--inplace

6 Object Relational Mapping (GORM)
Domain classes are core to any business application. They hold state about business
processes and hopefully also implement behavior. They are linked together through
relationships; one-to-one, one-to-many, or many-to-many.

GORM is Grails' object relational mapping (ORM) implementation. Under the hood it uses
Hibernate (a very popular and flexible open source ORM solution) and thanks to the
dynamic nature of Groovy with its static and dynamic typing, along with the convention of
Grails, there is far less configuration involved in creating Grails domain classes.

You can also write Grails domain classes in Java. See the section on Hibernate Integration
for how to write domain classes in Java but still use dynamic persistent methods. Below is a
preview of GORM in action:

 book = .findByTitle()def Book "Groovy in Action"

book
 .addToAuthors(:)name "Dierk Koenig"
 .addToAuthors(:)name "Guillaume LaForge"
 .save()

6.1 Quick Start Guide

A domain class can be created with the command:create-domain-class

grails create-domain- .Personclass myapp

If no package is specified with the create-domain-class script, Grails automatically uses the
application name as the package name.

This will create a class at the location such as the onegrails-app/domain/myapp/Person.groovy

below:

 myapppackage

 {class Person
}

If you have the property set to "update", "create" or "create-drop" on your dbCreate

, Grails will automatically generate/modify the database tables for you.DataSource

You can customize the class by adding properties:

 {class Person
 nameString
 ageInteger
 lastVisitDate
}

Once you have a domain class try and manipulate it with the or by typing:shell console

grails console

This loads an interactive GUI where you can run Groovy commands with access to the
Spring ApplicationContext, GORM, etc.

6.1.1 Basic CRUD

Try performing some basic CRUD (Create/Read/Update/Delete) operations.

Create

To create a domain class use Map constructor to set its properties and call :save

 p = Person(: , : , : ())def new name "Fred" age 40 lastVisit new Date
p.save()

The method will persist your class to the database using the underlying Hibernate ORMsave
layer.

Read

Grails transparently adds an implicit property to your domain class which you can use forid

retrieval:

 p = Person.get()def 1
 == p.idassert 1

This uses the method that expects a database identifier to read the object backget Person

from the database. You can also load an object in a read-only state by using the read
method:

 p = Person.read()def 1

In this case the underlying Hibernate engine will not do any dirty checking and the object
will not be persisted. Note that if you explicitly call the method then the object issave
placed back into a read-write state.

In addition, you can also load a proxy for an instance by using the method:load

 p = Person.load()def 1

This incurs no database access until a method other than getId() is called. Hibernate then
initializes the proxied instance, or throws an exception if no record is found for the specified
id.

Update

To update an instance, change some properties and then call again:save

 p = Person.get()def 1
p.name = "Bob"
p.save()

Delete

To delete an instance use the method:delete

 p = Person.get()def 1
p.delete()

6.2 Further Reading on GORM

For more information on using GORM see the for the GORMdedicated documentation
project.

https://gorm.grails.org

7 The Web Layer

7.1 Controllers

A controller handles requests and creates or prepares the response. A controller can generate
the response directly or delegate to a view. To create a controller, simply create a class
whose name ends with in the directory (in a subdirectory ifController grails-app/controllers

it’s in a package).

The default configuration ensures that the first part of your controller name isURL Mapping
mapped to a URI and each action defined within your controller maps to URIs within the
controller name URI.

7.1.1 Understanding Controllers and Actions

Creating a controller

Controllers can be created with the or command. Forcreate-controller generate-controller
example try running the following command from the root of a Grails project:

grails create-controller book

The command will create a controller at the location
:grails-app/controllers/myapp/BookController.groovy

 myapppackage

 {class BookController

 () { }def index
}

where "myapp" will be the name of your application, the default package name if one isn’t
specified.

BookController by default maps to the /book URI (relative to your application root).

The and commands are just for convenience and youcreate-controller generate-controller

can just as easily create controllers using your favorite text editor or IDE

Creating Actions

A controller can have multiple public action methods; each one maps to a URI:

 {class BookController

 () {def list

 // do controller logic
 // create model

 modelreturn
 }
}

This example maps to the URI by default thanks to the property being named ./book/list list

The Default Action

A controller has the concept of a default URI that maps to the root URI of the controller, for
example for . The action that is called when the default URI is requested/book BookController

is dictated by the following rules:

If there is only one action, it’s the default

If you have an action named , it’s the defaultindex

Alternatively you can set it explicitly with the property:defaultAction

 defaultAction = static "list"

7.1.2 Controllers and Scopes

Available Scopes

Scopes are hash-like objects where you can store variables. The following scopes are
available to controllers:

servletContext - Also known as application scope, this scope lets you share state across the
entire web application. The servletContext is an instance of ServletContext

session - The session allows associating state with a given user and typically uses cookies to
associate a session with a client. The session object is an instance of HttpSession

request - The request object allows the storage of objects for the current request only. The
request object is an instance of HttpServletRequest

params - Mutable map of incoming request query string or POST parameters

flash - See below

Accessing Scopes

Scopes can be accessed using the variable names above in combination with Groovy’s array
index operator, even on classes provided by the Servlet API such as the :HttpServletRequest

 {class BookController
 () {def find
 findBy = params[]def "findBy"
 appContext = request[]def "foo"
 loggedUser = session[]def "logged_user"
 }
}

You can also access values within scopes using the de-reference operator, making the syntax
even more clear:

 {class BookController
 () {def find
 findBy = params.findBydef
 appContext = request.foodef
 loggedUser = session.logged_userdef
 }
}

This is one of the ways that Grails unifies access to the different scopes.

Using Flash Scope

https://docs.oracle.com/javaee/7/api/javax/servlet/ServletContext.html
https://docs.oracle.com/javaee/7/api/javax/servlet/http/HttpSession.html
https://docs.oracle.com/javaee/7/api/javax/servlet/http/HttpServletRequest.html
https://docs.oracle.com/javaee/7/api/javax/servlet/http/HttpServletRequest.html

Grails supports the concept of scope as a temporary store to make attributes availableflash
for this request and the next request only. Afterwards the attributes are cleared. This is
useful for setting a message directly before redirecting, for example:

 () {def delete
 b = .get(params.id)def Book
 (!b) {if
 flash.message = "User not found for id params.id${ }"
 redirect(:list)action
 }
 ... // remaining code
}

When the action is requested, the value will be in scope and can be used todelete message

display an information message. It will be removed from the scope after this secondflash

request.

Note that the attribute name can be anything you want, and the values are often strings used
to display messages, but can be any object type.

Scoped Controllers

Newly created applications have the property set to a value ofgrails.controllers.defaultScope

"singleton" in . You may change this value to any of the supported scopesapplication.yml

listed below. If the property is not assigned a value at all, controllers will default to
"prototype" scope.

Supported controller scopes are:

prototype (default) - A new controller will be created for each request (recommended for
actions as Closure properties)

session - One controller is created for the scope of a user session

singleton - Only one instance of the controller ever exists (recommended for actions as
methods)

To enable one of the scopes, add a static property to your class with one of the validscope

scope values listed above, for example

 scope = static "singleton"

You can define the default strategy in with the application.yml grails.controllers.defaultScope

key, for example:

:grails
 :controllers
 : singletondefaultScope

Use scoped controllers wisely. For instance, we don’t recommend having any properties in
a singleton-scoped controller since they will be shared for requests.all

7.1.3 Models and Views

Returning the Model

A model is a Map that the view uses when rendering. The keys within that Map correspond
to variable names accessible by the view. There are a couple of ways to return a model.
First, you can explicitly return a Map instance:

 () {def show
 [: .get(params.id)]book Book

}

The above does reflect what you should use with the scaffolding views - see the not
 for more details.scaffolding section

A more advanced approach is to return an instance of the Spring class:ModelAndView

 import org.springframework.web.servlet.ModelAndView

 () {def index
 // get some books just for the index page, perhaps your favorites
 favoriteBooks = ...def

 // forward to the list view to show them
 ModelAndView(, [bookList : favoriteBooks])return new "/book/list"
}

One thing to bear in mind is that certain variable names can not be used in your model:

attributes

application

Currently, no error will be reported if you do use them, but this will hopefully change in a
future version of Grails.

Selecting the View

In both of the previous two examples there was no code that specified which to render.view
So how does Grails know which one to pick? The answer lies in the conventions. Grails will
look for a view at the location for this action:grails-app/views/book/show.gsp show

 {class BookController
 () {def show
 [: .get(params.id)]book Book
 }
}

To render a different view, use the method:render

 () {def show
 map = [: .get(params.id)]def book Book
 render(: , : map)view "display" model
}

In this case Grails will attempt to render a view at the location
. Notice that Grails automatically qualifies the view locationgrails-app/views/book/display.gsp

with the directory of the directory. This is convenient, but to accessbook grails-app/views

shared views, you use an absolute path instead of a relative one:

 () {def show
 map = [: .get(params.id)]def book Book
 render(: , : map)view "/shared/display" model
}

In this case Grails will attempt to render a view at the location
.grails-app/views/shared/display.gsp

Grails also supports JSPs as views, so if a GSP isn’t found in the expected location but a JSP
is, it will be used instead.

Unlike GSPs, JSPs must be located in the directory path
./src/main/webapp/WEB-INF/grails-app/views

Additionally, to ensure JSPs work as intended, don’t forget to include the required

https://docs.spring.io/spring/docs/5.3.33/javadoc-api/org/springframework/web/servlet/ModelAndView.html

dependencies for JSP and JSTL implementations in your file.build.gradle

Selecting Views For Namespaced Controllers

If a controller defines a namespace for itself with the property that will affect thenamespace
root directory in which Grails will look for views which are specified with a relative path.
The default root directory for views rendered by a namespaced controller is

. If the view is not found in the namespacedgrails-app/views/<namespace name>/<controller name>/

directory then Grails will fallback to looking for the view in the non-namespaced directory.

See the example below.

 {class ReportingController
 namespace = static 'business'

 () {def humanResources
 // This will render grails-app/views/business/reporting/humanResources.gsp
 // if it exists.

 // If grails-app/views/business/reporting/humanResources.gsp does not
 // exist the fallback will be grails-app/views/reporting/humanResources.gsp.

 // The namespaced GSP will take precedence over the non-namespaced GSP.

 [:]numberOfEmployees 9
 }

 () {def accountsReceivable
 // This will render grails-app/views/business/reporting/numberCrunch.gsp
 // if it exists.

 // If grails-app/views/business/reporting/numberCrunch.gsp does not
 // exist the fallback will be grails-app/views/reporting/numberCrunch.gsp.

 // The namespaced GSP will take precedence over the non-namespaced GSP.

 render : , : [:]view 'numberCrunch' model numberOfEmployees 13
 }
}

Rendering a Response

Sometimes it’s easier (for example with Ajax applications) to render snippets of text or code
to the response directly from the controller. For this, the highly flexible method can berender

used:

render "Hello World!"

The above code writes the text "Hello World!" to the response. Other examples include:

// write some markup
render {
 (b books) {for in
 div(: b.id, b.title)id
 }
}

// render a specific view
render(:)view 'show'

// render a template for each item in a collection
render(: , : .list())template 'book_template' collection Book

// render some text with encoding and content type
render(: , : , :)text "<xml>some xml</xml>" contentType "text/xml" encoding "UTF-8"

If you plan on using Groovy’s to generate HTML for use with the MarkupBuilder render

method be careful of naming clashes between HTML elements and Grails tags, for example:

 import groovy.xml.MarkupBuilder
...
def login() {
 writer = ()def new StringWriter
 builder = MarkupBuilder(writer)def new

 builder.html {
 head {
 title 'Log in'
 }
 body {
 h1 'Hello'
 form {
 }
 }
 }

 html = writer.toString()def
 render html
}

This will actually (which will return some text that will be ignored by the call the form tag
). To correctly output a element, use the following:MarkupBuilder <form>

 () {def login
 // ...
 body {
 h1 'Hello'
 builder.form {
 }
 }
 // ...
}

7.1.4 Redirects and Chaining

Redirects

Actions can be redirected using the controller method:redirect

 {class OverviewController

 () {}def login

 () {def find
 (!session.user)if
 redirect(:)action 'login'
 return
 }
 ...
 }
}

Internally the method uses the object’s method.redirect HttpServletResponse sendRedirect

The method expects one of:redirect

The name of an action (and controller name if the redirect isn’t to an action in the current
controller):

// Also redirects to the index action in the home controller
redirect(: , :)controller 'home' action 'index'

A URI for a resource relative the application context path:

// Redirect to an explicit URI
redirect(:)uri "/login.html"

Or a full URL:

// Redirect to a URL
redirect(:)url "http://grails.org"

A instance:domain class

// Redirect to the domain instance
 book = ... Book // obtain a domain instance

redirect book

https://docs.oracle.com/javaee/7/api/javax/servlet/http/HttpServletResponse.html

In the above example Grails will construct a link using the domain class (if present).id

Parameters can optionally be passed from one action to the next using the argument ofparams

the method:

redirect(: , : [:])action 'myaction' params myparam "myvalue"

These parameters are made available through the dynamic property that accessesparams
request parameters. If a parameter is specified with the same name as a request parameter,
the request parameter is overridden and the controller parameter is used.

Since the object is a Map, you can use it to pass the current request parameters fromparams

one action to the next:

redirect(: , : params)action "next" params

Finally, you can also include a fragment in the target URI:

redirect(: , : , :)controller "test" action "show" fragment "profile"

which will (depending on the URL mappings) redirect to something like
"/myapp/test/show#profile".

Chaining

Actions can also be chained. Chaining allows the model to be retained from one action to
the next. For example calling the action in this action:first

 {class ExampleChainController

 () {def first
 chain(: second, : [:])action model one 1
 }

 () {def second
 chain(: third, : [:])action model two 2
 }

 () {def third
 [:])three 3
 }
}

results in the model:

[: , : , :]one 1 two 2 three 3

The model can be accessed in subsequent controller actions in the chain using the chainModel
map. This dynamic property only exists in actions following the call to the method:chain

 {class ChainController

 () {def nextInChain
 model = chainModel.myModeldef
 ...
 }
}

Like the method you can also pass parameters to the method:redirect chain

chain(: , : [:], : [:])action "action1" model one 1 params myparam "param1"

The chain method uses the HTTP session and hence should only be used if your
application is stateful.

7.1.5 Data Binding

Data binding is the act of "binding" incoming request parameters onto the properties of an
object or an entire graph of objects. Data binding should deal with all necessary type
conversion since request parameters, which are typically delivered by a form submission,
are always strings whilst the properties of a Groovy or Java object may well not be.

Map Based Binding

The data binder is capable of converting and assigning values in a Map to properties of an
object. The binder will associate entries in the Map to properties of the object using the keys
in the Map that have values which correspond to property names on the object. The
following code demonstrates the basics:

grails-app/domain/Person.groovy
 {class Person

 firstNameString
 lastNameString
 ageInteger
}

 bindingMap = [: , : , :]def firstName 'Peter' lastName 'Gabriel' age 63

 person = Person(bindingMap)def new

 person.firstName == assert 'Peter'
 person.lastName == assert 'Gabriel'
 person.age == assert 63

To update properties of a domain object you may assign a Map to the property ofproperties

the domain class:

 bindingMap = [: , : , :]def firstName 'Peter' lastName 'Gabriel' age 63

 person = Person.get(someId)def
person.properties = bindingMap

 person.firstName == assert 'Peter'
 person.lastName == assert 'Gabriel'
 person.age == assert 63

The binder can populate a full graph of objects using Maps of Maps.

 {class Person
 firstNameString
 lastNameString
 ageInteger
 Address homeAddress
}

 {class Address
 countyString
 countryString
}

 bindingMap = [: , : , : , : [: , :]]def firstName 'Peter' lastName 'Gabriel' age 63 homeAddress county 'Surrey' country 'England'

 person = Person(bindingMap)def new

 person.firstName == assert 'Peter'
 person.lastName == assert 'Gabriel'
 person.age == assert 63
 person.homeAddress.county == assert 'Surrey'
 person.homeAddress.country == assert 'England'

Binding To Collections And Maps

The data binder can populate and update Collections and Maps. The following code shows a
simple example of populating a of objects in a domain class:List

 {class Band
 nameString
 hasMany = [: Album]static albums
 albumsList
}

 {class Album
 titleString

 numberOfTracksInteger
}

 bindingMap = [: ,def name 'Genesis'
 : [: , :],'albums[0]' title 'Foxtrot' numberOfTracks 6
 : [: , :]]'albums[1]' title 'Nursery Cryme' numberOfTracks 7

 band = Band(bindingMap)def new

 band.name == assert 'Genesis'
 band.albums.size() == assert 2
 band.albums[].title == assert 0 'Foxtrot'
 band.albums[].numberOfTracks == assert 0 6
 band.albums[].title == assert 1 'Nursery Cryme'
 band.albums[].numberOfTracks == assert 1 7

That code would work in the same way if were an array instead of a .albums List

Note that when binding to a the structure of the being bound to the is the same asSet Map Set

that of a being bound to a but since a is unordered, the indexes don’t necessarilyMap List Set

correspond to the order of elements in the . In the code example above, if were a Set albums Set

instead of a , the could look exactly the same but 'Foxtrot' might be the firstList bindingMap

album in the or it might be the second. When updating existing elements in a the Set Set Map

being assigned to the must have elements in it which represent the element in the Set id Set

being updated, as in the following example:

/*
 * The value of the indexes 0 and 1 in albums[0] and albums[1] are arbitrary
 * values that can be anything as long as they are unique within the Map.
 * They do not correspond to the order of elements in albums because albums
 * is a Set.
 */

 bindingMap = [: [: , :]def 'albums[0]' id 9 title 'The Lamb Lies Down On Broadway'
 : [: , :]]'albums[1]' id 4 title 'Selling England By The Pound'

 band = Band.get(someBandId)def

/*
 * This will find the Album in albums that has an id of 9 and will set its title
 * to 'The Lamb Lies Down On Broadway' and will find the Album in albums that has
 * an id of 4 and set its title to 'Selling England By The Pound'. In both
 * cases if the Album cannot be found in albums then the album will be retrieved
 * from the database by id, the Album will be added to albums and will be updated
 * with the values described above. If a Album with the specified id cannot be
 * found in the database, then a binding error will be created and associated
 * with the band object. More on binding errors later.
 */
band.properties = bindingMap

When binding to a the structure of the binding is the same as the structure of a Map Map Map

used for binding to a or a and the index inside of square brackets corresponds to theList Set

key in the being bound to. See the following code:Map

 {class Album
 titleString
 hasMany = [: Player]static players
 playersMap
}

 {class Player
 nameString
}

 bindingMap = [: ,def title 'The Lamb Lies Down On Broadway'
 : [:],'players[guitar]' name 'Steve Hackett'
 : [:],'players[vocals]' name 'Peter Gabriel'
 : [:]]'players[keyboards]' name 'Tony Banks'

 album = Album(bindingMap)def new

 album.title == assert 'The Lamb Lies Down On Broadway'
 album.players.size() == assert 3
 album.players.guitar.name == assert 'Steve Hackett'
 album.players.vocals.name == assert 'Peter Gabriel'
 album.players.keyboards.name == assert 'Tony Banks'

When updating an existing , if the key specified in the binding does not exist in the Map Map Map

being bound to then a new value will be created and added to the with the specified keyMap

as in the following example:

 bindingMap = [: ,def title 'The Lamb Lies Down On Broadway'
 : [:],'players[guitar]' name 'Steve Hackett'
 : [:],'players[vocals]' name 'Peter Gabriel'
 : [:]]'players[keyboards]' name 'Tony Banks'

 album = Album(bindingMap)def new

 album.title == assert 'The Lamb Lies Down On Broadway'
 album.players.size() == assert 3
 album.players.guitar.name == assert 'Steve Hackett'
 album.players.vocals.name == assert 'Peter Gabriel'
 album.players.keyboards.name == assert 'Tony Banks'

 updatedBindingMap = [: [:],def 'players[drums]' name 'Phil Collins'
 : [:]]'players[keyboards]' name 'Anthony George Banks'

album.properties = updatedBindingMap

 album.title == assert 'The Lamb Lies Down On Broadway'
 album.players.size() == assert 4
 album.players.guitar.name == assert 'Steve Hackett'
 album.players.vocals.name == assert 'Peter Gabriel'
 album.players.keyboards.name == assert 'Anthony George Banks'
 album.players.drums.name == assert 'Phil Collins'

Binding Request Data to the Model

The object that is available in a controller has special behavior that helps convertparams
dotted request parameter names into nested Maps that the data binder can work with. For
example, if a request includes request parameters named and person.homeAddress.country

 with values 'USA' and 'St. Louis' respectively, would includeperson.homeAddress.city params

entries like these:

[: [: [: , :]]]person homeAddress country 'USA' city 'St. Louis'

There are two ways to bind request parameters onto the properties of a domain class. The
first involves using a domain classes' Map constructor:

 () {def save
 b = (params)def new Book
 b.save()
}

The data binding happens within the code . By passing the object tonew Book(params) params
the domain class constructor Grails automatically recognizes that you are trying to bind
from request parameters. So if we had an incoming request like:

/book/save?title=The%20Stand&author=Stephen%20King

Then the and request parameters would automatically be set on the domain class.title author

You can use the property to perform data binding onto an existing instance:properties

 () {def save
 b = .get(params.id)def Book
 b.properties = params
 b.save()
}

This has the same effect as using the implicit constructor.

When binding an empty String (a String with no characters in it, not even spaces), the data
binder will convert the empty String to null. This simplifies the most common case where
the intent is to treat an empty form field as having the value null since there isn’t a way to
actually submit a null as a request parameter. When this behavior is not desirable the
application may assign the value directly.

The mass property binding mechanism will by default automatically trim all Strings at
binding time. To disable this behavior set the property to falsegrails.databinding.trimStrings

in .grails-app/conf/application.groovy

// the default value is true

grails.databinding.trimStrings = false

// ...

The mass property binding mechanism will by default automatically convert all empty
Strings to null at binding time. To disable this behavior set the

 property to false in grails.databinding.convertEmptyStringsToNull

.grails-app/conf/application.groovy

// the default value is true
grails.databinding.convertEmptyStringsToNull = false

// ...

The order of events is that the String trimming happens and then null conversion happens so
if is and is , not only will empty Strings betrimStrings true convertEmptyStringsToNull true

converted to null but also blank Strings. A blank String is any String such that the trim()
method returns an empty String.

These forms of data binding in Grails are very convenient, but also indiscriminate. In other
words, they will bind non-transient, typed instance properties of the target object,all
including ones that you may not want bound. Just because the form in your UI doesn’t
submit all the properties, an attacker can still send malign data via a raw HTTP request.
Fortunately, Grails also makes it easy to protect against such attacks - see the section titled
"Data Binding and Security concerns" for more information.

Data binding and Single-ended Associations

If you have a or association you can use Grails' data binding capabilityone-to-one many-to-one

to update these relationships too. For example if you have an incoming request such as:

/book/save?author.id=20

Grails will automatically detect the suffix on the request parameter and look up the .id Author

instance for the given id when doing data binding such as:

 b = (params)def new Book

An association property can be set to by passing the literal "null". For example:null String

/book/save?author.id=null

Data Binding and Many-ended Associations

If you have a one-to-many or many-to-many association there are different techniques for
data binding depending of the association type.

If you have a based association (the default for a) then the simplest way toSet hasMany

populate an association is to send a list of identifiers. For example consider the usage of
 below:<g:select>

 =<g:select name "books"
 =from "${Book.list()}"
 = = =size "5" multiple "yes" optionKey "id"
 = value "${author?.books}" />

This produces a select box that lets you select multiple values. In this case if you submit the
form Grails will automatically use the identifiers from the select box to populate the books
association.

However, if you have a scenario where you want to update the properties of the associated
objects the this technique won’t work. Instead you use the subscript operator:

 = = <g:textField name "books[0].title" value "the Stand" />
 = = <g:textField name "books[1].title" value "the Shining" />

However, with based association it is critical that you render the mark-up in the sameSet

order that you plan to do the update in. This is because a has no concept of order, soSet

although we’re referring to and it is not guaranteed that the order of thebooks[0] books[1]

association will be correct on the server side unless you apply some explicit sorting yourself.

This is not a problem if you use based associations, since a has a defined order andList List

an index you can refer to. This is also true of based associations.Map

Note also that if the association you are binding to has a size of two and you refer to an
element that is outside the size of association:

 = = <g:textField name "books[0].title" value "the Stand" />
 = = <g:textField name "books[1].title" value "the Shining" />
 = = <g:textField name "books[2].title" value "Red Madder" />

Then Grails will automatically create a new instance for you at the defined position.

You can bind existing instances of the associated type to a using the same syntax asList .id

you would use with a single-ended association. For example:

 = =<g:select name "books[0].id" from "${bookList}"
 = value "${author?.books[0]?.id}" />

 = =<g:select name "books[1].id" from "${bookList}"
 = value "${author?.books[1]?.id}" />

 = =<g:select name "books[2].id" from "${bookList}"
 = value "${author?.books[2]?.id}" />

Would allow individual entries in the to be selected separately.books List

Entries at particular indexes can be removed in the same way too. For example:

 =<g:select name "books[0].id"
 =from "${Book.list()}"
 =value "${author?.books[0]?.id}"
 =noSelection "['null': '']"/>

Will render a select box that will remove the association at if the empty option isbooks[0]

chosen.

Binding to a property works the same way except that the list index in the parameterMap

name is replaced by the map key:

 =<g:select name "images[cover].id"
 =from "${Image.list()}"
 =value "${book?.images[cover]?.id}"
 =noSelection "['null': '']"/>

This would bind the selected image into the property under a key of .Map images "cover"

When binding to Maps, Arrays and Collections the data binder will automatically grow the
size of the collections as necessary.

The default limit to how large the binder will grow a collection is 256. If the data binder
encounters an entry that requires the collection be grown beyond that limit, the entry is
ignored. The limit may be configured by assigning a value to the

 property in .grails.databinding.autoGrowCollectionLimit application.groovy

grails-app/conf/application.groovy
// the default value is 256
grails.databinding.autoGrowCollectionLimit = 128

// ...

Data binding with Multiple domain classes

It is possible to bind data to multiple domain objects from the object.params

For example so you have an incoming request to:

/book/save?book.title=The%20Stand&author.name=Stephen%20King

You’ll notice the difference with the above request is that each parameter has a prefix such
as or which is used to isolate which parameters belong to which type. Grails' author. book.

 object is like a multi-dimensional hash and you can index into it to isolate only aparams

subset of the parameters to bind.

 b = (params.book)def new Book

Notice how we use the prefix before the first dot of the parameter to isolate onlybook.title

parameters below this level to bind. We could do the same with an domain class:Author

 a = Author(params.author)def new

Data Binding and Action Arguments

Controller action arguments are subject to request parameter data binding. There are 2
categories of controller action arguments. The first category is command objects. Complex
types are treated as command objects. See the section of the user guideCommand Objects
for details. The other category is basic object types. Supported types are the 8 primitives,
their corresponding type wrappers and . The default behavior is to mapjava.lang.String
request parameters to action arguments by name:

 {class AccountingController

 // accountNumber will be initialized with the value of params.accountNumber
 // accountType will be initialized with params.accountType
 (accountNumber, accountType) {def displayInvoice String int
 // ...
 }
}

For primitive arguments and arguments which are instances of any of the primitive type
wrapper classes a type conversion has to be carried out before the request parameter value
can be bound to the action argument. The type conversion happens automatically. In a case
like the example shown above, the request parameter has to be convertedparams.accountType

to an . If type conversion fails for any reason, the argument will have its default value perint

normal Java behavior (null for type wrapper references, false for booleans and zero for
numbers) and a corresponding error will be added to the property of the definingerrors

controller.

/accounting/displayInvoice?accountNumber=B59786&accountType=bogusValue

Since "bogusValue" cannot be converted to type int, the value of accountType will be zero,
the controller’s will be true, the controller’s will be equalerrors.hasErrors() errors.errorCount

to 1 and the controller’s will contain the correspondingerrors.getFieldError('accountType')

error.

If the argument name does not match the name of the request parameter then the
 annotation may be applied to an argument to express the name of@grails.web.RequestParameter

the request parameter which should be bound to that argument:

 import grails.web.RequestParameter

 {class AccountingController

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/String.html

 // mainAccountNumber will be initialized with the value of params.accountNumber
 // accountType will be initialized with params.accountType
 (() mainAccountNumber, accountType) {def displayInvoice @RequestParameter 'accountNumber' String int
 // ...
 }
}

Data binding and type conversion errors

Sometimes when performing data binding it is not possible to convert a particular String into
a particular target type. This results in a type conversion error. Grails will retain type
conversion errors inside the property of a Grails domain class. For example:errors

 {class Book
 ...
 URL publisherURL
}

Here we have a domain class that uses the class to represent URLs. GivenBook java.net.URL

an incoming request such as:

/book/save?publisherURL=a-bad-url

it is not possible to bind the string to the property as a type mismatcha-bad-url publisherURL

error occurs. You can check for these like this:

 b = (params)def new Book

 (b.hasErrors()) {if
 println +"The value b.errors.getFieldError().rejectedValue${ 'publisherURL' }"
 " is not a valid URL!"
}

Although we have not yet covered error codes (for more information see the section on
), for type conversion errors you would want a message from the validation

 file to use for the error. You can use a generic errorgrails-app/i18n/messages.properties

message handler such as:

typeMismatch.java.net.URL=The field { } is not a valid 0 URL

Or a more specific one:

typeMismatch.Book.publisherURL=The publisher you specified is not a valid URL URL

The BindUsing Annotation

The annotation may be used to define a custom binding mechanism for aBindUsing
particular field in a class. Any time data binding is being applied to the field the closure
value of the annotation will be invoked with 2 arguments. The first argument is the object
that data binding is being applied to and the second argument is whichDataBindingSource
is the data source for the data binding. The value returned from the closure will be bound to
the property. The following example would result in the upper case version of the valuename

in the source being applied to the field during data binding.name

 import grails.databinding.BindUsing

 {class SomeClass
 ({obj, source ->@BindUsing

 //source is DataSourceBinding which is similar to a Map
 //and defines getAt operation but source.name cannot be used here.
 //In order to get name from source use getAt instead as shown below.

 source[]?.toUpperCase()'name'
 })
 nameString
}

Note that data binding is only possible when the name of the request parameter matches

http://docs.grails.org/6.2.0/api/grails/databinding/BindUsing.html
http://docs.grails.org/6.2.0/api/grails/databinding/DataBindingSource.html

with the field name in the class. Here, from request parameters matches with fromname name

.SomeClass

The annotation may be used to define a custom binding mechanism for all of theBindUsing
fields on a particular class. When the annotation is applied to a class, the value assigned to
the annotation should be a class which implements the interface. An instanceBindingHelper
of that class will be used any time a value is bound to a property in the class that this
annotation has been applied to.

(SomeClassWhichImplementsBindingHelper)@BindUsing
 {class SomeClass

 somePropertyString
 someOtherPropertyInteger
}

The BindInitializer Annotation

The annotation may be used to initialize an associated field in a class if it isBindInitializer
undefined. Unlike the annotation, databinding will continue binding all nestedBindUsing
properties on this association.

 import grails.databinding.BindInitializer

 {}class Account

 {class User
 Account account

 // BindInitializer expects you to return a instance of the type
 // where it's declared on. You can use source as a parameter, in this case user.
 ({user-> Contact(:user.account) })@BindInitializer new account
 Contact contact
}

 {class Contact
 Account account
 firstNameString
}

@BindInitializer only makes sense for associated entities, as per this use case.

Custom Data Converters

The binder will do a lot of type conversion automatically. Some applications may want to
define their own mechanism for converting values and a simple way to do this is to write a
class which implements and register an instance of that class as a bean inValueConverter
the Spring application context.

 com.myapp.converterspackage

 import grails.databinding.converters.ValueConverter

/**
 * A custom converter which will convert String of the
 * form 'city:state' into an Address object.
 */

 ValueConverter {class AddressValueConverter implements

 canConvert(value) {boolean
 value instanceof String
 }

 (value) {def convert
 pieces = value.split()def ':'
 com.myapp.Address(: pieces[], : pieces[])new city 0 state 1
 }

 <?> getTargetType() {Class
 com.myapp.Address
 }
}

An instance of that class needs to be registered as a bean in the Spring application context.
The bean name is not important. All beans that implemented ValueConverter will be
automatically plugged in to the data binding process.

http://docs.grails.org/6.2.0/api/grails/databinding/BindUsing.html
http://docs.grails.org/6.2.0/api/grails/databinding/BindingHelper.html
http://docs.grails.org/6.2.0/api/grails/databinding/BindInitializer.html
http://docs.grails.org/6.2.0/api/grails/databinding/BindUsing.html
http://docs.grails.org/6.2.0/api/grails/databinding/converters/ValueConverter.html

grails-app/conf/spring/resources.groovy
beans = {
 addressConverter com.myapp.converters.AddressValueConverter
 // ...
}

 {class Person
 firstNameString
 Address homeAddress
}

 {class Address
 cityString
 stateString
}

 person = Person()def new
person.properties = [: , :]firstName 'Jeff' homeAddress "O'Fallon:Missouri"

 person.firstName == assert 'Jeff'
 person.homeAddress.city = assert "O'Fallon"
 person.homeAddress.state = assert 'Missouri'

Date Formats For Data Binding

A custom date format may be specified to be used when binding a String to a Date value by
applying the annotation to a Date field.BindingFormat

 import grails.databinding.BindingFormat

 {class Person
 ()@BindingFormat 'MMddyyyy'
 birthDateDate
}

A global setting may be configured in to define date formats which will beapplication.groovy

used application wide when binding to Date.

grails-app/conf/application.groovy
grails.databinding.dateFormats = [, ,]'MMddyyyy' 'yyyy-MM-dd HH:mm:ss.S' "yyyy-MM-dd'T'hh:mm:ss'Z'"

The formats specified in will be attempted in the order in whichgrails.databinding.dateFormats

they are included in the List. If a property is marked with , the @BindingFormat @BindingFormat

will take precedence over the values specified in .grails.databinding.dateFormats

The formats configured by default are:

yyyy-MM-dd HH:mm:ss.S

yyyy-MM-dd’T’hh:mm:ss’Z'

yyyy-MM-dd HH:mm:ss.S z

yyyy-MM-dd’T’HH:mm:ss.SSSX

Custom Formatted Converters

You may supply your own handler for the annotation by writing a classBindingFormat
which implements the interface and registering an instance of thatFormattedValueConverter
class as a bean in the Spring application context. Below is an example of a trivial custom
String formatter that might convert the case of a String based on the value assigned to the
BindingFormat annotation.

 com.myapp.converterspackage

 import grails.databinding.converters.FormattedValueConverter

 FormattedValueConverter {class FormattedStringValueConverter implements
 (value, format) {def convert String

http://docs.grails.org/6.2.0/api/grails/databinding/BindingFormat.html
http://docs.grails.org/6.2.0/api/grails/databinding/BindingFormat.html
http://docs.grails.org/6.2.0/api/grails/databinding/converters/FormattedValueConverter.html

 (== format) {if 'UPPERCASE'
 value = value.toUpperCase()
 } (== format) {else if 'LOWERCASE'
 value = value.toLowerCase()
 }
 value
 }

 getTargetType() {Class
 // specifies the type to which this converter may be applied
 String
 }
}

An instance of that class needs to be registered as a bean in the Spring application context.
The bean name is not important. All beans that implemented FormattedValueConverter will
be automatically plugged in to the data binding process.

grails-app/conf/spring/resources.groovy
beans = {
 formattedStringConverter com.myapp.converters.FormattedStringValueConverter
 // ...
}

With that in place the annotation may be applied to String fields to inform theBindingFormat

data binder to take advantage of the custom converter.

 import grails.databinding.BindingFormat

 {class Person
 ()@BindingFormat 'UPPERCASE'
 someUpperCaseStringString

 ()@BindingFormat 'LOWERCASE'
 someLowerCaseStringString

 someOtherStringString
}

Localized Binding Formats

The annotation supports localized format strings by using the optional BindingFormat code

attribute. If a value is assigned to the code attribute that value will be used as the message
code to retrieve the binding format string from the bean in the SpringmessageSource

application context and that lookup will be localized.

 import grails.databinding.BindingFormat

 {class Person
 (code=)@BindingFormat 'date.formats.birthdays'
 birthDateDate
}

 grails-app/conf/i18n/messages.properties#
date.formats.birthdays=MMddyyyy

 grails-app/conf/i18n/messages_es.properties#
date.formats.birthdays=ddMMyyyy

Structured Data Binding Editors

A structured data binding editor is a helper class which can bind structured request
parameters to a property. The common use case for structured binding is binding to a Date
object which might be constructed from several smaller pieces of information contained in
several request parameters with names like , and . Thebirthday_month birthday_date birthday_year

structured editor would retrieve all of those individual pieces of information and use them to
construct a .Date

The framework provides a structured editor for binding to objects. An application mayDate

register its own structured editors for whatever types are appropriate. Consider the following
classes:

src/main/groovy/databinding/Gadget.groovy
 databindingpackage

 {class Gadget
 expandedShapeShape
 compressedShapeShape
}

src/main/groovy/databinding/Shape.groovy
 databindingpackage

 {class Shape
 areaint
}

A has 2 fields. A has an property. It may be that the application wantsGadget Shape Shape area

to accept request parameters like and and use those to calculate the of a width height area Shape

at binding time. A structured binding editor is well suited for that.

The way to register a structured editor with the data binding process is to add an instance of
the interface to the Spring applicationgrails.databinding.TypedStructuredBindingEditor
context. The easiest way to implement the interface is to extendTypedStructuredBindingEditor

the abstract class andorg.grails.databinding.converters.AbstractStructuredBindingEditor
override the method as shown below:getPropertyValue

src/main/groovy/databinding/converters/StructuredShapeEditor.groovy
 databinding.converterspackage

 import databinding.Shape

 import org.grails.databinding.converters.AbstractStructuredBindingEditor

 AbstractStructuredBindingEditor< > {class StructuredShapeEditor extends Shape

 getPropertyValue(values) {public Shape Map
 // retrieve the individual values from the Map
 width = values.width def as int
 height = values.height def as int

 // use the values to calculate the area of the Shape
 area = width * heightdef

 // create and return a Shape with the appropriate area
 (: area)new Shape area
 }
}

An instance of that class needs to be registered with the Spring application context:

grails-app/conf/spring/resources.groovy
beans = {
 shapeEditor databinding.converters.StructuredShapeEditor
 // ...
}

When the data binder binds to an instance of the class it will check to see if there areGadget

request parameters with names and which have a value ofcompressedShape expandedShape

"struct" and if they do exist, that will trigger the use of the . TheStructuredShapeEditor

individual components of the structure need to have parameter names of the form
propertyName_structuredElementName. In the case of the class above that wouldGadget

mean that the request parameter should have a value of "struct" and the compressedShape

 and parameters should have values which representcompressedShape_width compressedShape_height

the width and the height of the compressed . Similarly, the requestShape expandedShape

parameter should have a value of "struct" and the and expandedShape_width expandedShape_height

parameters should have values which represent the width and the height of the expanded
.Shape

grails-app/controllers/demo/DemoController.groovy

http://docs.grails.org/6.2.0/api/grails/databinding/TypedStructuredBindingEditor.html
http://docs.grails.org/6.2.0/api/org/grails/databinding/converters/AbstractStructuredDateBindingEditor.html

 {class DemoController

 (Gadget gadget) {def createGadget
 /*
 /demo/createGadget?expandedShape=struct&expandedShape_width=80&expandedShape_height=30
 &compressedShape=struct&compressedShape_width=10&compressedShape_height=3

 */

 // with the request parameters shown above gadget.expandedShape.area would be 2400
 // and gadget.compressedShape.area would be 30
 // ...
 }
}

Typically the request parameters with "struct" as their value would be represented by hidden
form fields.

Data Binding Event Listeners

The interface provides a mechanism for listeners to be notified of dataDataBindingListener
binding events. The interface looks like this:

 grails.databinding.events;package

 ;import grails.databinding.errors.BindingError

/**
 * A listener which will be notified of events generated during data binding.
 *
 * @author Jeff Brown
 * @since 3.0
 * @see DataBindingListenerAdapter
 */

 DataBindingListener {public interface

 /**
 * @return true if the listener is interested in events for the specified type.
 */
 supports(<?> clazz);boolean Class

 /**
 * Called when data binding is about to start.
 *
 * @param target The object data binding is being imposed upon
 * @param errors the Spring Errors instance (a org.springframework.validation.BindingResult)
 * @return true if data binding should continue
 */
 beforeBinding(target, errors);Boolean Object Object

 /**
 * Called when data binding is about to imposed on a property
 *
 * @param target The object data binding is being imposed upon
 * @param propertyName The name of the property being bound to
 * @param value The value of the property being bound
 * @param errors the Spring Errors instance (a org.springframework.validation.BindingResult)
 * @return true if data binding should continue, otherwise return false
 */
 beforeBinding(target, propertyName, value, errors);Boolean Object String Object Object

 /**
 * Called after data binding has been imposed on a property
 *
 * @param target The object data binding is being imposed upon
 * @param propertyName The name of the property that was bound to
 * @param errors the Spring Errors instance (a org.springframework.validation.BindingResult)
 */
 afterBinding(target, propertyName, errors);void Object String Object

 /**
 * Called after data binding has finished.
 *
 * @param target The object data binding is being imposed upon
 * @param errors the Spring Errors instance (a org.springframework.validation.BindingResult)
 */
 afterBinding(target, errors);void Object Object

 /**
 * Called when an error occurs binding to a property
 * @param error encapsulates information about the binding error
 * @param errors the Spring Errors instance (a org.springframework.validation.BindingResult)
 * @see BindingError
 */
 bindingError(BindingError error, errors);void Object
}

http://docs.grails.org/6.2.0/api/grails/databinding/events/DataBindingListener.html

Any bean in the Spring application context which implements that interface will
automatically be registered with the data binder. The classDataBindingListenerAdapter
implements the interface and provides default implementations for all ofDataBindingListener

the methods in the interface so this class is well suited for subclassing so your listener class
only needs to provide implementations for the methods your listener is interested in.

Using The Data Binder Directly

There are situations where an application may want to use the data binder directly. For
example, to do binding in a Service on some arbitrary object which is not a domain class.
The following will not work because the property is read only.properties

src/main/groovy/bindingdemo/Widget.groovy
 bindingdemopackage

 {class Widget
 nameString
 sizeInteger
}

grails-app/services/bindingdemo/WidgetService.groovy
 bindingdemopackage

 {class WidgetService

 (Widget widget, data) {def updateWidget Map
 // this will throw an exception because
 // properties is read-only
 widget.properties = data
 }
}

An instance of the data binder is in the Spring application context with a bean name of
. That bean implements the interface. The following codegrailsWebDataBinder DataBinder

demonstrates using the data binder directly.

grails-app/services/bindingdmeo/WidgetService
 bindingdemopackage

 import grails.databinding.SimpleMapDataBindingSource

 {class WidgetService

 // this bean will be autowired into the service
 grailsWebDataBinderdef

 (Widget widget, data) {def updateWidget Map
 grailsWebDataBinder.bind widget, data SimpleMapDataBindingSourceas
 }

}

See the documentation for more information about overloaded versions of the DataBinder
 method.bind

Data Binding and Security Concerns

When batch updating properties from request parameters you need to be careful not to allow
clients to bind malicious data to domain classes and be persisted in the database. You can
limit what properties are bound to a given domain class using the subscript operator:

 p = Person.get()def 1

p.properties[,] = params'firstName' 'lastName'

In this case only the and properties will be bound.firstName lastName

Another way to do this is is to use as the target of data binding instead ofCommand Objects

http://docs.grails.org/6.2.0/api/grails/databinding/events/DataBindingListenerAdapter.html
http://docs.grails.org/6.2.0/api/grails/databinding/DataBinder.html
http://docs.grails.org/6.2.0/api/grails/databinding/DataBinder.html

1.

2.

domain classes. Alternatively there is also the flexible method.bindData

The method allows the same data binding capability, but to arbitrary objects:bindData

 p = Person()def new
bindData(p, params)

The method also lets you exclude certain parameters that you don’t want updated:bindData

 p = Person()def new
bindData(p, params, [:])exclude 'dateOfBirth'

Or include only certain properties:

 p = Person()def new
bindData(p, params, [: [,]])include 'firstName' 'lastName'

If an empty List is provided as a value for the parameter then all fields will beinclude

subject to binding if they are not explicitly excluded.

The constraint can be used to globally prevent data binding for certain properties.bindable

7.1.6 Responding with JSON

Using the respond method to output JSON

The method is the preferred way to return JSON and integrates with respond Content
 and .Negotiation JSON Views

The method provides content negotiation strategies to intelligently produce anrespond

appropriate response for the given client.

For example given the following controller and action:

grails-app/controllers/example/BookController.groovy
 examplepackage

 {class BookController
 () {def index
 respond .list()Book
 }
}

The method will take the followings steps:respond

If the client header specifies a media type (for example) use thatAccept application/json

If the file extension of the URI (for example) includes a format defined in the /books.json

 property of use the media type defined in thegrails.mime.types grails-app/conf/application.yml

configuration

The method will then look for an appriopriate for the object and therespond Renderer
calculated media type from the .RendererRegistry

Grails includes a number of pre-configured implementations that will produceRenderer

default representations of JSON responses for the argument passed to . For examplerespond

going to the URI will produce JSON such as:/book.json

[
 { : , : },id 1 "title" "The Stand"
 { : , : }id 2 "title" "Shining"
]

http://views.grails.org
http://docs.grails.org/6.2.0/api/grails/rest/render/Renderer.html
http://docs.grails.org/6.2.0/api/grails/rest/render/RendererRegistry.html

Controlling the Priority of Media Types

By default if you define a controller there is no priority in terms of which format is sent
back to the client and Grails assumes you wish to serve HTML as a response type.

However if your application is primarily an API, then you can specify the priorty using the
 property:responseFormats

grails-app/controllers/example/BookController.groovy
 examplepackage

 {class BookController
 responseFormats = [,]static 'json' 'html'
 () {def index
 respond .list()Book
 }
}

In the above example Grails will respond by default with if the media type to respondjson

with cannot be calculated from the header or file extension.Accept

Using Views to Output JSON Responses

If you define a view (either a GSP or a) then Grails will render the view whenJSON View
using the method by calculating a model from the argument passed to .respond respond

For example, in the previous listing, if you were to define and grails-app/views/index.gson

 views, these would be used if the client requested orgrails-app/views/index.gsp application/json

 media types respectively. Thus allowing you to define a single backend capable oftext/html

serving responses to a web browser or representing your application’s API.

When rendering the view, Grails will calculate a model to pass to the view based on the type
of the value passed to the method.respond

The following table summarizes this convention:

Example Argument Type Calculated Model Variable

respond Book.list() java.util.List bookList

respond([]) java.util.List emptyList

respond Book.get(1) example.Book book

respond([1,2]) java.util.List integerList

respond([1,2] as Set) java.util.Set integerSet

respond([1,2] as Integer[]) Integer[] integerArray

Using this convention you can reference the argument passed to from within yourrespond

view:

http://views.grails.org

grails-app/views/book/index.gson
 < > bookList = @Field List Book []

json bookList, { book ->Book
 title book.title
}

You will notice that if returns an empty list then the model variable name isBook.list()

translated to . This is by design and you should provide a default value in the viewemptyList

if no model variable is specified, such as the in the example above:List

grails-app/views/book/index.gson
// defaults to an empty list

 < > bookList = @Field List Book []
...

There are cases where you may wish to be more explicit and control the name of the model
variable. For example if you have a domain inheritance hierarchy where a call to mylist()

return different child classes relying on automatic calculation may not be reliable.

In this case you should pass the model directly using and a map argument:respond

respond : .list()bookList Book

When responding with any kind of mixed argument types in a collection, always use an
explicit model name.

If you simply wish to augment the calculated model then you can do so by passing a model
argument:

respond .list(), [: [: .count()]]Book model bookCount Book

The above example will produce a model like , where[bookList:books, bookCount:totalBooks]

the calculated model is combined with the model passed in the argument.model

Using the render method to output JSON

The method can also be used to output JSON, but should only be used for simplerender

cases that don’t warrant the creation of a JSON view:

 () {def list

 results = .list()def Book

 render(:) {contentType "application/json"
 books(results) { b ->Book
 title b.title
 }
 }
}

In this case the result would be something along the lines of:

[
 { : },"title" "The Stand"
 { : }"title" "Shining"
]

This technique for rendering JSON may be ok for very simple responses, but in general
you should favour the use of and use the view layer rather than embeddingJSON Views
logic in your application.

The same dangers with naming conflicts described above for XML also apply to JSON
building.

7.1.7 More on JSONBuilder

The previous section on XML and JSON responses covered simplistic examples of
rendering XML and JSON responses. Whilst the XML builder used by Grails is the standard

 found in Groovy.XmlSlurper

For JSON, since Grails 3.1, Grails uses Groovy’s by default and youStreamingJsonBuilder
can refer to the and API documentation onGroovy documentation StreamingJsonBuilder
how to use it.

7.1.8 Responding with XML

7.1.9 Uploading Files

Programmatic File Uploads

Grails supports file uploads using Spring’s interface. The firstMultipartHttpServletRequest
step for file uploading is to create a multipart form like this:

Upload Form:

 =<g:uploadForm action "upload">
 = = <input type "file" name "myFile" />
 = <input type "submit" />
 </g:uploadForm>

The tag conveniently adds the attribute to the standard uploadForm enctype="multipart/form-data"

 tag.<g:form>

There are then a number of ways to handle the file upload. One is to work with the Spring
 instance directly:MultipartFile

 () {def upload
 f = request.getFile()def 'myFile'
 (f.empty) {if
 flash.message = 'file cannot be empty'
 render(:)view 'uploadForm'
 return
 }

 f.transferTo(())new File '/some/local/dir/myfile.txt'
 response.sendError(,)200 'Done'
}

This is convenient for doing transfers to other destinations and manipulating the file directly
as you can obtain an and so on with the interface.InputStream MultipartFile

File Uploads through Data Binding

File uploads can also be performed using data binding. Consider this domain class:Image

 {class Image
 myFilebyte[]

 constraints = {static
 // Limit upload file size to 2MB
 myFile : * * maxSize 1024 1024 2
 }
}

If you create an image using the object in the constructor as in the example below,params

Grails will automatically bind the file’s contents as a to the property:byte[] myFile

 img = (params)def new Image

http://groovy-lang.org/processing-xml.html#_xmlparser_and_xmlslurper
http://docs.groovy-lang.org/latest/html/documentation/core-domain-specific-languages.html#_streamingjsonbuilder
http://docs.groovy-lang.org/latest/html/documentation/core-domain-specific-languages.html#_streamingjsonbuilder
https://docs.groovy-lang.org/3.0.21/html/gapi/groovy/json/StreamingJsonBuilder.html
https://docs.spring.io/spring/docs/5.3.33/javadoc-api/org/springframework/web/multipart/MultipartHttpServletRequest.html
https://docs.spring.io/spring/docs/5.3.33/javadoc-api/org/springframework/web/multipart/MultipartFile.html
https://docs.spring.io/spring/docs/5.3.33/javadoc-api/org/springframework/web/multipart/MultipartFile.html

It’s important that you set the or constraints, otherwise your database may besize maxSize
created with a small column size that can’t handle reasonably sized files. For example, both
H2 and MySQL default to a blob size of 255 bytes for properties.byte[]

It is also possible to set the contents of the file as a string by changing the type of the myFile
property on the image to a String type:

 {class Image
 myFileString
}

Increase Upload Max File Size

Grails default size for file uploads is 128000 (~128KB). When this limit is exceeded you’ll
see the following exception:

org.springframework.web.multipart.MultipartException: Could not parse multipart servlet request; nested exception is java.lang.IllegalStateException: org.apache.tomcat.util.http.fileupload.FileUploadBase$SizeLimitExceededException

You can configure the limit in your as follows:application.yml

grails-app/conf/application.yml
:grails

 :controllers
 :upload
 : maxFileSize 2000000
 : maxRequestSize 2000000

maxFileSize = The maximum size allowed for uploaded files.

maxRequestSize = The maximum size allowed for multipart/form-data requests.

You should keep in mind OWASP recommendations - Unrestricted File Upload

Limit the file size to a maximum value in order to prevent denial of service attacks.

These limits exist to prevent DoS attacks and to enforce overall application performance

7.1.10 Command Objects

Grails controllers support the concept of command objects. A command object is a class that
is used in conjunction with , usually to allow validation of data that may not fitdata binding
into an existing domain class.

A class is only considered to be a command object when it is used as a parameter of an
action.

Declaring Command Objects

Command object classes are defined just like any other class.

 grails.validation.Validateable {class LoginCommand implements
 usernameString
 passwordString

 constraints = {static
 username(: , :)blank false minSize 6
 password(: , :)blank false minSize 6
 }
}

https://www.owasp.org/index.php/Unrestricted_File_Upload

In this example, the command object class implements the trait. The Validateable Validateable

trait allows the definition of just like in . If the command objectConstraints domain classes
is defined in the same source file as the controller that is using it, Grails will automatically
make it . It is not required that command object classes be validateable.Validateable

By default, all object properties which are not instances of or Validateable java.util.Collection

 are . Instances of and default to java.util.Map nullable: false java.util.Collection java.util.Map

. If you want a that has properties by default, you cannullable: true Validateable nullable: true

specify this by defining a method in the class:defaultNullable

 grails.validation.Validateable {class AuthorSearchCommand implements
 nameString
 ageInteger

 defaultNullable() {static boolean
 true
 }
}

In this example, both and will allow null values during validation.name age

Using Command Objects

To use command objects, controller actions may optionally specify any number of command
object parameters. The parameter types must be supplied so that Grails knows what objects
to create and initialize.

Before the controller action is executed Grails will automatically create an instance of the
command object class and populate its properties by binding the request parameters. If the
command object class is marked with then the command object will beValidateable

validated. For example:

 {class LoginController

 (LoginCommand cmd) {def login
 (cmd.hasErrors()) {if
 redirect(:)action 'loginForm'
 return
 }

 // work with the command object data
 }
}

If the command object’s type is that of a domain class and there is an request parameterid

then instead of invoking the domain class constructor to create a new instance a call will be
made to the static method on the domain class and the value of the parameter will beget id

passed as an argument.

Whatever is returned from that call to is what will be passed into the controller action.get

This means that if there is an request parameter and no corresponding record is found inid

the database then the value of the command object will be . If an error occurs retrievingnull

the instance from the database then will be passed as an argument to the controllernull

action and an error will be added the controller’s property.errors

If the command object’s type is a domain class and there is no request parameter or thereid

is an request parameter and its value is empty then will be passed into the controllerid null

action unless the HTTP request method is "POST", in which case a new instance of the
domain class will be created by invoking the domain class constructor. For all of the cases
where the domain class instance is non-null, data binding is only performed if the HTTP
request method is "POST", "PUT" or "PATCH".

Command Objects And Request Parameter Names

Normally request parameter names will be mapped directly to property names in the
command object. Nested parameter names may be used to bind down the object graph in an
intuitive way.

In the example below a request parameter named will be bound to the property ofname name

the instance and a request parameter named will be bound to the Person address.city city

property of the property in the .address Person

 {class StoreController
 (Person buyer) {def buy
 // ...
 }
}

 {class Person
 nameString
 Address address
}

 {class Address
 cityString
}

A problem may arise if a controller action accepts multiple command objects which happen
to contain the same property name. Consider the following example.

 {class StoreController
 (Person buyer, Product product) {def buy
 // ...
 }
}

 {class Person
 nameString
 Address address
}

 {class Address
 cityString
}

 {class Product
 nameString
}

If there is a request parameter named it isn’t clear if that should represent the name ofname

the or the name of the . Another version of the problem can come up if aProduct Person

controller action accepts 2 command objects of the same type as shown below.

 {class StoreController
 (Person buyer, Person seller, Product product) {def buy
 // ...
 }
}

 {class Person
 nameString
 Address address
}

 {class Address
 cityString
}

 {class Product
 nameString
}

To help deal with this the framework imposes special rules for mapping parameter names to
command object types. The command object data binding will treat all parameters that begin
with the controller action parameter name as belonging to the corresponding command
object.

For example, the request parameter will be bound to the property in the product.name name

 argument, the request parameter will be bound to the property in the product buyer.name name

 argument the request parameter will be bound to the property ofbuyer seller.address.city city

the property of the argument, etc…address seller

Command Objects and Dependency Injection

Command objects can participate in dependency injection. This is useful if your command
object has some custom validation logic which uses a Grails :service

 grails.validation.Validateable {class LoginCommand implements

 loginServicedef

 usernameString
 passwordString

 constraints = {static
 username : { val, obj ->validator
 obj.loginService.canLogin(obj.username, obj.password)
 }
 }
}

In this example the command object interacts with the bean which is injected byloginService

name from the Spring .ApplicationContext

Binding The Request Body To Command Objects

When a request is made to a controller action which accepts a command object and the
request contains a body, Grails will attempt to parse the body of the request based on the
request content type and use the body to do data binding on the command object. See the
following example.

grails-app/controllers/bindingdemo/DemoController.groovy
 bindingdemopackage

 {class DemoController

 (Widget w) {def createWidget
 render "Name: w?.name${ }, Size: w?.size${ }"
 }
}

 {class Widget
 nameString
 sizeInteger
}

$ curl -H "Content-Type: application/json" -d '{"name":"Some Widget","42"}'[size] localhost:8080/demo/createWidget
 Name: Some Widget, Size: 42

$ curl -H "Content-Type: application/xml" -d '<widget><name>Some Other Widget</name><size>2112</size></widget>' localhost:8080/bodybind/demo/createWidget
 Name: Some Other Widget, Size: 2112

The request body will not be parsed under the following conditions:

The request method is GET

The request method is DELETE

The content length is 0

Note that the body of the request is being parsed to make that work. Any attempt to read the
body of the request after that will fail since the corresponding input stream will be empty.
The controller action can either use a command object or it can parse the body of the request
on its own (either directly, or by referring to something like request.JSON), but cannot do
both.

grails-app/controllers/bindingdemo/DemoController.groovy

 bindingdemopackage

 {class DemoController

 (Widget w) {def createWidget
 // this will fail because it requires reading the body,
 // which has already been read.
 json = request.JSONdef

 // ...

 }
}

Working with Lists of Command Objects

A common use case for command objects is a Command Object that contains a collection of
another:

 {class DemoController

 (AuthorCommand command) {def createAuthor
 // ...

 }

 {class AuthorCommand
 fullNameString
 <BookCommand> booksList
 }

 {class BookCommand
 titleString
 isbnString
 }
}

On this example, we want to create an Author with multiple Books.

In order to make this work from the UI layer, you can do the following in your GSP:

 = = =<g:form name "submit-author-books" controller "demo" action "createAuthor">
 = =<g:fieldValue name "fullName" value ""/>

 = =<g:fieldValue name "books[0].title" value ""/>
 = =<g:fieldValue name "books[0].isbn" value ""/>

 = =<g:fieldValue name "books[1].title" value ""/>
 = =<g:fieldValue name "books[1].isbn" value ""/>

</g:form>

There is also support for JSON, so you can submit the following with correct databinding

{
 : ,"fullName" "Graeme Rocher"
 : [{"books"
 : ,"title" "The Definitive Guide to Grails"
 : "isbn" "1111-343455-1111"
 }, {
 : ,"title" "The Definitive Guide to Grails 2"
 : "isbn" "1111-343455-1112"
 }],
}

7.1.11 Handling Duplicate Form Submissions

Grails has built-in support for handling duplicate form submissions using the "Synchronizer
Token Pattern". To get started you define a token on the tag:form

 = <g:form useToken "true" ...>

Then in your controller code you can use the method to handle valid and invalidwithForm

https://gsp.grails.org/6.2.1/ref/Tags/form.html

requests:

withForm {
 // good request
}.invalidToken {
 // bad request
}

If you only provide the method and not the chained method then bywithForm invalidToken

default Grails will store the invalid token in a variable and redirect theflash.invalidToken

request back to the original page. This can then be checked in the view:

 =<g:if test "${flash.invalidToken}">
 Don't click the button twice!
</g:if>

The tag makes use of the and hence requires session affinity or clusteredwithForm session
sessions if used in a cluster.

7.1.12 Simple Type Converters

Type Conversion Methods

If you prefer to avoid the overhead of and simply want to convert incomingdata binding
parameters (typically Strings) into another more appropriate type the object has aparams
number of convenience methods for each type:

 total = params.int()def 'total'

The above example uses the method, and there are also methods for , , , int boolean long char

 and so on. Each of these methods is null-safe and safe from any parsing errors, so youshort

don’t have to perform any additional checks on the parameters.

Each of the conversion methods allows a default value to be passed as an optional second
argument. The default value will be returned if a corresponding entry cannot be found in the
map or if an error occurs during the conversion. Example:

 total = params.int(,)def 'total' 42

These same type conversion methods are also available on the parameter of GSP tags.attrs

Handling Multi Parameters

A common use case is dealing with multiple request parameters of the same name. For
example you could get a query string such as .?name=Bob&name=Judy

In this case dealing with one parameter and dealing with many has different semantics since
Groovy’s iteration mechanics for iterate over each character. To avoid this problemString

the object provides a method that always returns a list:params list

 (name params.list()) {for in 'name'
 println name
}

7.1.13 Declarative Controller Exception Handling

Grails controllers support a simple mechanism for declarative exception handling. If a
controller declares a method that accepts a single argument and the argument type is

 or some subclass of , that method will be invoked anyjava.lang.Exception java.lang.Exception

time an action in that controller throws an exception of that type. See the following example.

grails-app/controllers/demo/DemoController.groovy
 demopackage

 {class DemoController

 () {def someAction
 // do some work
 }

 (e) {def handleSQLException SQLException
 render 'A SQLException Was Handled'
 }

 (e) {def handleBatchUpdateException BatchUpdateException
 redirect : , : controller 'logging' action 'batchProblem'
 }

 (nfe) {def handleNumberFormatException NumberFormatException
 [:]problemDescription 'A Number Was Invalid'
 }
}

That controller will behave as if it were written something like this…

grails-app/controllers/demo/DemoController.groovy
 demopackage

 {class DemoController

 () {def someAction
 {try
 // do some work
 } (e) {catch BatchUpdateException
 handleBatchUpdateException(e)return
 } (e) {catch SQLException
 handleSQLException(e)return
 } (e) {catch NumberFormatException
 handleNumberFormatException(e)return
 }
 }

 (e) {def handleSQLException SQLException
 render 'A SQLException Was Handled'
 }

 (e) {def handleBatchUpdateException BatchUpdateException
 redirect : , : controller 'logging' action 'batchProblem'
 }

 (nfe) {def handleNumberFormatException NumberFormatException
 [:]problemDescription 'A Number Was Invalid'
 }
}

The exception handler method names can be any valid method name. The name is not what
makes the method an exception handler, the argument type is the important part.Exception

The exception handler methods can do anything that a controller action can do including
invoking , , returning a model, etc.render redirect

One way to share exception handler methods across multiple controllers is to use
inheritance. Exception handler methods are inherited into subclasses so an application could
define the exception handlers in an abstract class that multiple controllers extend from.
Another way to share exception handler methods across multiple controllers is to use a trait,
as shown below…

src/main/groovy/com/demo/DatabaseExceptionHandler.groovy
 com.demopackage

trait DatabaseExceptionHandler {
 (e) {def handleSQLException SQLException
 // handle SQLException
 }

 (e) {def handleBatchUpdateException BatchUpdateException
 // handle BatchUpdateException
 }
}

grails-app/controllers/com/demo/DemoController.groovy
 com.demopackage

 DatabaseExceptionHandler {class DemoController implements

 // all of the exception handler methods defined
 // in DatabaseExceptionHandler will be added to
 // this class at compile time
}

Exception handler methods must be present at compile time. Specifically, exception handler
methods which are runtime metaprogrammed onto a controller class are not supported.

7.2 Groovy Server Pages

Groovy Servers Pages (or GSP for short) is Grails' view technology. It is designed to be
familiar for users of technologies such as ASP and JSP, but to be far more flexible and
intuitive.

Although GSP can render any format, not just HTML, it is more designed around
rendering markup. If you are looking for a way to simplify JSON responses take a look at

.JSON Views

GSPs live in the directory and are typically rendered automatically (bygrails-app/views

convention) or with the method such as:render

render(:)view "index"

A GSP is typically a mix of mark-up and GSP tags which aid in view rendering.

Although it is possible to have Groovy logic embedded in your GSP and doing this will be
covered in this document, the practice is strongly discouraged. Mixing mark-up and code
is a thing and most GSP pages contain no code and needn’t do so.bad

A GSP typically has a "model" which is a set of variables that are used for view rendering.
The model is passed to the GSP view from a controller. For example consider the following
controller action:

 () {def show
 [: .get(params.id)]book Book
}

This action will look up a instance and create a model that contains a key called .Book book

This key can then be referenced within the GSP view using the name :book

{book.title}$

Embedding data received from user input has the risk of making your application
vulnerable to an Cross Site Scripting (XSS) attack. Please read the documentation on XSS

 for information on how to prevent XSS attacks.prevention

For more information on using GSP please refer to the .dedicated GSP documentation

7.3 URL Mappings

Throughout the documentation so far the convention used for URLs has been the default of
. However, this convention is not hard wired into Grails and is in fact/controller/action/id

controlled by a URL Mappings class located at

http://gsp.grails.org
http://gsp.grails.org

.grails-app/controllers/mypackage/UrlMappings.groovy

The class contains a single property called that has been assigned a blockUrlMappings mappings

of code:

 mypackagepackage

 {class UrlMappings
 mappings = {static
 }
}

7.3.1 Mapping to Controllers and Actions

To create a simple mapping simply use a relative URL as the method name and specify
named parameters for the controller and action to map to:

(: , :)"/product" controller "product" action "list"

In this case we’ve mapped the URL to the action of the . Omit/product list ProductController

the action definition to map to the default action of the controller:

(:)"/product" controller "product"

An alternative syntax is to assign the controller and action to use within a block passed to
the method:

 {"/product"
 controller = "product"
 action = "list"
}

Which syntax you use is largely dependent on personal preference.

If you have mappings that all fall under a particular path you can group mappings with the
 method:group

group , {"/product"
 (: , :)"/apple" controller "product" id "apple"
 (: , :)"/htc" controller "product" id "htc"
}

You can also create nested url mappings:group

group , {"/store"
 group , {"/product"
 (:)"/ id$ " controller "product"
 }
}

To rewrite one URI onto another explicit URI (rather than a controller/action pair) do
something like this:

(:)"/hello" uri "/hello.dispatch"

Rewriting specific URIs is often useful when integrating with other frameworks.

7.3.2 Mapping to REST resources

Since Grails 2.3, it possible to create RESTful URL mappings that map onto controllers by
convention. The syntax to do so is as follows:

(:)"/books" resources 'book'

You define a base URI and the name of the controller to map to using the resources
parameter. The above mapping will result in the following URLs:

HTTP Method URI Grails Action

GET /books index

GET /books/create create

POST /books save

GET /books/${id} show

GET /books/${id}/edit edit

PUT /books/${id} update

DELETE /books/${id} delete

If you are not sure which mapping will be generated for your case just run the command
 in your grails console. It will give you a really neat report for all the urlurl-mappings-report

mappings.

If you wish to include or exclude any of the generated URL mappings you can do so with
the or parameter, which accepts the name of the Grails action to include orincludes excludes

exclude:

(: , :[,])"/books" resources 'book' excludes 'delete' 'update'

or

(: , :[,])"/books" resources 'book' includes 'index' 'show'

Explicit REST Mappings

As of Grails 3.1, if you prefer not to rely on a mapping to define your mappingsresources

then you can prefix any URL mapping with the HTTP method name (in lower case) to
indicate the HTTP method it applies to. The following URL mapping:

(:)"/books" resources 'book'

Is equivalent to:

get (: , :)"/books" controller "book" action "index"
get (: , :)"/books/create" controller "book" action "create"
post (: , :)"/books" controller "book" action "save"
get (: , :)"/books/ id$ " controller "book" action "show"
get (: , :)"/books/ id$ /edit" controller "book" action "edit"
put (: , :)"/books/ id$ " controller "book" action "update"
delete (: , :)"/books/ id$ " controller "book" action "delete"

Notice how the HTTP method name is prefixed prior to each URL mapping definition.

Single resources

A single resource is a resource for which there is only one (possibly per user) in the system.
You can create a single resource using the parameter (as opposed to):single resources

(:)"/book" single 'book'

This results in the following URL mappings:

HTTP Method URI Grails Action

GET /book/create create

POST /book save

GET /book show

GET /book/edit edit

PUT /book update

DELETE /book delete

The main difference is that the id is not included in the URL mapping.

Nested Resources

You can nest resource mappings to generate child resources. For example:

(:) {"/books" resources 'book'
 (:)"/authors" resources "author"
}

The above will result in the following URL mappings:

HTTP Method URL Grails Action

GET /books/${bookId}/authors index

GET /books/${bookId}/authors/create create

POST /books/${bookId}/authors save

GET /books/${bookId}/authors/${id} show

GET /books/${bookId}/authors/edit/${id} edit

PUT /books/${bookId}/authors/${id} update

DELETE /books/${bookId}/authors/${id} delete

You can also nest regular URL mappings within a resource mapping:

(:) {"/books" resources "book"
 (:)"/publisher" controller "publisher"
}

This will result in the following URL being available:

HTTP Method URL Grails Action

GET /books/${bookId}/publisher index

To map a URI directly below a resource then use a collection block:

(:) {"/books" resources "book"
 collection {
 (:)"/publisher" controller "publisher"
 }
}

This will result in the following URL being available (without the ID):

HTTP Method URL Grails Action

GET /books/publisher index

Linking to RESTful Mappings

You can link to any URL mapping created with the tag provided by Grails simply byg:link

referencing the controller and action to link to:

< :link controller= action= >My Link<g "book" "index" /g:link>

As a convenience you can also pass a domain instance to the attribute of the tag:resource link

< :link resource= >My Link<g " book${ }" /g:link>

This will automatically produce the correct link (in this case "/books/1" for an id of "1").

The case of nested resources is a little different as they typically required two identifiers (the
id of the resource and the one it is nested within). For example given the nested resources:

(:) {"/books" resources 'book'
 (:)"/authors" resources "author"
}

If you wished to link to the action of the controller, you would write:show author

// Results in /books/1/authors/2
< :link controller= action= method= params= id= >The Author<g "author" "show" "GET" "[bookId:1]" "2" /g:link>

However, to make this more concise there is a attribute to the link tag which can beresource

used instead:

// Results in /books/1/authors/2
< :link resource= action= bookId= id= >My Link<g "book/author" "show" "1" "2" /g:link>

The resource attribute accepts a path to the resource separated by a slash (in this case
"book/author"). The attributes of the tag can be used to specify the necessary bookId
parameter.

7.3.3 Redirects In URL Mappings

Since Grails 2.3, it is possible to define URL mappings which specify a redirect. When a
URL mapping specifies a redirect, any time that mapping matches an incoming request, a
redirect is initiated with information provided by the mapping.

When a URL mapping specifies a redirect the mapping must either supply a String
representing a URI to redirect to or must provide a Map representing the target of the
redirect. That Map is structured just like the Map that may be passed as an argument to the

 method in a controller.redirect

(: [:])"/viewBooks" redirect uri '/books/list'
(: [: , :])"/viewAuthors" redirect controller 'author' action 'list'

(: [: , : , :])"/viewPublishers" redirect controller 'publisher' action 'list' permanent true

Request parameters that were part of the original request will not be included in the redirect
by default. To include them it is necessary to add the parameter .keepParamsWhenRedirect: true

(: [: , :])"/viewBooks" redirect uri '/books/list' keepParamsWhenRedirect true
(: [: , : , :])"/viewAuthors" redirect controller 'author' action 'list' keepParamsWhenRedirect true

(: [: , : , : , :])"/viewPublishers" redirect controller 'publisher' action 'list' permanent true keepParamsWhenRedirect true

7.3.4 Embedded Variables

Simple Variables

The previous section demonstrated how to map simple URLs with concrete "tokens". In
URL mapping speak tokens are the sequence of characters between each slash, '/'. A
concrete token is one which is well defined such as as . However, in many/product

circumstances you don’t know what the value of a particular token will be until runtime. In
this case you can use variable placeholders within the URL for example:

 mappings = {static
 (:)"/product/ id$ " controller "product"
}

In this case by embedding a $id variable as the second token Grails will automatically map
the second token into a parameter (available via the object) called . For exampleparams id

given the URL , the following code will render "MacBook" to the response:/product/MacBook

 {class ProductController
 () { render params.id }def index
}

You can of course construct more complex examples of mappings. For example the
traditional blog URL format could be mapped as follows:

 mappings = {static
 (: , :)"/ blog$ / year$ / month$ / day$ / id$ " controller "blog" action "show"
}

The above mapping would let you do things like:

/graemerocher/2007/01/10/my_funky_blog_entry

The individual tokens in the URL would again be mapped into the object withparams
values available for , , , and so on.year month day id

Dynamic Controller and Action Names

Variables can also be used to dynamically construct the controller and action name. In fact
the default Grails URL mappings use this technique:

 mappings = {static
 ()"/ controller$ / action$?/ id$?"
}

Here the name of the controller, action and id are implicitly obtained from the variables
, and embedded within the URL.controller action id

You can also resolve the controller name and action name to execute dynamically using a
closure:

 mappings = {static
 {"/ controller$ "
 action = { params.goHere }
 }
}

Optional Variables

Another characteristic of the default mapping is the ability to append a ? at the end of a
variable to make it an optional token. In a further example this technique could be applied to
the blog URL mapping to have more flexible linking:

 mappings = {static
 (: , :)"/ blog$ / year$?/ month$?/ day$?/ id$?" controller "blog" action "show"
}

With this mapping all of these URLs would match with only the relevant parameters being
populated in the object:params

/graemerocher/2007/01/10/my_funky_blog_entry
/graemerocher/2007/01/10
/graemerocher/2007/01
/graemerocher/2007
/graemerocher

Optional File Extensions

If you wish to capture the extension of a particular path, then a special case mapping exists:

()"/ controller$ / action$?/ id$?(. format$)?"

By adding the mapping you can access the file extension using the (.$format)? response.format

property in a controller:

 () {def index
 render "extension is response.format${ }"
}

Arbitrary Variables

You can also pass arbitrary parameters from the URL mapping into the controller by just
setting them in the block passed to the mapping:

 {"/holiday/win"
 id = "Marrakech"
 year = 2007
}

This variables will be available within the object passed to the controller.params

Dynamically Resolved Variables

The hard coded arbitrary variables are useful, but sometimes you need to calculate the name
of the variable based on runtime factors. This is also possible by assigning a block to the
variable name:

 {"/holiday/win"
 id = { params.id }
 isEligible = { session.user != } null // must be logged in
}

In the above case the code within the blocks is resolved when the URL is actually matched
and hence can be used in combination with all sorts of logic.

7.3.5 Mapping to Views

You can resolve a URL to a view without a controller or action involved. For example to
map the root URL to a GSP at the location you could use:/ grails-app/views/index.gsp

 mappings = {static
 (:) "/" view "/index" // map the root URL
}

Alternatively if you need a view that is specific to a given controller you could use:

 mappings = {static
 (: , :) "/help" controller "site" view "help" // to a view for a controller
}

7.3.6 Mapping to Response Codes

Grails also lets you map HTTP response codes to controllers, actions or views. Just use a
method name that matches the response code you are interested in:

 mappings = {static
 (: , :)"403" controller "errors" action "forbidden"
 (: , :)"404" controller "errors" action "notFound"
 (: , :)"500" controller "errors" action "serverError"
}

Or you can specify custom error pages:

 mappings = {static
 (:)"403" view "/errors/forbidden"
 (:)"404" view "/errors/notFound"
 (:)"500" view "/errors/serverError"
}

Declarative Error Handling

In addition you can configure handlers for individual exceptions:

 mappings = {static
 (:)"403" view "/errors/forbidden"
 (:)"404" view "/errors/notFound"
 (: , : ,"500" controller "errors" action "illegalArgument"
 :)exception IllegalArgumentException
 (: , : ,"500" controller "errors" action "nullPointer"
 :)exception NullPointerException

 (: , : ,"500" controller "errors" action "customException"
 : MyException)exception
 (:)"500" view "/errors/serverError"
}

With this configuration, an will be handled by the IllegalArgumentException illegalArgument

action in , a will be handled by the action, andErrorsController NullPointerException nullPointer

a will be handled by the action. Other exceptions will be handledMyException customException

by the catch-all rule and use the view./errors/serverError

You can access the exception from your custom error handling view or controller action
using the request’s attribute like so:exception

 {class ErrorsController
 () {def handleError
 exception = request.exceptiondef
 // perform desired processing to handle the exception
 }
}

If your error-handling controller action throws an exception as well, you’ll end up with a
.StackOverflowException

7.3.7 Mapping to HTTP methods

URL mappings can also be configured to map based on the HTTP method (GET, POST,
PUT or DELETE). This is very useful for RESTful APIs and for restricting mappings based
on HTTP method.

As an example the following mappings provide a RESTful API URL mappings for the
:ProductController

 mappings = {static
 (: , : , :)"/product/ id$ " controller "product" action "update" method "PUT"
}

Note that if you specify a HTTP method other than GET in your URL mapping, you also
have to specify it when creating the corresponding link by passing the argument to method

 or to get a link of the desired format.g:link g:createLink

7.3.8 Mapping Wildcards

Grails' URL mappings mechanism also supports wildcard mappings. For example consider
the following mapping:

 mappings = {static
 (:)"/images/*.jpg" controller "image"
}

This mapping will match all paths to images such as . Of course you can/image/logo.jpg

achieve the same effect with a variable:

 mappings = {static
 (:)"/images/ name$.jpg" controller "image"
}

However, you can also use double wildcards to match more than one level below:

 mappings = {static
 (:)"/images/**.jpg" controller "image"
}

In this cases the mapping will match as well as . Even/image/logo.jpg /image/other/logo.jpg

better you can use a double wildcard variable:

 mappings = {static
 // will match /image/logo.jpg and /image/other/logo.jpg
 (:)"/images/ name$ **.jpg" controller "image"
}

In this case it will store the path matched by the wildcard inside a parameter obtainablename

from the object:params

 name = params.namedef
println name // prints "logo" or "other/logo"

If you use wildcard URL mappings then you may want to exclude certain URIs from Grails'
URL mapping process. To do this you can provide an setting inside the excludes

 class:UrlMappings.groovy

 {class UrlMappings
 excludes = [,]static "/images/*" "/css/*"
 mappings = {static
 ...
 }
}

In this case Grails won’t attempt to match any URIs that start with or ./images /css

7.3.9 Automatic Link Re-Writing

Another great feature of URL mappings is that they automatically customize the behaviour
of the tag so that changing the mappings don’t require you to go and change all of yourlink
links.

This is done through a URL re-writing technique that reverse engineers the links from the
URL mappings. So given a mapping such as the blog one from an earlier section:

 mappings = {static
 (: , :)"/ blog$ / year$?/ month$?/ day$?/ id$?" controller "blog" action "show"
}

If you use the link tag as follows:

 = =<g:link controller "blog" action "show"
 =params "[blog:'fred', year:2007]">
 My Blog
</g:link>

 = =<g:link controller "blog" action "show"
 =params "[blog:'fred', year:2007, month:10]">
 My Blog - October 2007 Posts
</g:link>

Grails will automatically re-write the URL in the correct format:

 = My Blog<a href "/fred/2007">
 = My Blog - October 2007 Posts<a href "/fred/2007/10">

7.3.10 Applying Constraints

URL Mappings also support Grails' unified mechanism, which letsvalidation constraints
you further "constrain" how a URL is matched. For example, if we revisit the blog sample
code from earlier, the mapping currently looks like this:

 mappings = {static
 (: , :)"/ blog$ / year$?/ month$?/ day$?/ id$?" controller "blog" action "show"
}

https://gsp.grails.org/6.2.1/ref/Tags/link.html

This allows URLs such as:

/graemerocher/2007/01/10/my_funky_blog_entry

However, it would also allow:

/graemerocher/not_a_year/not_a_month/not_a_day/my_funky_blog_entry

This is problematic as it forces you to do some clever parsing in the controller code.
Luckily, URL Mappings can be constrained to further validate the URL tokens:

 {"/ blog$ / year$?/ month$?/ day$?/ id$?"
 controller = "blog"
 action = "show"
 constraints {
 year(:)matches /\\\d{4}/
 month(:)matches /\\\d{2}/
 day(:)matches /\\\d{2}/
 }
}

In this case the constraints ensure that the , and parameters match a particularyear month day

valid pattern thus relieving you of that burden later on.

7.3.11 Named URL Mappings

URL Mappings also support named mappings, that is mappings which have a name
associated with them. The name may be used to refer to a specific mapping when links are
generated.

The syntax for defining a named mapping is as follows:

 mappings = {static
 name <mapping name>: <url pattern> {
 // ...
 }
}

For example:

 mappings = {static
 name : {personList "/showPeople"
 controller = 'person'
 action = 'list'
 }
 name : {accountDetails "/details/ acctNumber$ "
 controller = 'product'
 action = 'accountDetails'
 }
}

The mapping may be referenced in a link tag in a GSP.

 = List People<g:link mapping "personList"> </g:link>

That would result in:

 = List People<a href "/showPeople">

Parameters may be specified using the params attribute.

 = =<g:link mapping "accountDetails" params "[acctNumber:'8675309']">
 Show Account
</g:link>

That would result in:

 = Show Account<a href "/details/8675309">

Alternatively you may reference a named mapping using the link namespace.

List People<link:personList> </link:personList>

That would result in:

 = List People<a href "/showPeople">

The link namespace approach allows parameters to be specified as attributes.

 = Show Account<link:accountDetails acctNumber "8675309"> </link:accountDetails>

That would result in:

 = Show Account<a href "/details/8675309">

To specify attributes that should be applied to the generated , specify a value to the href Map

 attribute. These attributes will be applied directly to the href, not passed through to beattrs

used as request parameters.

 = =<link:accountDetails attrs "[class: 'fancy']" acctNumber "8675309">
 Show Account
</link:accountDetails>

That would result in:

 = = Show Account<a href "/details/8675309" class "fancy">

7.3.12 Customizing URL Formats

The default URL Mapping mechanism supports camel case names in the URLs. The default
URL for accessing an action named in a controller named addNumbers MathHelperController

would be something like . Grails allows for the customization of this/mathHelper/addNumbers

pattern and provides an implementation which replaces the camel case convention with a
hyphenated convention that would support URLs like . To enable/math-helper/add-numbers

hyphenated URLs assign a value of "hyphenated" to the property in grails.web.url.converter

.grails-app/conf/application.groovy

grails-app/conf/application.groovy
grails.web.url.converter = 'hyphenated'

Arbitrary strategies may be plugged in by providing a class which implements the
 interface and adding an instance of that class to the Spring application contextUrlConverter

with the bean name of . If Grails finds a bean in the contextgrails.web.UrlConverter.BEAN_NAME

with that name, it will be used as the default converter and there is no need to assign a value
to the config property.grails.web.url.converter

src/main/groovy/com/myapplication/MyUrlConverterImpl.groovy
 com.myapplicationpackage

 grails.web.UrlConverter {class MyUrlConverterImpl implements

 toUrlElement(propertyOrClassName) {String String
 // return some representation of a property or class name that should be used in URLs...
 }
}

grails-app/conf/spring/resources.groovy
beans = {
 (com.myapplication.MyUrlConverterImpl)" grails.web.UrlConverter.BEAN_NAME${ }"
}

http://docs.grails.org/6.2.0/api/grails/web/UrlConverter.html

7.3.13 Namespaced Controllers

If an application defines multiple controllers with the same name in different packages, the
controllers must be defined in a namespace. The way to define a namespace for a controller
is to define a static property named in the controller and assign a String to thenamespace

property that represents the namespace.

grails-app/controllers/com/app/reporting/AdminController.groovy
 com.app.reportingpackage

 {class AdminController

 namespace = static 'reports'

 // ...
}

grails-app/controllers/com/app/security/AdminController.groovy
 com.app.securitypackage

 {class AdminController

 namespace = static 'users'

 // ...
}

When defining url mappings which should be associated with a namespaced controller, the
 variable needs to be part of the URL mapping.namespace

grails-app/controllers/UrlMappings.groovy
 {class UrlMappings

 mappings = {static
 {'/userAdmin'
 controller = 'admin'
 namespace = 'users'
 }

 {'/reportAdmin'
 controller = 'admin'
 namespace = 'reports'
 }

 ()"/ namespace$ / controller$ / action$?"
 }
}

Reverse URL mappings also require that the be specified.namespace

< :link controller= namespace= >Click For Report Admin<g "admin" "reports" /g:link>
< :link controller= namespace= >Click For User Admin<g "admin" "users" /g:link>

When resolving a URL mapping (forward or reverse) to a namespaced controller, a mapping
will only match if the has been provided. If the application provides severalnamespace

controllers with the same name in different packages, at most 1 of them may be defined
without a property. If there are multiple controllers with the same name that do notnamespace

define a property, the framework will not know how to distinguish between themnamespace

for forward or reverse mapping resolutions.

It is allowed for an application to use a plugin which provides a controller with the same
name as a controller provided by the application and for neither of the controllers to define a

 property as long as the controllers are in separate packages. For example, annamespace

application may include a controller named and thecom.accounting.ReportingController

application may use a plugin which provides a controller named
. The only issue with that is the URL mapping for thecom.humanresources.ReportingController

controller provided by the plugin needs to be explicit in specifying that the mapping applies
to the which is provided by the plugin.ReportingController

See the following example.

 mappings = {static
 {"/accountingReports"
 controller = "reporting"
 }
 {"/humanResourceReports"
 controller = "reporting"
 plugin = "humanResources"
 }
}

With that mapping in place, a request to will be handled by the /accountingReports

 which is defined in the application. A request to willReportingController /humanResourceReports

be handled by the which is provided by the plugin.ReportingController humanResources

There could be any number of controllers provided by any number ofReportingController

plugins but no plugin may provide more than one even if they are definedReportingController

in separate packages.

Assigning a value to the variable in the mapping is only required if there are multipleplugin

controllers with the same name available at runtime provided by the application and/or
plugins. If the plugin provides a and there is no other humanResources ReportingController

 available at runtime, the following mapping would work.ReportingController

 mappings = {static
 {"/humanResourceReports"
 controller = "reporting"
 }
}

It is best practice to be explicit about the fact that the controller is being provided by a
plugin.

7.4 CORS

Spring Boot provides CORS support out of the box, but it is difficult to configure in a Grails
application due to the way UrlMappings are used instead of annotations that define URLs.
Starting with Grails 3.2.1, we have added a way to configure CORS that makes sense in a
Grails application.

Once enabled, the default setting is "wide open".

application.yml
:grails

 :cors
 : enabled true

That will produce a mapping to all urls with:/**

allowedOrigins ['*']

allowedMethods ['*']

allowedHeaders ['*']

exposedHeaders null

maxAge 1800

allowCredentials false

Some of these settings come directly from Spring Boot and can change in future versions.
See Spring CORS Configuration Documentation

All of those settings can be easily overridden.

application.yml
:grails

 :cors
 : enabled true
 :allowedOrigins
 - http://localhost:5000

In the example above, the setting will replace .allowedOrigins [*]

You can also configure different URLs.

application.yml
:grails

 :cors
 : enabled true
 :allowedHeaders
 - Content-Type
 :mappings
 :'[/api/**]'
 :allowedOrigins
 - http://localhost:5000
 # Other configurations not specified default to the global config

Note that the mapping key must be made with bracket notation (see
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-Configuration-Binding#map-based-binding
), which is a breaking change between Spring Boot 1.5 (Grails 3) and Spring Boot 2 (Grails
4).

Specifying at least one mapping will disable the creation of the global mapping (). If/**

you wish to keep that setting, you should specify it along with your other mappings.

The settings above will produce a single mapping of with the following settings:/api/**

allowedOrigins ['http://localhost:5000']

allowedMethods ['*']

allowedHeaders ['Content-Type']

exposedHeaders null

maxAge 1800

https://docs.spring.io/spring/docs/5.3.33/javadoc-api//org/springframework/web/cors/CorsConfiguration.html#applyPermitDefaultValues
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-Configuration-Binding#map-based-binding
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-Configuration-Binding#map-based-binding

allowCredentials false

If you don’t wish to override any of the default settings, but only want to specify URLs, you
can do so like this example:

application.yml
:grails

 :cors
 : enabled true
 :mappings
 : '[/api/**]' inherit

7.5 Interceptors

Grails provides standalone Interceptors using the command:create-interceptor

$ grails create-interceptor MyInterceptor

The above command will create an Interceptor in the directory with thegrails-app/controllers

following default contents:

 {class MyInterceptor

 before() { }boolean true

 after() { }boolean true

 afterView() {void
 // no-op
 }

}

Interceptors vs Filters

In versions of Grails prior to Grails 3.0, Grails supported the notion of filters. These are still
supported for backwards compatibility but are considered deprecated.

The new interceptors concept in Grails 3.0 is superior in a number of ways, most
significantly interceptors can use Groovy’s annotation to optimize performanceCompileStatic

(something which is often critical as interceptors can be executed for every request.)

7.5.1 Defining Interceptors

By default interceptors will match the controllers with the same name. For example if you
have an interceptor called then all requests to the actions of the BookInterceptor BookController

will trigger the interceptor.

An implements the trait and provides 3 methods that can be used toInterceptor Interceptor
intercept requests:

/**
 * Executed before a matched action
 *
 * @return Whether the action should continue and execute
 */

 before() { }boolean true

/**
 * Executed after the action executes but prior to view rendering
 *
 * @return True if view rendering should continue, false otherwise
 */

 after() { }boolean true

http://docs.grails.org/6.2.0/api/grails/artefact/Interceptor.html

/**
 * Executed after view rendering completes
 */

 afterView() {}void

As described above the method is executed prior to an action and can cancel thebefore

execution of the action by returning .false

The method is executed after an action executes and can halt view rendering if itafter

returns false. The method can also modify the view or model using the and after view model

properties respectively:

 after() {boolean
 model.foo = "bar" // add a new model attribute called 'foo'
 view = 'alternate' // render a different view called 'alternate'
 true
}

The method is executed after view rendering completes. If an exception occurs, theafterView

exception is available using the property of the trait.throwable Interceptor

7.5.2 Matching Requests with Interceptors

As mention in the previous section, by default an interceptor will match only requests to the
associated controller by convention. However you can configure the interceptor to match
any request using the or methods defined in the .match matchAll Interceptor API

The matching methods return a instance which can be used to configure how theMatcher
interceptor matches the request.

For example the following interceptor will match all requests except those to the login
controller:

 {class AuthInterceptor
 AuthInterceptor() {
 matchAll()
 .excludes(:)controller "login"
 }

 before() {boolean
 // perform authentication
 }
}

You can also perform matching using named argument:

 {class LoggingInterceptor
 LoggingInterceptor() {
 match(: , :) controller "book" action "show" // using strings
 match(: ~) controller /(author|publisher)/ // using regex
 }

 before() {boolean
 ...
 }
}

You can use any number of matchers defined in your interceptor. They will be executed in
the order in which they have been defined. For example the above interceptor will match for
all of the following:

when the action of is calledshow BookController

when or is calledAuthorController PublisherController

All named arguments except for accept either a String or a Regex expression. The uri uri

argument supports a String path that is compatible with Spring’s . TheAntPathMatcher

http://docs.grails.org/6.2.0/api/grails/artefact/Interceptor.html
http://docs.grails.org/6.2.0/api/grails/artefact/Interceptor.html
http://docs.grails.org/6.2.0/api/grails/interceptors/Matcher.html
https://docs.spring.io/spring/docs/5.3.33/javadoc-api/org/springframework/util/AntPathMatcher.html

possible named arguments are:

namespace - The namespace of the controller

controller - The name of the controller

action - The name of the action

method - The HTTP method

uri - The URI of the request. If this argument is used then all other arguments will be
ignored and only this will be used.

7.5.3 Ordering Interceptor Execution

Interceptors can be ordered by defining an property that defines a priority.order

For example:

 {class AuthInterceptor

 order = HIGHEST_PRECEDENCEint

 ...
}

The default value of the property is 0. Interceptor execution order is determined byorder

sorting the property in an ascending direction and executing the lowest numericallyorder

ordered interceptor first.

The values and can be used to define filters that shouldHIGHEST_PRECEDENCE LOWEST_PRECEDENCE

should run first or last respectively.

Note that if you write an interceptor that is to be used by others it is better increment or
decrement the and to allow other interceptors to beHIGHEST_PRECEDENCE LOWEST_PRECEDENCE

inserted before or after the interceptor you are authoring:

 order = HIGHEST_PRECEDENCE + int 50

// or

 order = LOWEST_PRECEDENCE - int 50

To find out the computed order of interceptors you can add a debug logger to logback.groovy
as follows:

logger , DEBUG, [], 'grails.artefact.Interceptor' 'STDOUT' false

You can override any interceptors default order by using bean override configuration in
:grails-app/conf/application.yml

:beans
 :authInterceptor
 : order 50

Or in :grails-app/conf/application.groovy

beans {
 authInterceptor {
 order = 50
 }
}

Thus giving you complete control over interceptor execution order.

7.6 Content Negotiation

Grails has built in support for using either the HTTP header, anContent negotiation Accept

explicit format request parameter or the extension of a mapped URI.

Configuring Mime Types

Before you can start dealing with content negotiation you need to tell Grails what content
types you wish to support. By default Grails comes configured with a number of different
content types within using the setting:grails-app/conf/application.yml grails.mime.types

:grails
 :mime
 :types
 : all '*/*'
 : atom application/atom+xml
 : css text/css
 : csv text/csv
 : form application/x-www-form-urlencoded
 :html
 - text/html
 - application/xhtml+xml
 : js text/javascript
 :json
 - application/json
 - text/json
 : multipartForm multipart/form-data
 : rss application/rss+xml
 : text text/plain
 :hal
 - application/hal+json
 - application/hal+xml
 :xml
 - text/xml
 - application/xml

The setting can also be done in as shown below:grails-app/conf/application.groovy

grails.mime.types = [// the first one is the default format
 : , all '*/*' // 'all' maps to '*' or the first available format in withFormat
 : ,atom 'application/atom+xml'
 : ,css 'text/css'
 : ,csv 'text/csv'
 : ,form 'application/x-www-form-urlencoded'
 : [,],html 'text/html' 'application/xhtml+xml'
 : ,js 'text/javascript'
 : [,],json 'application/json' 'text/json'
 : ,multipartForm 'multipart/form-data'
 : ,rss 'application/rss+xml'
 : ,text 'text/plain'
 : [,],hal 'application/hal+json' 'application/hal+xml'
 : [,]xml 'text/xml' 'application/xml'
]

The above bit of configuration allows Grails to detect to format of a request containing
either the 'text/xml' or 'application/xml' media types as simply 'xml'. You can add your own
types by simply adding new entries into the map. The first one is the default format.

Content Negotiation using the format Request Parameter

Let’s say a controller action can return a resource in a variety of formats: HTML, XML, and
JSON. What format will the client get? The easiest and most reliable way for the client to
control this is through a URL parameter.format

So if you, as a browser or some other client, want a resource as XML, you can use a URL
like this:

http://my.domain.org/books.xml

The request parameters is allowed as well , butformat http://my.domain.org/books?format=xml

the default Grails URL Mapping will overrideget "/$controller(.$format)?"(action:"index")

http://en.wikipedia.org/wiki/Content_negotiation
http://my.domain.org/books?format=xml

the parameter with null. So the default mapping should be updated to format get

."/$controller"(action:"index")

The result of this on the server side is a property on the object with the value format response

 .xml

You can also define this parameter in the definition:URL Mappings

(: , :) {"/book/list" controller "book" action "list"
 format = "xml"
}

You could code your controller action to return XML based on this property, but you can
also make use of the controller-specific method:withFormat()

This example requires the addition of the pluginorg.grails.plugins:grails-plugin-converters

 import grails.converters.JSON
 import grails.converters.XML

 {class BookController

 () {def list
 books = .list()def Book

 withFormat {
 html : booksbookList
 json { render books JSON }as
 xml { render books XML }as
 { render books JSON }'*' as
 }
 }
}

In this example, Grails will only execute the block inside that matches thewithFormat()

requested content type. So if the preferred format is then Grails will execute the html html()

call only. Each 'block' can either be a map model for the corresponding view (as we are
doing for 'html' in the above example) or a closure. The closure can contain any standard
action code, for example it can return a model or render content directly.

When no format matches explicitly, a (wildcard) block can be used to handle all other*

formats.

There is a special format, "all", that is handled differently from the explicit formats. If "all"
is specified (normally this happens through the Accept header - see below), then the first
block of is executed when there isn’t a (wildcard) block available.withFormat() *

You should not add an explicit "all" block. In this example, a format of "all" will trigger the
 handler (is the first block and there is no block).html html *

withFormat {
 html : booksbookList
 json { render books JSON }as
 xml { render books XML }as
}

When using make sure it is the last call in your controller action as the returnwithFormat
value of the method is used by the action to dictate what happens next.withFormat

Using the Accept header

Every incoming HTTP request has a special header that defines what media types (orAccept
mime types) a client can "accept". In older browsers this is typically:

/

which simply means anything. However, newer browsers send more interesting values such

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

as this one sent by Firefox:

text/xml, application/xml, application/xhtml+xml, text/html;q=0.9, \
 text/plain;q=0.8, image/png, */*;q=0.5

This particular accept header is unhelpful because it indicates that XML is the preferred
response format whereas the user is really expecting HTML. That’s why Grails ignores the
accept header by default for browsers. However, non-browser clients are typically more
specific in their requirements and can send accept headers such as

application/json

As mentioned the default configuration in Grails is to ignore the accept header for browsers.
This is done by the configuration setting , which isgrails.mime.disable.accept.header.userAgents

configured to detect the major rendering engines and ignore their ACCEPT headers. This
allows Grails' content negotiation to continue to work for non-browser clients:

grails.mime.disable.accept.header.userAgents = [, , ,]'Gecko' 'WebKit' 'Presto' 'Trident'

For example, if it sees the accept header above ('application/json') it will set to asformat json

you’d expect. And of course this works with the method in just the same way aswithFormat()

when the URL parameter is set (although the URL parameter takes precedence).format

An accept header of '*/*' results in a value of for the property.all format

If the accept header is used but contains no registered content types, Grails will assume a
broken browser is making the request and will set the HTML format - note that this is
different from how the other content negotiation modes work as those would activate the
"all" format!

Request format vs. Response format

As of Grails 2.0, there is a separate notion of the format and the format.request response
The request format is dictated by the header and is typically used to detect if theCONTENT_TYPE

incoming request can be parsed into XML or JSON, whilst the response format uses the file
extension, format parameter or ACCEPT header to attempt to deliver an appropriate
response to the client.

The available on controllers deals specifically with the response format. If youwithFormat
wish to add logic that deals with the request format then you can do so using a separate

 method available on the request:withFormat

request.withFormat {
 xml {
 // read XML
 }
 json {
 // read JSON
 }
}

Content Negotiation with URI Extensions

Grails also supports content negotiation using URI extensions. For example given the
following URI:

/book/list.xml

This works as a result of the default URL Mapping definition which is:

{"/ controller$ / action$?/ id$?(. format$)?"

Note the inclusion of the variable in the path. If you do not wish to use contentformat

negotiation via the file extension then simply remove this part of the URL mapping:

{"/ controller$ / action$?/ id$?"

Testing Content Negotiation

To test content negotiation in a unit or integration test (see the section on) you canTesting
either manipulate the incoming request headers:

 testJavascriptOutput() {void
 controller = TestController()def new
 controller.request.addHeader ,"Accept"
 "text/javascript, text/html, application/xml, text/xml, */*"

 controller.testAction()
 assertEquals , controller.response.contentAsString"alert('hello')"
}

Or you can set the format parameter to achieve a similar effect:

 testJavascriptOutput() {void
 controller = TestController()def new
 controller.params.format = 'js'

 controller.testAction()
 assertEquals , controller.response.contentAsString"alert('hello')"
}

8 Traits
Overview

Grails provides a number of traits which provide access to properties and behavior that may
be accessed from various Grails artefacts as well as arbitrary Groovy classes which are part
of a Grails project. Many of these traits are automatically added to Grails artefact classes
(like controllers and taglibs, for example) and are easy to add to other classes.

8.1 Traits Provided by Grails

Grails artefacts are automatically augmented with certain traits at compile time.

Domain Class Traits

grails.artefact.DomainClass

grails.web.databinding.WebDataBinding

org.grails.datastore.gorm.GormEntity

org.grails.datastore.gorm.GormValidateable

Controller Traits

grails.artefact.gsp.TagLibraryInvoker

grails.artefact.AsyncController

grails.artefact.controller.RestResponder

grails.artefact.Controller

http://docs.grails.org/6.2.0/api/grails/artefact/DomainClass.html
http://docs.grails.org/6.2.0/api/grails/web/databinding/WebDataBinding.html
https://gorm.grails.org/8.1.2/api//org/grails/datastore/gorm/GormEntity.html
https://gorm.grails.org/8.1.2/api//org/grails/datastore/gorm/GormValidateable.html
https://gsp.grails.org/6.2.1/api/grails/artefact/gsp/TagLibraryInvoker.html
https://async.grails.org/latest/api/grails/artefact/AsyncController.html
http://docs.grails.org/6.2.0/api/grails/artefact/controller/RestResponder.html
http://docs.grails.org/6.2.0/api/grails/artefact/Controller.html

Interceptor Trait

grails.artefact.Interceptor

Tag Library Trait

grails.artefact.TagLibrary

Below is a list of other traits provided by the framework. The javadocs provide more detail
about methods and properties related to each trait.

Trait Brief Description

grails.web.api.WebAttributes Common Web Attributes

grails.web.api.ServletAttributes Servlet API Attributes

grails.web.databinding.DataBinder Data Binding API

grails.artefact.controller.support.RequestForwarder Request Forwarding API

grails.artefact.controller.support.ResponseRedirector Response Redirecting API

grails.artefact.controller.support.ResponseRenderer Response Rendering API

grails.validation.Validateable Validation API

8.1.1 WebAttributes Trait Example

WebAttributes is one of the traits provided by the framework. Any Groovy class may
implement this trait to inherit all of the properties and behaviors provided by the trait.

src/main/groovy/demo/Helper.groovy
 demopackage

 import grails.web.api.WebAttributes

 WebAttributes {class Helper implements

 < > getControllerNames() {List String
 // There is no need to pass grailsApplication as an argument
 // or otherwise inject the grailsApplication property. The
 // WebAttributes trait provides access to grailsApplication.
 grailsApplication.getArtefacts()*.name'Controller'
 }
}

The traits are compatible with static compilation…

src/main/groovy/demo/Helper.groovy
 demopackage

http://docs.grails.org/6.2.0/api/grails/artefact/Interceptor.html
https://gsp.grails.org/6.2.1/api/grails/artefact/TagLibrary.html
http://docs.grails.org/6.2.0/api/grails/web/api/WebAttributes.html
http://docs.grails.org/6.2.0/api/grails/web/api/ServletAttributes.html
http://docs.grails.org/6.2.0/api/grails/web/databinding/DataBinder.html
http://docs.grails.org/6.2.0/api/grails/artefact/controller/support/RequestForwarder.html
http://docs.grails.org/6.2.0/api/grails/artefact/controller/support/ResponseRedirector.html
http://docs.grails.org/6.2.0/api/grails/artefact/controller/support/ResponseRenderer.html
http://docs.grails.org/6.2.0/api/grails/validation/Validateable.html
http://docs.grails.org/6.2.0/api/grails/web/api/WebAttributes.html

 import grails.web.api.WebAttributes
 import groovy.transform.CompileStatic

@CompileStatic
 WebAttributes {class Helper implements

 < > getControllerNames() {List String
 // There is no need to pass grailsApplication as an argument
 // or otherwise inject the grailsApplication property. The
 // WebAttributes trait provides access to grailsApplication.
 grailsApplication.getArtefacts()*.name'Controller'
 }
}

9 REST
REST is not really a technology in itself, but more an architectural pattern. REST is very
simple and just involves using plain XML or JSON as a communication medium, combined
with URL patterns that are "representational" of the underlying system, and HTTP methods
such as GET, PUT, POST and DELETE.

Each HTTP method maps to an action type. For example GET for retrieving data, POST for
creating data, PUT for updating and so on.

Grails includes flexible features that make it easy to create RESTful APIs. Creating a
RESTful resource can be as simple as one line of code, as demonstrated in the next section.

9.1 Domain classes as REST resources

The easiest way to create a RESTful API in Grails is to expose a domain class as a REST
resource. This can be done by adding the transformation to any domaingrails.rest.Resource

class:

 import grails.rest.*

(uri=)@Resource '/books'
 {class Book

 titleString

 constraints = {static
 title :blank false
 }
}

Simply by adding the transformation and specifying a URI, your domain class willResource

automatically be available as a REST resource in either XML or JSON formats. The
transformation will automatically register the necessary and create aRESTful URL mapping
controller called .BookController

You can try it out by adding some test data to :BootStrap.groovy

 init = { servletContext ->def
 (:).save()new Book title "The Stand"
 (:).save()new Book title "The Shining"
}

And then hitting the URL , which will render the response like:http://localhost:8080/books/1

<?xml version="1.0" encoding="UTF-8"?>
 =<book id "1">

 The Stand<title> </title>
</book>

If you change the URL to you will get a JSON responsehttp://localhost:8080/books/1.json
such as:

http://localhost:8080/books/1
http://localhost:8080/books/1.json

{ : , : }"id" 1 "title" "The Stand"

If you wish to change the default to return JSON instead of XML, you can do this by setting
the attribute of the transformation:formats Resource

 import grails.rest.*

(uri= , formats=[,])@Resource '/books' 'json' 'xml'
 {class Book

 ...
}

With the above example JSON will be prioritized. The list that is passed should contain the
names of the formats that the resource should expose. The names of formats are defined in
the setting of :grails.mime.types application.groovy

grails.mime.types = [
 ...
 json: [,],'application/json' 'text/json'
 ...
 xml: [,]'text/xml' 'application/xml'
]

See the section on in the user guide for more information.Configuring Mime Types

Instead of using the file extension in the URI, you can also obtain a JSON response using
the ACCEPT header. Here’s an example using the Unix tool:curl

$ curl -i -H "Accept: application/json" localhost:8080/books/1
{"id":1,"title":"The Stand"}

This works thanks to Grails' features.Content Negotiation

You can create a new resource by issuing a request:POST

$ curl -i -X POST -H "Content-Type: application/json" -d '{"title":"Along Came A Spider"}' localhost:8080/books
HTTP/1.1 201 Created
Server: Apache-Coyote/1.1
...

Updating can be done with a request:PUT

$ curl -i -X PUT -H "Content-Type: application/json" -d '{"title":"Along Came A Spider"}' localhost:8080/books/1
HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
...

Finally a resource can be deleted with request:DELETE

$ curl -i -X DELETE localhost:8080/books/1
HTTP/1.1 204 No Content
Server: Apache-Coyote/1.1
...

As you can see, the transformation enables all of the HTTP method verbs on theResource

resource. You can enable only read-only capabilities by setting the attribute to true:readOnly

 import grails.rest.*

(uri= , readOnly=)@Resource '/books' true
 {class Book

 ...
}

In this case , and requests will be forbidden.POST PUT DELETE

9.2 Mapping to REST resources

If you prefer to keep the declaration of the URL mapping in your file thenUrlMappings.groovy

simply removing the attribute of the transformation and adding the followinguri Resource

line to will suffice:UrlMappings.groovy

(:)"/books" resources "book"

Extending your API to include more end points then becomes trivial:

(:) {"/books" resources "book"
 (: , :)"/publisher" controller "publisher" method "GET"
}

The above example will expose the URI ./books/1/publisher

A more detailed explanation on can be found in the creating RESTful URL mappings URL
 of the user guide.Mappings section

9.3 Linking to REST resources from GSP pages

The tag offers an easy way to link to any domain class resource:link

 = My Link<g:link resource "${book}"> </g:link>

However, currently you cannot use g:link to link to the DELETE action and most browsers
do not support sending the DELETE method directly.

The best way to accomplish this is to use a form submit:

 = =<form action "/book/2" method "post">
 = = =<input type "hidden" name "_method" value "DELETE"/>
</form>

Grails supports overriding the request method via the hidden parameter. This is for_method

browser compatibility purposes. This is useful when using restful resource mappings to
create powerful web interfaces. To make a link fire this type of event, perhaps capture all
click events for links with a attribute and issue a form submit via JavaScript.data-method

9.4 Versioning REST resources

A common requirement with a REST API is to expose different versions at the same time.
There are a few ways this can be achieved in Grails.

Versioning using the URI

A common approach is to use the URI to version APIs (although this approach is
discouraged in favour of Hypermedia). For example, you can define the following URL
mappings:

(: , :)"/books/v1" resources "book" namespace 'v1'
(: , :)"/books/v2" resources "book" namespace 'v2'

That will match the following controllers:

 myapp.v1package

 {class BookController
 namespace = static 'v1'
}

 myapp.v2package

 {class BookController
 namespace = static 'v2'
}

This approach has the disadvantage of requiring two different URI namespaces for your
API.

Versioning with the Accept-Version header

As an alternative Grails supports the passing of an header from clients. ForAccept-Version

example you can define the following URL mappings:

(: , : , :)"/books" version '1.0' resources "book" namespace 'v1'
(: , : , :)"/books" version '2.0' resources "book" namespace 'v2'

Then in the client simply pass which version you need using the header:Accept-Version

$ curl -i -H "Accept-Version: 1.0" -X GET http://localhost:8080/books

Versioning using Hypermedia / Mime Types

Another approach to versioning is to use Mime Type definitions to declare the version of
your custom media types (see the section on "Hypermedia as the Engine of Application
State" for more information about Hypermedia concepts). For example, in application.groovy
you can declare a custom Mime Type for your resource that includes a version parameter
(the 'v' parameter):

grails.mime.types = [
 : ,all '*/*'
 : ,book "application/vnd.books.org.book+json;v=1.0"
 : ,bookv2 "application/vnd.books.org.book+json;v=2.0"
 ...
}

It is critical that place your new mime types after the 'all' Mime Type because if the
Content Type of the request cannot be established then the first entry in the map is used for
the response. If you have your new Mime Type at the top then Grails will always try and
send back your new Mime Type if the requested Mime Type cannot be established.

Then override the renderer (see the section on "Customizing Response Rendering" for more
information on custom renderers) to send back the custom Mime Type in

:grails-app/conf/spring/resourses.groovy

 import grails.rest.render.json.*
 import grails.web.mime.*

beans = {
 bookRendererV1(JsonRenderer, myapp.v1.Book, MimeType(, [:]))new "application/vnd.books.org.book+json" v "1.0"
 bookRendererV2(JsonRenderer, myapp.v2.Book, MimeType(, [:]))new "application/vnd.books.org.book+json" v "2.0"
}

Then update the list of acceptable response formats in your controller:

 RestfulController {class BookController extends
 responseFormats = [, , ,]static 'json' 'xml' 'book' 'bookv2'

 // ...
}

Then using the header you can specify which version you need using the Mime Type:Accept

 curl -i -H -X GET :$ "Accept: application/vnd.books.org.book+json;v=1.0" http //localhost:8080/books

9.5 Implementing REST controllers

The transformation is a quick way to get started, but typically you’ll want toResource

customize the controller logic, the rendering of the response or extend the API to include
additional actions.

9.5.1 Extending the RestfulController super class

The easiest way to get started doing so is to create a new controller for your resource that
extends the super class. For example:grails.rest.RestfulController

 RestfulController< > {class BookController extends Book
 responseFormats = [,]static 'json' 'xml'
 BookController() {
 ()super Book
 }
}

To customize any logic you can just override the appropriate action. The following table
provides the names of the action names and the URIs they map to:

HTTP Method URI Controller Action

GET /books index

GET /books/create create

POST /books save

GET /books/${id} show

GET /books/${id}/edit edit

PUT /books/${id} update

DELETE /books/${id} delete

The and actions are only needed if the controller exposes an HTML interface.create edit

As an example, if you have a then you would typically want to query bothnested resource
the parent and the child identifiers. For example, given the following URL mapping:

(:) {"/authors" resources 'author'
 (:)"/books" resources 'book'
}

You could implement the nested controller as follows:

 RestfulController {class BookController extends
 responseFormats = [,]static 'json' 'xml'
 BookController() {
 ()super Book
 }

 @Override
 queryForResource(id) {protected Book Serializable
 .where {Book
 id == id && author.id == params.authorId
 }.find()
 }

}

The example above subclasses and overrides the protected RestfulController queryForResource

method to customize the query for the resource to take into account the parent resource.

Customizing Data Binding In A RestfulController Subclass

The RestfulController class contains code which does data binding for actions like and save

. The class defines a method which returns a value which will be usedupdate getObjectToBind()

as the source for data binding. For example, the update action does something like this…

 <T> {class RestfulController

 () {def update
 T instance = // retrieve instance from the database...

 instance.properties = getObjectToBind()

 // ...
 }

 // ...
}

By default the method returns the object. When the object isgetObjectToBind() request request

used as the binding source, if the request has a body then the body will be parsed and its
contents will be used to do the data binding, otherwise the request parameters will be used to
do the data binding. Subclasses of RestfulController may override the getObjectToBind()
method and return anything that is a valid binding source, including a or a Map

. For most use cases binding the request is appropriate but the DataBindingSource
 method allows for changing that behavior where desired.getObjectToBind()

Using custom subclass of RestfulController with Resource annotation

You can also customize the behaviour of the controller that backs the Resource annotation.

The class must provide a constructor that takes a domain class as its argument. The second
constructor is required for supporting Resource annotation with readOnly=true.

This is a template that can be used for subclassed RestfulController classes used in Resource
annotations:

 <T> RestfulController<T> {class SubclassRestfulController extends
 SubclassRestfulController(<T> domainClass) {Class
 (domainClass,)this false
 }

 SubclassRestfulController(<T> domainClass, readOnly) {Class boolean
 (domainClass, readOnly)super
 }
}

You can specify the super class of the controller that backs the Resource annotation with the
 attribute.superClass

 import grails.rest.*

(uri= , superClass=SubclassRestfulController)@Resource '/books'
 {class Book

 titleString

 constraints = {static
 title :blank false
 }
}

9.5.2 Implementing REST Controllers Step by Step

If you don’t want to take advantage of the features provided by the superRestfulController

class, then you can implement each HTTP verb yourself manually. The first step is to create

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Map.html
http://docs.grails.org/6.2.0/api/grails/databinding/DataBindingSource.html

a controller:

 grails create-controller book$

Then add some useful imports and enable readOnly by default:

 import grails.gorm.transactions.*
 import static org.springframework.http.HttpStatus.*
 import static org.springframework.http.HttpMethod.*

(readOnly =)@Transactional true
 {class BookController

 ...
}

Recall that each HTTP verb matches a particular Grails action according to the following
conventions:

HTTP Method URI Controller Action

GET /books index

GET /books/${id} show

GET /books/create create

GET /books/${id}/edit edit

POST /books save

PUT /books/${id} update

DELETE /books/${id} delete

The and actions are already required if you plan to implement an HTMLcreate edit

interface for the REST resource. They are there in order to render appropriate HTML
forms to create and edit a resource. They can be discarded if that is not a requirement.

The key to implementing REST actions is the method introduced in Grails 2.3. The respond
 method tries to produce the most appropriate response for the requested content typerespond

(JSON, XML, HTML etc.)

Implementing the 'index' action

For example, to implement the action, simply call the method passing the list ofindex respond

objects to respond with:

 (max) {def index Integer
 params.max = .min(max ?: ,)Math 10 100
 respond .list(params), :[: .count()]Book model bookCount Book
}

Note that in the above example we also use the argument of the method tomodel respond

supply the total count. This is only required if you plan to support pagination via some user

interface.

The method will, using , attempt to reply with the mostrespond Content Negotiation
appropriate response given the content type requested by the client (via the ACCEPT header
or file extension).

If the content type is established to be HTML then a model will be produced such that the
action above would be the equivalent of writing:

 (max) {def index Integer
 params.max = .min(max ?: ,)Math 10 100
 [: .list(params), : .count()]bookList Book bookCount Book
}

By providing an file you can render an appropriate view for the given model. If theindex.gsp

content type is something other than HTML then the method will attempt to lookuprespond

an appropriate instance that is capable of rendering the passedgrails.rest.render.Renderer

object. This is done by inspecting the .grails.rest.render.RendererRegistry

By default there are already renderers configured for JSON and XML, to find out how to
register a custom renderer see the section on "Customizing Response Rendering".

Implementing the 'show' action

The action, which is used to display and individual resource by id, can be implementedshow

in one line of Groovy code (excluding the method signature):

 (book) {def show Book
 respond book
}

By specifying the domain instance as a parameter to the action Grails will automatically
attempt to lookup the domain instance using the parameter of the request. If the domainid

instance doesn’t exist, then will be passed into the action. The method will returnnull respond

a 404 error if null is passed otherwise once again it will attempt to render an appropriate
response. If the format is HTML then an appropriate model will produced. The following
action is functionally equivalent to the above action:

 (book) {def show Book
 (book ==) {if null
 render :status 404
 }
 {else
 [: book]return book
 }
}

Implementing the 'save' action

The action creates new resource representations. To start off, simply define an actionsave

that accepts a resource as the first argument and mark it as with the Transactional

 transform:grails.gorm.transactions.Transactional

@Transactional
 (book) {def save Book

 ...
}

Then the first thing to do is check whether the resource has any and if sovalidation errors
respond with the errors:

(book.hasErrors()) {if
 respond book.errors, :view 'create'
}

 {else
 ...
}

In the case of HTML the 'create' view will be rendered again so the user can correct the
invalid input. In the case of other formats (JSON, XML etc.), the errors object itself will be
rendered in the appropriate format and a status code of 422 (UNPROCESSABLE_ENTITY)
returned.

If there are no errors then the resource can be saved and an appropriate response sent:

book.save :flush true
 withFormat {
 html {
 flash.message = message(: , : [message(: , :), book.id])code 'default.created.message' args code 'book.label' default 'Book'
 redirect book
 }
 { render : CREATED }'*' status
 }

In the case of HTML a redirect is issued to the originating resource and for other formats a
status code of 201 (CREATED) is returned.

Implementing the 'update' action

The action updates an existing resource representation and is largely similar to the update save

action. First define the method signature:

@Transactional
 (book) {def update Book

 ...
}

If the resource exists then Grails will load the resource, otherwise null is passed. In the case
of null, you should return a 404:

(book ==) {if null
 render : NOT_FOUNDstatus
 }
 {else
 ...
 }

Then once again check for errors and if so respond with the errors:validation errors

(book.hasErrors()) {if
 respond book.errors, :view 'edit'
}

 {else
 ...
}

In the case of HTML the 'edit' view will be rendered again so the user can correct the invalid
input. In the case of other formats (JSON, XML etc.) the errors object itself will be rendered
in the appropriate format and a status code of 422 (UNPROCESSABLE_ENTITY) returned.

If there are no errors then the resource can be saved and an appropriate response sent:

book.save :flush true
withFormat {
 html {
 flash.message = message(: , : [message(: , :), book.id])code 'default.updated.message' args code 'book.label' default 'Book'
 redirect book
 }
 { render : OK }'*' status
}

In the case of HTML a redirect is issued to the originating resource and for other formats a
status code of 200 (OK) is returned.

Implementing the 'delete' action

The action deletes an existing resource. The implementation is largely similar to the delete

 action, except the method is called instead:update delete()

book.delete :flush true
withFormat {
 html {
 flash.message = message(: , : [message(: , :), book.id])code 'default.deleted.message' args code 'Book.label' default 'Book'
 redirect : , :action "index" method "GET"
 }
 { render : NO_CONTENT }'*' status
}

Notice that for an HTML response a redirect is issued back to the action, whilst forindex

other content types a response code 204 (NO_CONTENT) is returned.

9.5.3 Generating a REST controller using scaffolding

To see some of these concepts in action and help you get going, the ,Scaffolding plugin
version 2.0 and above, can generate a REST ready controller for you, simply run the
command:

$ grails generate-controller <<Domain Class Name>>

9.6 Calling REST Services with HttpClient

Calling Grails REST services - as well as third-party services - is very straightforward using
the . This HTTP client has both a low-level API and a higher levelMicronaut HTTP Client
AOP-driven API, making it useful for both simple requests as well as building declarative,
type-safe API layers.

To use the Micronaut HTTP client you must have the dependency onmicronaut-http-client

your classpath. Add the following dependency to your file.build.gradle

build.gradle
implementation 'io.micronaut:micronaut-http-client'

Low-level API

The interface forms the basis for the low-level API. This interfaces declaresHttpClient
methods to help ease executing HTTP requests and receive responses.

The majority of the methods in the interface returns Reactive Streams PublisherHttpClient

instances, and a sub-interface called RxHttpClient is included that provides a variation of
the HttpClient interface that returns RxJava Flowable types. When using in aHttpClient

blocking flow, you may wish to call to return an instance of .toBlocking() BlockingHttpClient

There are a few ways by which you can obtain a reference to a . The most simpleHttpClient
way is using the methodcreate

Creating an HTTP client
 <Album> searchWithApi(searchTerm) {List String
 baseUrl = String "https://itunes.apple.com/"

 HttpClient client = HttpClient.create(baseUrl.toURL()).toBlocking() (1)

 HttpRequest request = HttpRequest.GET()"/search?limit=25&media=music&entity=album&term= searchTerm${ }"
 HttpResponse< > resp = client.exchange(request,)String String
 client.close() (2)

 json = resp.body()String
 ObjectMapper objectMapper = ObjectMapper() new (3)

http://plugins.grails.org/plugin/grails/scaffolding
https://docs.micronaut.io/latest/guide/index.html#httpClient
https://docs.micronaut.io/latest/api/io/micronaut/http/client/HttpClient.html
https://docs.micronaut.io/latest/api/io/micronaut/http/client/BlockingHttpClient.html
https://docs.micronaut.io/latest/api/io/micronaut/http/client/HttpClient.html
https://docs.micronaut.io/latest/api/io/micronaut/http/client/HttpClient.html#create-java.net.URL-

 objectMapper.configure(DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES,)false
 searchResult = objectMapper.readValue(json,)SearchResult SearchResult
 searchResult.results
 }

1 Create a new instance of with the method, and convert to an instance of HttpClient create

 with ,BlockingHttpClient toBlocking()

2 The client should be closed using the method to prevent thread leaking.close

3 Jackson’s API can be used to map the raw JSON to POGOs, in this case ObjectMapper
SearchResult

Consult the of the for more information on usingHttp Client section Micronaut user guide
the low-level API.HttpClient

Declarative API

A declarative HTTP client can be written by adding the annotation to any interface or@Client

abstract class. Using Micronaut’s AOP support (see the Micronaut user guide section on
), the abstract or interface methods will be implemented for you atIntroduction Advice

compilation time as HTTP calls. Declarative clients can return data-bound POGOs (or
POJOs) without requiring special handling from the calling code.

 example.grailspackage

 import io.micronaut.http.annotation.Get
 import io.micronaut.http.client.annotation.Client

()@Client "https://start.grails.org"
 GrailsAppForgeClient {interface

 ()@Get "/{version}/profiles"
 < > profiles(version)List Map String
}

Note that HTTP client methods are annotated with the appropriate HTTP method, such as
 or .@Get @Post

To use a client like the one in the above example, simply inject an instance of the client into
any bean using the annotation.@Autowired

 GrailsAppForgeClient appForgeClient@Autowired

 < > profiles(grailsVersion) {List Map String
 respond appForgeClient.profiles(grailsVersion)
 }

For more details on writing and using declarative clients, consult the ofHttp Client section
the .Micronaut user guide

9.7 The REST Profile

Since Grails 3.1, Grails supports a tailored profile for creating REST applications that
provides a more focused set of dependencies and commands.

To get started with a REST API-type application:

$ grails create-restapi my-api

This will create a new REST application that provides the following features:

Default set of commands for creating and generating REST endpoints

Defaults to using JSON views for rendering responses (see the next section)

https://fasterxml.github.io/jackson-databind/javadoc/2.9/com/fasterxml/jackson/databind/ObjectMapper.html
https://docs.micronaut.io/latest/guide/index.html#lowLevelHttpClient
https://docs.micronaut.io/latest/guide/index.html
https://docs.micronaut.io/latest/api/io/micronaut/http/client/annotation/Client.html
https://docs.micronaut.io/latest/guide/index.html#introductionAdvice
https://docs.micronaut.io/latest/guide/index.html#clientAnnotation
https://docs.micronaut.io/latest/guide/index.html

Fewer plugins than a default Grails Web-style application (no GSP, no Asset Pipeline,
nothing HTML related)

You will notice for example in the directory that there are files forgrails-app/views *.gson

rendering the default index page and as well as any 404 and 500 errors.

If you issue the following set of commands:

$ grails create-domain-class my.api.Book
$./gradlew runCommand -Pargs="generate-all my.api.Book"

The generate-* commands are only available after adding the org.grails.plugins:scaffolding
dependency to your project. They are not available by default in a REST application. Also,
they will no longer produce *.gson files as that was a feature of the REST API-profile.
Profiles where removed in Grails 6.

Instead of CRUD HTML interface a REST endpoint is generated that produces JSON
responses. In addition, the generated functional and unit tests by default test the REST
endpoint.

9.8 JSON Views

As mentioned in the previous section the REST profile by default uses JSON views to
render JSON responses. These play a similar role to GSP, but instead are optimized for
outputing JSON responses instead of HTML.

You can continue to separate your application in terms of MVC, with the logic of your
application residing in controllers and services, whilst view related matters are handled by
JSON views.

JSON views also provide the flexibility to easily customize the JSON presented to clients
without having to resort to relatively complex marshalling libraries like Jackson or Grails'
marshaller API.

Since Grails 3.1, JSON views are considered by the Grails team the best way to present
JSON output for the client, the section on writing custom marshallers has been removed
from the user guide. If you are looking for information on that topic, see the Grails 3.0.x

.guide

9.8.1 Getting Started

If you are using the REST application, then the JSON views plugin will already be included
and you can skip the remainder of this section. Otherwise you will need to modify your

 to include the necessary plugin to activate JSON views:build.gradle

implementation 'org.grails.plugins:views-json:1.0.0' // or whatever is the latest version

The can be found on Github if you are looking forsource code repository for JSON views
more documentation and contributions

In order to compile JSON views for production deployment you should also activate the
Gradle plugin by first modifying the block:buildscript

buildscript {
 ...
 dependencies {
 ...

http://grails.github.io/grails-doc/3.0.x/guide/webServices.html#objectMarshallers
http://grails.github.io/grails-doc/3.0.x/guide/webServices.html#objectMarshallers
https://github.com/grails/grails-views

 classpath "org.grails.plugins:views-gradle:1.0.0"
 }
}

Then apply the Gradle plugin after any Grails core gradleorg.grails.plugins.views-json

plugins:

...
apply : plugin "org.grails.grails-web"
apply : plugin "org.grails.plugins.views-json"

This will add a task to Gradle, which is invoked prior to creating thecompileGsonViews

production JAR or WAR file.

9.8.2 Creating JSON Views

JSON views go into the directory and end with the suffix. They aregrails-app/views .gson

regular Groovy scripts and can be opened in any Groovy editor.

Example JSON view:

json.person {
 name "bob"
}

To open them in the Groovy editor in Intellij IDEA, double click on the file and when
asked which file to associate it with, choose "Groovy"

The above JSON view produces:

{ :{ : }}"person" "name" "bob"

There is an implicit variable which is an instance of .json StreamingJsonBuilder

Example usages:

json(, ,) == 1 2 3 "[1,2,3]"
json { name } == "Bob" '{"name":"Bob"}'
json([, ,]) { n } == 1 2 3 it '[{"n":1},{"n":2},{"n":3}]'

Refer to the API documentation on for more information about whatStreamingJsonBuilder
is possible.

9.8.3 JSON View Templates

You can define templates starting with underscore . For example given the following_

template called :_person.gson

model {
 Person person
}
json {
 name person.name
 age person.age
}

You can render it with a view as follows:

model {
 Family family
}
json {
 name family.father.name
 age family.father.age
 oldestChild g.render(: , :[: family.children.max { Person p -> p.age }])template "person" model person
 children g.render(: , : family.children, :)template "person" collection var 'person'
}

http://docs.groovy-lang.org/latest/html/api/groovy/json/StreamingJsonBuilder.html
http://docs.groovy-lang.org/latest/html/api/groovy/json/StreamingJsonBuilder.html

Alternatively for a more concise way to invoke templates, using the tmpl variable:

model {
 Family family
}
json {
 name family.father.name
 age family.father.age
 oldestChild tmpl.person(family.children.max { Person p -> p.age }])
 children tmpl.person(family.children)
}

9.8.4 Rendering Domain Classes with JSON Views

Typically your model may involve one or many domain instances. JSON views provide a
render method for rendering these.

For example given the following domain class:

 {class Book
 titleString
}

And the following template:

model {
 bookBook
}

json g.render(book)

The resulting output is:

{ : , : }id 1 title "The Stand"

You can customize the rendering by including or excluding properties:

json g.render(book, [:[]])includes 'title'

Or by providing a closure to add additional JSON output:

json g.render(book) {
 pages 1000
}

9.8.5 JSON Views by Convention

There are a few useful conventions you can follow when creating JSON views. For example
if you have a domain class called , then creating a template located at Book

 and using the method will result in rendering thegrails-app/views/book/_book.gson respond
template:

 (id) {def show Long
 respond .get(id)Book
}

In addition if an error occurs during validation by default Grails will try to render a template
called , otherwise it will try to render grails-app/views/book/_errors.gson

 if the former doesn’t exist.grails-app/views/errors/_errors.gson

This is useful because when persisting objects you can with validation errors torespond

render these aforementioned templates:

@Transactional
 (book) {def save Book

 (book.hasErrors()) {if
 transactionStatus.setRollbackOnly()

 respond book.errors
 }
 {else
 // valid object
 }
}

If a validation error occurs in the above example the grails-app/views/book/_errors.gson
template will be rendered.

For more information on JSON views (and Markup views), see the .JSON Views user guide

9.9 Customizing Response Rendering

If you are looking for a more low-level API and JSON or Markup views don’t suite your
needs then you may want to consider implementing a custom renderer.

9.9.1 Customizing the Default Renderers

The default renderers for XML and JSON can be found in the and grails.rest.render.xml

 packages respectively. These use the Grails converters (grails.rest.render.json

 and) by default for response rendering.grails.converters.XML grails.converters.JSON

You can easily customize response rendering using these default renderers. A common
change you may want to make is to include or exclude certain properties from rendering.

Including or Excluding Properties from Rendering

As mentioned previously, Grails maintains a registry of instances.grails.rest.render.Renderer

There are some default configured renderers and the ability to register or override renderers
for a given domain class or even for a collection of domain classes. To include a particular
property from rendering you need to register a custom renderer by defining a bean in

:grails-app/conf/spring/resources.groovy

 import grails.rest.render.xml.*

beans = {
 bookRenderer(XmlRenderer,) {Book
 includes = []'title'
 }
}

The bean name is not important (Grails will scan the application context for all registered
renderer beans), but for organizational and readability purposes it is recommended you
name it something meaningful.

To exclude a property, the property of the class can be used:excludes XmlRenderer

 import grails.rest.render.xml.*

beans = {
 bookRenderer(XmlRenderer,) {Book
 excludes = []'isbn'
 }
}

Customizing the Converters

As mentioned previously, the default renders use the package under thegrails.converters

covers. In other words, under the covers they essentially do the following:

 import grails.converters.*

...
render book XMLas

http://views.grails.org/latest/

// or render book as JSON

Why the separation between converters and renderers? Well a renderer has more flexibility
to use whatever rendering technology you chose. When implementing a custom renderer
you could use , or any Java library to implement the renderer. Converters onJackson Gson
the other hand are very much tied to Grails' own marshalling implementation.

9.9.2 Implementing a Custom Renderer

If you want even more control of the rendering or prefer to use your own marshalling
techniques then you can implement your own instance. For example below is aRenderer

simple implementation that customizes the rendering of the class:Book

 myapppackage
 import grails.rest.render.*
 import grails.web.mime.MimeType

 AbstractRenderer< > {class BookXmlRenderer extends Book
 BookXmlRenderer() {
 (, [MimeType.XML,MimeType.TEXT_XML] MimeType)super Book as []
 }

 render(object, context) {void Book RenderContext
 context.contentType = MimeType.XML.name

 xml = groovy.xml.MarkupBuilder(context.writer)def new
 xml.book(: object.id, :object.title)id title
 }
}

The super class has a constructor that takes the class that it renders and the AbstractRenderer

(s) that are accepted (via the ACCEPT header or file extension) for the renderer.MimeType

To configure this renderer, simply add it is a bean to :grails-app/conf/spring/resources.groovy

beans = {
 bookRenderer(myapp.BookXmlRenderer)
}

The result will be that all instances will be rendered in the following format:Book

<book id= title= />"1" "The Stand"

If you change the rendering to a completely different format like the above, then you also
need to change the binding if you plan to support POST and PUT requests. Grails will not
automatically know how to bind data from a custom XML format to a domain class
otherwise. See the section on "Customizing Binding of Resources" for further information.

Container Renderers

A is a renderer that renders responses for containers ofgrails.rest.render.ContainerRenderer

objects (lists, maps, collections etc.). The interface is largely the same as the Renderer
interface except for the addition of the method, which should return thegetComponentType()

"contained" type. For example:

 ContainerRenderer< , > {class BookListRenderer implements List Book
 < > getTargetType() { }Class List List
 < > getComponentType() { }Class Book Book
 MimeType getMimeTypes() { [MimeType.XML] MimeType }[] as []
 render(object, context) {void List RenderContext

 }
}

9.9.3 Using GSP to Customize Rendering

http://wiki.fasterxml.com/JacksonHome
http://code.google.com/p/google-gson/

You can also customize rendering on a per action basis using Groovy Server Pages (GSP).
For example given the action mentioned previously:show

 (book) {def show Book
 respond book
}

You could supply a file to customize the rendering of the XML:show.xml.gsp

<% contentType= %>@page "application/xml"
<book id= title= />" book.id${ }" " book.title${ }"

9.10 Hypermedia as the Engine of Application State

HATEOAS, an abbreviation for Hypermedia as the Engine of Application State, is a
common pattern applied to REST architectures that uses hypermedia and linking to define
the REST API.

Hypermedia (also called Mime or Media Types) are used to describe the state of a REST
resource, and links tell clients how to transition to the next state. The format of the response
is typically JSON or XML, although standard formats such as and/or areAtom HAL
frequently used.

9.10.1 HAL Support

HAL is a standard exchange format commonly used when developing REST APIs that
follow HATEOAS principals. An example HAL document representing a list of orders can
be seen below:

{
 : {"_links"
 : { : },"self" "href" "/orders"
 : { : },"next" "href" "/orders?page=2"
 : {"find"
 : ,"href" "/orders{?id}"
 : "templated" true
 },
 : [{"admin"
 : ,"href" "/admins/2"
 : "title" "Fred"
 }, {
 : ,"href" "/admins/5"
 : "title" "Kate"
 }]
 },
 : ,"currentlyProcessing" 14
 : ,"shippedToday" 20
 : {"_embedded"
 : [{"order"
 : {"_links"
 : { : },"self" "href" "/orders/123"
 : { : },"basket" "href" "/baskets/98712"
 : { : }"customer" "href" "/customers/7809"
 },
 : ,"total" 30.00
 : ,"currency" "USD"
 : "status" "shipped"
 }, {
 : {"_links"
 : { : },"self" "href" "/orders/124"
 : { : },"basket" "href" "/baskets/97213"
 : { : }"customer" "href" "/customers/12369"
 },
 : ,"total" 20.00
 : ,"currency" "USD"
 : "status" "processing"
 }]
 }
}

Exposing Resources Using HAL

To return HAL instead of regular JSON for a resource you can simply override the renderer

http://en.wikipedia.org/wiki/HATEOAS
http://tools.ietf.org/html/rfc4287
http://stateless.co/hal_specification.html
http://stateless.co/hal_specification.html

in with an instance of grails-app/conf/spring/resources.groovy

 (or for the XML variation):grails.rest.render.hal.HalJsonRenderer HalXmlRenderer

 import grails.rest.render.hal.*
beans = {
 halBookRenderer(HalJsonRenderer, rest.test.Book)
}

You will also need to update the acceptable response formats for the resource so that the
HAL format is included. Not doing so will result in a 406 - Not Acceptable response being
returned from the server.

This can be done by setting the attribute of the transformation:formats Resource

 import grails.rest.*

(uri= , formats=[, ,])@Resource '/books' 'json' 'xml' 'hal'
 {class Book

 ...
}

Or by updating the in the controller:responseFormats

 RestfulController {class BookController extends
 responseFormats = [, ,]static 'json' 'xml' 'hal'

 // ...
}

With the bean in place requesting the HAL content type will return HAL:

 curl -i -H :$ "Accept: application/hal+json" http //localhost:8080/books/1

HTTP/ OK1.1 200
: Apache-Coyote/Server 1.1

Content- : application/hal+json;charset=ISO- -Type 8859 1

{
 : {"_links"
 : {"self"
 : ,"href" "http://localhost:8080/books/1"
 : ,"hreflang" "en"
 : "type" "application/hal+json"
 }
 },
 : "title" "\"The Stand\""
}

To use HAL XML format simply change the renderer:

 import grails.rest.render.hal.*
beans = {
 halBookRenderer(HalXmlRenderer, rest.test.Book)
}

Rendering Collections Using HAL

To return HAL instead of regular JSON for a list of resources you can simply override the
renderer in with an instance of grails-app/conf/spring/resources.groovy

:grails.rest.render.hal.HalJsonCollectionRenderer

 import grails.rest.render.hal.*
beans = {
 halBookCollectionRenderer(HalJsonCollectionRenderer, rest.test.Book)
}

With the bean in place requesting the HAL content type will return HAL:

 curl -i -H :$ "Accept: application/hal+json" http //localhost:8080/books
HTTP/ OK1.1 200

: Apache-Coyote/Server 1.1
Content- : application/hal+json;charset=UTF-Type 8
Transfer- : chunkedEncoding

: Thu, Oct : : GMTDate 17 2013 02 34 14

{
 : {"_links"
 : {"self"
 : ,"href" "http://localhost:8080/books"
 : ,"hreflang" "en"
 : "type" "application/hal+json"
 }
 },
 : {"_embedded"
 : ["book"
 {
 : {"_links"
 : {"self"
 : ,"href" "http://localhost:8080/books/1"
 : ,"hreflang" "en"
 : "type" "application/hal+json"
 }
 },
 : "title" "The Stand"
 },
 {
 : {"_links"
 : {"self"
 : ,"href" "http://localhost:8080/books/2"
 : ,"hreflang" "en"
 : "type" "application/hal+json"
 }
 },
 : "title" "Infinite Jest"
 },
 {
 : {"_links"
 : {"self"
 : ,"href" "http://localhost:8080/books/3"
 : ,"hreflang" "en"
 : "type" "application/hal+json"
 }
 },
 : "title" "Walden"
 }
]
 }
}

Notice that the key associated with the list of objects in the rendered JSON is whichBook book

is derived from the type of objects in the collection, namely . In order to customize theBook

value of this key assign a value to the property on the collectionName HalJsonCollectionRenderer

bean as shown below:

 import grails.rest.render.hal.*
beans = {
 halBookCollectionRenderer(HalCollectionJsonRenderer, rest.test.Book) {
 collectionName = 'publications'
 }
}

With that in place the rendered HAL will look like the following:

 curl -i -H :$ "Accept: application/hal+json" http //localhost:8080/books
HTTP/ OK1.1 200

: Apache-Coyote/Server 1.1
Content- : application/hal+json;charset=UTF-Type 8
Transfer- : chunkedEncoding

: Thu, Oct : : GMTDate 17 2013 02 34 14

{
 : {"_links"
 : {"self"
 : ,"href" "http://localhost:8080/books"
 : ,"hreflang" "en"
 : "type" "application/hal+json"
 }
 },
 : {"_embedded"
 : ["publications"
 {
 : {"_links"
 : {"self"
 : ,"href" "http://localhost:8080/books/1"
 : ,"hreflang" "en"
 : "type" "application/hal+json"
 }
 },
 : "title" "The Stand"
 },
 {
 : {"_links"

 : {"self"
 : ,"href" "http://localhost:8080/books/2"
 : ,"hreflang" "en"
 : "type" "application/hal+json"
 }
 },
 : "title" "Infinite Jest"
 },
 {
 : {"_links"
 : {"self"
 : ,"href" "http://localhost:8080/books/3"
 : ,"hreflang" "en"
 : "type" "application/hal+json"
 }
 },
 : "title" "Walden"
 }
]
 }
}

Using Custom Media / Mime Types

If you wish to use a custom Mime Type then you first need to declare the Mime Types in
:grails-app/conf/application.groovy

grails.mime.types = [
 : ,all "*/*"
 : ,book "application/vnd.books.org.book+json"
 : ,bookList "application/vnd.books.org.booklist+json"
 ...
]

It is critical that place your new mime types after the 'all' Mime Type because if the
Content Type of the request cannot be established then the first entry in the map is used for
the response. If you have your new Mime Type at the top then Grails will always try and
send back your new Mime Type if the requested Mime Type cannot be established.

Then override the renderer to return HAL using the custom Mime Types:

 import grails.rest.render.hal.*
 import grails.web.mime.*

beans = {
 halBookRenderer(HalJsonRenderer, rest.test.Book, MimeType(, [:]))new "application/vnd.books.org.book+json" v "1.0"
 halBookListRenderer(HalJsonCollectionRenderer, rest.test.Book, MimeType(, [:]))new "application/vnd.books.org.booklist+json" v "1.0"
}

In the above example the first bean defines a HAL renderer for a single book instance that
returns a Mime Type of . The second bean defines theapplication/vnd.books.org.book+json

Mime Type used to render a collection of books (in this case
).application/vnd.books.org.booklist+json

 is an example of a media-range (application/vnd.books.org.booklist+json

 - Header Field Definitions). Thishttp://www.w3.org/Protocols/rfc2616/rfc2616.html
example uses entity (book) and operation (list) to form the media-range values but in
reality, it may not be necessary to create a separate Mime type for each operation. Further,
it may not be necessary to create Mime types at the entity level. See the section on
"Versioning REST resources" for further information about how to define your own Mime
types.

With this in place issuing a request for the new Mime Type returns the necessary HAL:

$ curl -i -H "Accept: application/vnd.books.org.book+json" http://localhost:8080/books/1

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: application/vnd.books.org.book+json;charset=ISO-8859-1

{
 "_links": {
 "self": {
 "href": "http://localhost:8080/books/1",

http://www.w3.org/Protocols/rfc2616/rfc2616.html

 "hreflang": "en",
 "type": "application/vnd.books.org.book+json"
 }
 },
 "title": "\"The Stand\""
}

Customizing Link Rendering

An important aspect of HATEOAS is the usage of links that describe the transitions the
client can use to interact with the REST API. By default the willHalJsonRenderer

automatically create links for you for associations and to the resource itself (using the "self"
relationship).

However you can customize link rendering using the method that is added to all domainlink

classes annotated with or any class annotated with .grails.rest.Resource grails.rest.Linkable

For example, the action can be modified as follows to provide a new link in theshow

resulting output:

 (book) {def show Book
 book.link : , : g.createLink(: , : , :[: book.id])rel 'publisher' href absolute true resource "publisher" params bookId
 respond book
}

Which will result in output such as:

{
 : {"_links"
 : {"self"
 : ,"href" "http://localhost:8080/books/1"
 : ,"hreflang" "en"
 : "type" "application/vnd.books.org.book+json"
 }
 : {"publisher"
 : ,"href" "http://localhost:8080/books/1/publisher"
 : "hreflang" "en"
 }
 },
 : "title" "\"The Stand\""
}

The method can be passed named arguments that match the properties of the link

 class.grails.rest.Link

9.10.2 Atom Support

Atom is another standard interchange format used to implement REST APIs. An example of
Atom output can be seen below:

<?xml version="1.0" encoding="utf-8"?>
 =<feed xmlns "http://www.w3.org/2005/Atom">

 Example Feed<title> </title>
 =<link href "http://example.org/"/>
 2003-12-13T18:30:02Z<updated> </updated>
 <author>
 John Doe<name> </name>
 </author>
 urn:uuid:60a76c80-d399-11d9-b93C-0003939e0af6<id> </id>

 <entry>
 Atom-Powered Robots Run Amok<title> </title>
 =<link href "http://example.org/2003/12/13/atom03"/>
 urn:uuid:1225c695-cfb8-4ebb-aaaa-80da344efa6a<id> </id>
 2003-12-13T18:30:02Z<updated> </updated>
 Some text.<summary> </summary>
 </entry>

</feed>

To use Atom rendering again simply define a custom renderer:

 import grails.rest.render.atom.*
beans = {

http://tools.ietf.org/html/rfc4287

 halBookRenderer(AtomRenderer, rest.test.Book)
 halBookListRenderer(AtomCollectionRenderer, rest.test.Book)
}

9.10.3 Vnd.Error Support

Vnd.Error is a standardised way of expressing an error response.

By default when a validation error occurs when attempting to POST new resources then the
errors object will be sent back allow with a 422 respond code:

 curl -i -H -H -X POST -d :$ "Accept: application/json" "Content-Type: application/json" "" http //localhost:8080/books

HTTP/ Unprocessable 1.1 422 Entity
: Apache-Coyote/Server 1.1

Content- : application/json;charset=ISO- -Type 8859 1

{
 : ["errors"
 {
 : ,"object" "rest.test.Book"
 : ,"field" "title"
 : ,"rejected-value" null
 : "message" "Property [title] of class [class rest.test.Book] cannot be null"
 }
]
}

If you wish to change the format to Vnd.Error then simply register
 bean in :grails.rest.render.errors.VndErrorJsonRenderer grails-app/conf/spring/resources.groovy

beans = {
 vndJsonErrorRenderer(grails.rest.render.errors.VndErrorJsonRenderer)
 // for Vnd.Error XML format
 vndXmlErrorRenderer(grails.rest.render.errors.VndErrorXmlRenderer)
}

Then if you alter the client request to accept Vnd.Error you get an appropriate response:

 curl -i -H -H -X POST -d :$ "Accept: application/vnd.error+json,application/json" "Content-Type: application/json" "" http //localhost:8080/books
HTTP/ OK1.1 200

: Apache-Coyote/Server 1.1
Content- : application/vnd.error+json;charset=ISO- -Type 8859 1

[
 {
 : "logref" "book.nullable,
 : ,"message" "Property [title] of class [class rest.test.Book] cannot be null"
 : {"_links"
 : {"resource"
 : "href" "http://localhost:8080/rest-test/books"
 }
 }
 }
]

9.11 Customizing Binding of Resources

The framework provides a sophisticated but simple mechanism for binding REST requests
to domain objects and command objects. One way to take advantage of this is to bind the

 property in a controller the of a domain class. Given the following XML asrequest properties

the body of the request, the action will create a new and assign "The Stand" tocreateBook Book

the property and "Stephen King" to the property.title authorName

<?xml version= encoding= ?>"1.0" "UTF-8"
<book>
 <title>The Stand</title>
 <authorName>Stephen King</authorName>
</book>

 {class BookController

 () {def createBook
 book = ()def new Book
 book.properties = request

https://github.com/blongden/vnd.error

 // ...
 }
}

Command objects will automatically be bound with the body of the request:

 {class BookController
 (BookCommand book) {def createBook

 // ...
 }
}

 {class BookCommand
 titleString
 authorNameString
}

If the command object type is a domain class and the root element of the XML document
contains an attribute, the value will be used to retrieve the corresponding persistentid id

instance from the database and then the rest of the document will be bound to the instance.
If no corresponding record is found in the database, the command object reference will be
null.

<?xml version= encoding= ?>"1.0" "UTF-8"
<book id= >"42"
 <title>Walden</title>
 <authorName>Henry David Thoreau</authorName>
</book>

 {class BookController
 (book) {def updateBook Book
 // The book will have been retrieved from the database and updated
 // by doing something like this:
 //
 // book == Book.get('42')
 // if(book != null) {
 // book.properties = request
 // }
 //
 // the code above represents what the framework will
 // have done. There is no need to write that code.

 // ...

 }
}

The data binding depends on an instance of the interface created by anDataBindingSource
instance of the interface. The specific implementation of DataBindingSourceCreator

 will be selected based on the of the request. SeveralDataBindingSourceCreator contentType

implementations are provided to handle common content types. The default
implementations will be fine for most use cases. The following table lists the content types
which are supported by the core framework and which DataBindingSourceCreator
implementations are used for each. All of the implementation classes are in the

 package.org.grails.databinding.bindingsource

Content Type(s) Bean Name DataBindingSourceCreator
Impl.

application/xml,
text/xml

xmlDataBindingSourceCreator XmlDataBindingSourceCreator

application/json,
text/json

jsonDataBindingSourceCreator JsonDataBindingSourceCreator

application/hal+json halJsonDataBindingSourceCreator HalJsonDataBindingSourceCreator

http://docs.grails.org/6.2.0/api/grails/databinding/DataBindingSource.html
http://docs.grails.org/6.2.0/api/org/grails/databinding/bindingsource/DataBindingSourceCreator.html

application/hal+xml halXmlDataBindingSourceCreator HalXmlDataBindingSourceCreator

In order to provide your own for any of those content types, write aDataBindingSourceCreator

class which implements and register an instance of that class in theDataBindingSourceCreator

Spring application context. If you are replacing one of the existing helpers, use the
corresponding bean name from above. If you are providing a helper for a content type other
than those accounted for by the core framework, the bean name may be anything that you
like but you should take care not to conflict with one of the bean names above.

The interface defines just 2 methods:DataBindingSourceCreator

 org.grails.databinding.bindingsourcepackage

 import grails.web.mime.MimeType
 import grails.databinding.DataBindingSource

/**
 * A factory for DataBindingSource instances
 *
 * @since 2.3
 * @see DataBindingSourceRegistry
 * @see DataBindingSource
 *
 */

 DataBindingSourceCreator {interface

 /**
 * `return All of the {`link MimeType} supported by this helper
 */
 MimeType getMimeTypes()[]

 /**
 * Creates a DataBindingSource suitable for binding bindingSource to bindingTarget
 *
 * @param mimeType a mime type
 * @param bindingTarget the target of the data binding
 * @param bindingSource the value being bound
 * @return a DataBindingSource
 */
 DataBindingSource createDataBindingSource(MimeType mimeType, bindingTarget, bindingSource)Object Object
}

AbstractRequestBodyDataBindingSourceCreator is an abstract class designed to be
extended to simplify writing custom classes. Classes which extend DataBindingSourceCreator

 need to implement a method named AbstractRequestbodyDatabindingSourceCreator

 which accepts an as an argument and returns a createBindingSource InputStream DataBindingSource

as well as implementing the method described in the getMimeTypes DataBindingSourceCreator

interface above. The argument to provides access to the bodyInputStream createBindingSource

of the request.

The code below shows a simple implementation.

src/main/groovy/com/demo/myapp/databinding/MyCustomDataBindingSourceCreator.groovy
 com.demo.myapp.databindingpackage

 import grails.web.mime.MimeType
 import grails.databinding.DataBindingSource
 ...import org databinding.SimpleMapDataBindingSource
 ...import org databinding.bindingsource.AbstractRequestBodyDataBindingSourceCreator

/**
 * A custom DataBindingSourceCreator capable of parsing key value pairs out of
 * a request body containing a comma separated list of key:value pairs like:
 *
 * name:Herman,age:99,town:STL
 *
 */

 AbstractRequestBodyDataBindingSourceCreator {class MyCustomDataBindingSourceCreator extends

 @Override
 MimeType getMimeTypes() {public []
 [MimeType()] MimeTypenew 'text/custom+demo+csv' as []
 }

 @Override

http://docs.grails.org/6.2.0/api/org/grails/web/databinding/bindingsource/AbstractRequestBodyDataBindingSourceCreator.html

 DataBindingSource createBindingSource(inputStream) {protected InputStream
 map = [:]def

 reader = (inputStream)def new InputStreamReader

 // this is an obviously naive parser and is intended
 // for demonstration purposes only.

 reader.eachLine { line ->
 keyValuePairs = line.split()def ','
 keyValuePairs.each { keyValuePair ->
 (keyValuePair?.trim()) {if
 keyValuePieces = keyValuePair.split()def ':'
 key = keyValuePieces[].trim()def 0
 value = keyValuePieces[].trim()def 1
 map<<key>> = value
 }
 }
 }

 // create and return a DataBindingSource which contains the parsed data
 SimpleMapDataBindingSource(map)new
 }
}

An instance of needs to be registered in the spring applicationMyCustomDataSourceCreator

context.

grails-app/conf/spring/resources.groovy
beans = {

 myCustomCreator com.demo.myapp.databinding.MyCustomDataBindingSourceCreator

 // ...
}

With that in place the framework will use the bean any time a myCustomCreator

 is needed to deal with a request which has a ofDataBindingSourceCreator contentType

"text/custom+demo+csv".

9.12 RSS and Atom

No direct support is provided for RSS or Atom within Grails. You could construct RSS or
ATOM feeds with the method’s XML capability.render

10 Asynchronous Programming
With modern hardware featuring multiple cores, many programming languages have been
adding asynchronous, parallel programming APIs, Groovy being no exception.

Popular asynchronous libraries include:

RxJava - http://reactivex.io

GPars - http://gpars.org

Reactor - https://projectreactor.io

By building on top of these various libraries the aim to simplifyAsync features of Grails
concurrent programming within the framework, include the concept of Promises, and a
unified event model.

In general, since the Reactive programming model is an evolving space, Grails tries to
provide generic support for integrating a range of asynchronous libraries and doesn’t

http://reactivex.io
http://gpars.org
https://projectreactor.io
https://async.grails.org

recommend any single library as they all have various advantages and disadvantages.

For more information on Asynchronous programming with Grails see the user guide for the
.Grails Asynchronous Framework

11 Validation
Grails validation capability is built on and data binding capabilities.Spring’s Validator API
However Grails takes this further and provides a unified way to define validation
"constraints" with its constraints mechanism.

Constraints in Grails are a way to declaratively specify validation rules. Most commonly
they are applied to , however and alsodomain classes URL Mappings Command Objects
support constraints.

11.1 Declaring Constraints

Within a domain class are defined with the constraints property that is assigned aconstraints
code block:

 {class User
 loginString
 passwordString
 emailString
 ageInteger

 constraints = {static
 ...
 }
}

You then use method calls that match the property name for which the constraint applies in
combination with named parameters to specify constraints:

 {class User
 ...

 static constraints = {
 login : .. , : , : size 5 15 blank false unique true
 password : .. , : size 5 15 blank false
 email : , : email true blank false
 age : min 18
 }
}

In this example we’ve declared that the property must be between 5 and 15 characterslogin

long, it cannot be blank and must be unique. We’ve also applied other constraints to the
, and properties.password email age

By default, all domain class properties are not nullable (i.e. they have an implicit nullable:
 constraint).false

A complete reference for the available constraints can be found in the Quick Reference
section under the Constraints heading.

Note that constraints are only evaluated once which may be relevant for a constraint that
relies on a value like an instance of .java.util.Date

 {class User
 ...

 static constraints = {

https://async.grails.org
https://docs.spring.io/spring/docs/5.3.33/javadoc-api/org/springframework/validation/package-summary.html

 // this Date object is created when the constraints are evaluated, not
 // each time an instance of the User class is validated.
 birthDate : ()max new Date
 }
}

A word of warning - referencing domain class properties from constraints

It’s very easy to attempt to reference instance variables from the static constraints block, but
this isn’t legal in Groovy (or Java). If you do so, you will get a forMissingPropertyException

your trouble. For example, you may try

 {class Response
 Survey survey
 Answer answer

 constraints = {static
 survey : blank false
 answer : , : survey.answersblank false inList
 }
}

See how the constraint references the instance property ? That won’t work.inList survey

Instead, use a custom :validator

 {class Response
 ...
 static constraints = {
 survey : blank false
 answer : , : { val, obj -> val obj.survey.answers }blank false validator in
 }
}

In this example, the argument to the custom validator is the domain that is beingobj instance
validated, so we can access its property and return a boolean to indicate whether thesurvey

new value for the property, , is valid.answer val

11.2 Validating Constraints

Validation Basics

Call the method to validate a domain class instance:validate

 user = User(params)def new

 (user.validate()) {if
 // do something with user
}

 {else
 user.errors.allErrors.each {
 println it
 }
}

The property on domain classes is an instance of the Spring interface. The errors Errors
 interface provides methods to navigate the validation errors and also retrieve theErrors

original values.

Validation Phases

Within Grails there are two phases of validation, the first one being whichdata binding
occurs when you bind request parameters onto an instance such as:

 user = User(params)def new

At this point you may already have errors in the property due to type conversion (sucherrors

as converting Strings to Dates). You can check these and obtain the original input value
using the API:Errors

https://docs.spring.io/spring/docs/5.3.33/javadoc-api/org/springframework/validation/Errors.html

 (user.hasErrors()) {if
 (user.errors.hasFieldErrors()) {if "login"
 println user.errors.getFieldError().rejectedValue"login"
 }
}

The second phase of validation happens when you call or . This is when Grailsvalidate save
will validate the bound values against the you defined. For example, by defaultconstraints
the method calls before executing, allowing you to write code like:save validate

 (user.save()) {if
 userreturn
}

 {else
 user.errors.allErrors.each {
 println it
 }
}

11.3 Sharing Constraints Between Classes

A common pattern in Grails is to use for validating user-submitted dataCommand Objects
and then copy the properties of the command object to the relevant domain classes. This
often means that your command objects and domain classes share properties and their
constraints. You could manually copy and paste the constraints between the two, but that’s a
very error-prone approach. Instead, make use of Grails' global constraints and import
mechanism.

Global Constraints

In addition to defining constraints in domain classes, command objects and other
, you can also define them in :validateable classes grails-app/conf/runtime.groovy

grails.gorm.default.constraints = {
 (: , : ..)'*' nullable true size 1 20
 myShared(: , :)nullable false blank false
}

These constraints are not attached to any particular classes, but they can be easily referenced
from any validateable class:

 {class User
 ...

 static constraints = {
 login : shared "myShared"
 }
}

Note the use of the argument, whose value is the name of one of the constraintsshared

defined in . Despite the name of the configuration setting, yougrails.gorm.default.constraints

can reference these shared constraints from any validateable class, such as command
objects.

The '*' constraint is a special case: it means that the associated constraints ('nullable' and
'size' in the above example) will be applied to all properties in all validateable classes. These
defaults can be overridden by the constraints declared in a validateable class.

Importing Constraints

Grails 2 introduced an alternative approach to sharing constraints that allows you to import a
set of constraints from one class into another.

Let’s say you have a domain class like so:

 {class User
 firstNameString
 lastNameString
 passwordHashString

 constraints = {static
 firstName : , : blank false nullable false
 lastName : , : blank false nullable false
 passwordHash : , : blank false nullable false
 }
}

You then want to create a command object, , that shares some of the properties ofUserCommand

the domain class and the corresponding constraints. You do this with the importFrom()
method:

 {class UserCommand
 firstNameString
 lastNameString
 passwordString
 confirmPasswordString

 constraints = {static
 importFrom User

 password : , : blank false nullable false
 confirmPassword : , : blank false nullable false
 }
}

This will import all the constraints from the domain class and apply them to .User UserCommand

The import will ignore any constraints in the source class () that don’t haveUser

corresponding properties in the importing class (). In the above example, only theUserCommand

'firstName' and 'lastName' constraints will be imported into because those are theUserCommand

only properties shared by the two classes.

If you want more control over which constraints are imported, use the and include exclude

arguments. Both of these accept a list of simple or regular expression strings that are
matched against the property names in the source constraints. So for example, if you only
wanted to import the 'lastName' constraint you would use:

...
static constraints = {
 importFrom User, : []include "lastName"
 ...
}

or if you wanted all constraints that ended with 'Name':

...
static constraints = {
 importFrom User, : []include /.*Name/
 ...
}

Of course, does the reverse, specifying which constraints should be imported.exclude not

11.4 Validation on the Client

Displaying Errors

Typically if you get a validation error you redirect back to the view for rendering. Once
there you need some way of displaying errors. Grails supports a rich set of tags for dealing
with errors. To render the errors as a list you can use :renderErrors

 = <g:renderErrors bean "${user}" />

If you need more control you can use and :hasErrors eachError

https://gsp.grails.org/6.2.1/ref/Tags/renderErrors.html
https://gsp.grails.org/6.2.1/ref/Tags/hasErrors.html
https://gsp.grails.org/6.2.1/ref/Tags/eachError.html

 =<g:hasErrors bean "${user}">

 = =<g:eachError var "err" bean "${user}">
 ${err}
 </g:eachError>

</g:hasErrors>

Highlighting Errors

It is often useful to highlight using a red box or some indicator when a field has been
incorrectly input. This can also be done with the by invoking it as a method. ForhasErrors
example:

 =<div class 'value ${hasErrors(bean:user,field:'login','errors')}'>
 = = =<input type "text" name "login" value "${fieldValue(bean:user,field:'login')}"/>
</div>

This code checks if the field of the bean has any errors and if so it adds an login user errors

CSS class to the , allowing you to use CSS rules to highlight the .div div

Retrieving Input Values

Each error is actually an instance of the class in Spring, which retains the originalFieldError
input value within it. This is useful as you can use the error object to restore the value input
by the user using the tag:fieldValue

 = = =<input type "text" name "login" value "${fieldValue(bean:user,field:'login')}"/>

This code will check for an existing in the bean and if there is obtain theFieldError User

originally input value for the field.login

11.5 Validation and Internationalization

Another important thing to note about errors in Grails is that error messages are not hard
coded anywhere. The class in Spring resolves messages from message bundlesFieldError
using Grails' support.i18n

Constraints and Message Codes

The codes themselves are dictated by a convention. For example consider the constraints we
looked at earlier:

 com.mycompany.myapppackage

 {class User
 ...

 static constraints = {
 login : .. , : , : size 5 15 blank false unique true
 password : .. , : size 5 15 blank false
 email : , : email true blank false
 age : min 18
 }
}

If a constraint is violated, Grails looks by convention for a message code:

Constraint Error Code

blank className.propertyName.blank

https://gsp.grails.org/6.2.1/ref/Tags/hasErrors.html
https://docs.spring.io/spring/docs/5.3.33/javadoc-api/org/springframework/validation/FieldError.html
https://docs.spring.io/spring/docs/5.3.33/javadoc-api/org/springframework/validation/FieldError.html

creditCard className.propertyName.creditCard.invalid

email className.propertyName.email.invalid

inList className.propertyName.not.inList

matches className.propertyName.matches.invalid

max className.propertyName.max.exceeded

maxSize className.propertyName.maxSize.exceeded

min className.propertyName.min.notmet

minSize className.propertyName.minSize.notmet

notEqual className.propertyName.notEqual

nullable className.propertyName.nullable

range className.propertyName.range.toosmall or
className.propertyName.range.toobig

size className.propertyName.size.toosmall or
className.propertyName.size.toobig

unique className.propertyName.unique

url className.propertyName.url.invalid

validator classname.propertyName. + String returned by
Closure

In the case of the constraint this would be so you would need a messageblank user.login.blank

such as the following in your file:grails-app/i18n/messages.properties

user.login.blank=Your login name must be specified!

The class name is looked for both with and without a package, with the packaged version

taking precedence. So for example, will be used before com.mycompany.myapp.User.login.blank

. This allows for cases where your domain class message codes clash with auser.login.blank

plugin’s.

For a reference on what codes are for which constraints refer to the reference guide for each
constraint (e.g.).blank

Displaying Messages

The tag will automatically look up messages for you using the tag. IfrenderErrors message
you need more control of rendering you can handle this yourself:

 =<g:hasErrors bean "${user}">

 = =<g:eachError var "err" bean "${user}">
 = <g:message error "${err}" />
 </g:eachError>

</g:hasErrors>

In this example within the body of the tag we use the tag in combinationeachError message
with its argument to read the message for the given error.error

11.6 Applying Validation to Other Classes

Domain classes and support validation by default. Other classes may beCommand Objects
made validateable by defining the static property in the class (as described above)constraints

and then telling the framework about them. It is important that the application register the
validateable classes with the framework. Simply defining the property is notconstraints

sufficient.

The Validateable Trait

Classes which define the static property and implement the trait willconstraints Validateable
be validateable. Consider this example:

src/main/groovy/com/mycompany/myapp/User.groovy
 com.mycompany.myapppackage

 import grails.validation.Validateable

 Validateable {class User implements
 ...

 static constraints = {
 login : .. , : , : size 5 15 blank false unique true
 password : .. , : size 5 15 blank false
 email : , : email true blank false
 age : min 18
 }
}

Programmatic access

Accessing the constraints on a validateable object is slightly different. You can access a
command object’s constraints programmatically in another context by accessing the

 static property of the class. That property is an instance of constraintsMap Map<String,

>ConstrainedProperty

In the example above, accessing would yield , while User.constraintsMap.login.blank false

 would yield .User.constraintsMap.login.unique true

https://gsp.grails.org/6.2.1/ref/Tags/renderErrors.html
https://gsp.grails.org/6.2.1/ref/Tags/message.html
https://gsp.grails.org/6.2.1/ref/Tags/eachError.html
https://gsp.grails.org/6.2.1/ref/Tags/message.html
http://docs.grails.org/6.2.0/api/grails/validation/Validateable.html
http://docs.grails.org/6.2.0/api/grails/validation/ConstrainedProperty.html

12 The Service Layer
Grails defines the notion of a service layer. The Grails team discourages the embedding of
core application logic inside controllers, as it does not promote reuse and a clean separation
of concerns.

Services in Grails are the place to put the majority of the logic in your application, leaving
controllers responsible for handling request flow with redirects and so on.

Creating a Service

You can create a Grails service by running the command from the root ofcreate-service
your project in a terminal window:

grails create-service helloworld.simple

If no package is specified with the create-service script, Grails automatically uses the
 defined in as the package name.grails.defaultPackage grails-app/conf/application.yml

The above example will create a service at the location
. A service’s name ends with the convention grails-app/services/helloworld/SimpleService.groovy

, other than that a service is a plain Groovy class:Service

 helloworldpackage

 {class SimpleService
}

12.1 Declarative Transactions

Declarative Transactions

Services are typically involved with coordinating logic between , and hencedomain classes
often involved with persistence that spans large operations. Given the nature of services,
they frequently require transactional behaviour. You can use programmatic transactions with
the method, however this is repetitive and doesn’t fully leverage the powerwithTransaction
of Spring’s underlying transaction abstraction.

Services enable transaction demarcation, which is a declarative way of defining which
methods are to be made transactional. To enable transactions on a service use the

 transform:Transactional

 import grails.gorm.transactions.*

@Transactional
 {class CountryService

}

The result is that all methods are wrapped in a transaction and automatic rollback occurs if a
method throws an exception (both Checked or Runtime exceptions) or an Error. The
propagation level of the transaction is by default set to .PROPAGATION_REQUIRED

Version Grails 3.2.0 was the first version to use GORM 6 by default. Checked exceptions
did not roll back transactions before GORM 6. Only a method which threw a runtime
exception (i.e. one that extends RuntimeException) rollbacked a transaction.

Warning: is the way that declarative transactions work. Youdependency injection only
will not get a transactional service if you use the operator such as new new BookService()

https://docs.spring.io/spring/docs/5.3.33/javadoc-api/org/springframework/transaction/TransactionDefinition.html#PROPAGATION_REQUIRED

The Transactional annotation vs the transactional property

In versions of Grails prior to Grails 3.1, Grails created Spring proxies and used the
 property to enable and disable proxy creation. These proxies are disabled bytransactional

default in applications created with Grails 3.1 and above in favor of the @Transactional
transformation.

For versions of Grails 3.1.x and 3.2.x, if you wish to renable this feature (not recommended)
then you must set to true or remove the configuration in grails.spring.transactionManagement

 or .grails-app/conf/application.yml grails-app/conf/application.groovy

In Grails 3.3.x Spring proxies for transaction management has been dropped completely,
and you must use Grails' AST transforms. In Grails 3.3.x, if you wish to continue to use
Spring proxies for transaction management you will have to configure them manually, using
the appropriate Spring configuration.

In addition, prior to Grails 3.1 services were transactional by default, as of Grails 3.1 they
are only transactional if the transformation is applied.@Transactional

Custom Transaction Configuration

Grails also provides and annotations for cases where you need@Transactional @NotTransactional

more fine-grained control over transactions at a per-method level or need to specify an
alternative propagation level. For example, the annotation can be used to@NotTransactional

mark a particular method to be skipped when a class is annotated with .@Transactional

Annotating a service method with disables the default Grails transactionalTransactional

behavior for that service (in the same way that adding does) so if youtransactional=false

use any annotations you must annotate all methods that require transactions.

In this example uses a read-only transaction, uses a default read-writelistBooks updateBook

transaction, and is not transactional (probably not a good idea given its name).deleteBook

 import grails.gorm.transactions.Transactional

 {class BookService

 (readOnly =)@Transactional true
 () {def listBooks
 .list()Book
 }

 @Transactional
 () {def updateBook
 // ...
 }

 () {def deleteBook
 // ...
 }
}

You can also annotate the class to define the default transaction behavior for the whole
service, and then override that default per-method:

 import grails.gorm.transactions.Transactional

@Transactional
 {class BookService

 () {def listBooks
 .list()Book
 }

 () {def updateBook
 // ...
 }

 () {def deleteBook
 // ...
 }
}

This version defaults to all methods being read-write transactional (due to the class-level
annotation), but the method overrides this to use a read-only transaction:listBooks

 import grails.gorm.transactions.Transactional

@Transactional
 {class BookService

 (readOnly =)@Transactional true
 () {def listBooks
 .list()Book
 }

 () {def updateBook
 // ...
 }

 () {def deleteBook
 // ...
 }
}

Although and aren’t annotated in this example, they inherit theupdateBook deleteBook

configuration from the class-level annotation.

For more information refer to the section of the Spring user guide on .Using @Transactional

Unlike Spring you do not need any prior configuration to use ; just specify theTransactional

annotation as needed and Grails will detect them up automatically.

Transaction status

An instance of is available by default in Grails transactional serviceTransactionStatus
methods.

Example:

 import grails.gorm.transactions.Transactional

@Transactional
 {class BookService

 () {def deleteBook
 transactionStatus.setRollbackOnly()
 }
}

12.1.1 Transactions and Multi-DataSources

Given two domain classes such as:

 {class Movie
 titleString
}

 {class Book
 titleString

 mapping = {static
 datasource 'books'
 }
}

You can supply the desired data source to or annotations.@Transactional @ReadOnly

 import grails.gorm.transactions.ReadOnly
 import grails.gorm.transactions.Transactional
 import groovy.transform.CompileStatic

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/transaction.html#transaction-declarative-annotations
https://docs.spring.io/spring/docs/5.3.33/javadoc-api/org/springframework/transaction/TransactionStatus.html

@CompileStatic
 {class BookService

 ()@ReadOnly 'books'
 < > findAll() {List Book
 .where {}.findAll()Book
 }

 ()@Transactional 'books'
 save(title) {Book String
 book = (: title)Book new Book title
 book.save()
 book
 }
}

@CompileStatic
 {class MovieService

 @ReadOnly
 <Movie> findAll() {List
 Movie.where {}.findAll()
 }
}

12.1.2 Transactions Rollback and the Session

Understanding Transactions and the Hibernate Session

When using transactions there are important considerations you must take into account with
regards to how the underlying persistence session is handled by Hibernate. When a
transaction is rolled back the Hibernate session used by GORM is cleared. This means any
objects within the session become detached and accessing uninitialized lazy-loaded
collections will lead to a .LazyInitializationException

To understand why it is important that the Hibernate session is cleared. Consider the
following example:

 {class Author
 nameString
 ageInteger

 hasMany = [:]static books Book
}

If you were to save two authors using consecutive transactions as follows:

Author.withTransaction { status ->
 Author(: , :).save()new name "Stephen King" age 40
 status.setRollbackOnly()
}

Author.withTransaction { status ->
 Author(: , :).save()new name "Stephen King" age 40
}

Only the second author would be saved since the first transaction rolls back the author save()
by clearing the Hibernate session. If the Hibernate session were not cleared then both author
instances would be persisted and it would lead to very unexpected results.

It can, however, be frustrating to get a due to the session beingLazyInitializationException

cleared.

For example, consider the following example:

 {class AuthorService

 updateAge(id, age) {void int
 author = Author.get(id)def
 author.age = age
 (author.isTooOld()) {if
 AuthorException(, author)throw new "too old"

 }
 }
}

 {class AuthorController

 authorServicedef

 () {def updateAge
 {try
 authorService.updateAge(params.id, params.int())"age"
 }
 (e) {catch
 render "Author books e.author.books${ }"
 }
 }
}

In the above example the transaction will be rolled back if the age of the age exceedsAuthor

the maximum value defined in the method by throwing an . The isTooOld() AuthorException

 references the author but when the association is accessed a AuthorException books

 will be thrown because the underlying Hibernate session has beenLazyInitializationException

cleared.

To solve this problem you have a number of options. One is to ensure you query eagerly to
get the data you will need:

 {class AuthorService
 ...
 void updateAge(id, age) {int
 author = Author.findById(id, [:[:]])def fetch books "eager"
 ...

In this example the association will be queried when retrieving the .books Author

This is the optimal solution as it requires fewer queries than the following suggested
solutions.

Another solution is to redirect the request after a transaction rollback:

 {class AuthorController

 AuthorService authorService

 () {def updateAge
 {try
 authorService.updateAge(params.id, params.int())"age"
 }
 (e) {catch
 flash.message = "Can't update age"
 redirect : , :params.idaction "show" id
 }
 }
}

In this case a new request will deal with retrieving the again. And, finally a thirdAuthor

solution is to retrieve the data for the again to make sure the session remains in theAuthor

correct state:

 {class AuthorController

 authorServicedef

 () {def updateAge
 {try
 authorService.updateAge(params.id, params.int())"age"
 }
 (e) {catch
 author = Author.read(params.id)def
 render "Author books author.books${ }"
 }
 }
}

Validation Errors and Rollback

A common use case is to rollback a transaction if there are validation errors. For example
consider this service:

 import grails.validation.ValidationException

 {class AuthorService

 updateAge(id, age) {void int
 author = Author.get(id)def
 author.age = age
 (!author.validate()) {if
 ValidationException(, author.errors)throw new "Author is not valid"
 }
 }
}

To re-render the same view that a transaction was rolled back in you can re-associate the
errors with a refreshed instance before rendering:

 import grails.validation.ValidationException

 {class AuthorController

 authorServicedef

 () {def updateAge
 {try
 authorService.updateAge(params.id, params.int())"age"
 }
 (ValidationException e) {catch
 author = Author.read(params.id)def
 author.errors = e.errors
 render : , : [:author]view "edit" model author
 }
 }
}

12.2 Scoped Services

By default, access to service methods is not synchronised, so nothing prevents concurrent
execution of those methods. In fact, because the service is a singleton and may be used
concurrently, you should be very careful about storing state in a service. Or take the easy
(and better) road and never store state in a service.

You can change this behaviour by placing a service in a particular scope. The supported
scopes are:

prototype - A new service is created every time it is injected into another class

request - A new service will be created per request

flash - A new service will be created for the current and next request only

flow - In web flows the service will exist for the scope of the flow

conversation - In web flows the service will exist for the scope of the conversation. ie a root
flow and its sub flows

session - A service is created for the scope of a user session

singleton (default) - Only one instance of the service ever exists

If your service is , or scoped it must implement flash flow conversation java.io.Serializable

and can only be used in the context of a Web Flow.

To enable one of the scopes, add a static scope property to your class whose value is one of
the above, for example

 scope = static "flow"

Upgrading

Starting with Grails 2.3, new applications are generated with configuration that defaults the
scope of controllers to . If controllers interact with scopedsingleton singleton prototype

services, the services effectively behave as per-controller singletons. If non-singleton
services are required, controller scope should be changed as well.

See in the user guide for more information.Controllers and Scopes

Lazy initialization

You can also configure whether the service is lazily initialized. By default, this is set to ,true

but you can disable this and make initialization eager with the property:lazyInit

 lazyInit = static false

12.3 Dependency Injection and Services

Dependency Injection Basics

A key aspect of Grails services is the ability to use 's dependencySpring Framework
injection features. Grails supports "dependency injection by convention". In other words,
you can use the property name representation of the class name of a service to automatically
inject them into controllers, tag libraries, and so on.

As an example, given a service called , if you define a property called BookService bookService

in a controller as follows:

 {class BookController
 bookServicedef
 ...
}

In this case, the Spring container will automatically inject an instance of that service based
on its configured scope. All dependency injection is done by name. You can also specify the
type as follows:

 {class AuthorService
 BookService bookService
}

NOTE: Normally the property name is generated by lower casing the first letter of the
type. For example, an instance of the class would map to a property named BookService

.bookService

To be consistent with standard JavaBean conventions, if the first 2 letters of the class name
are upper case, the property name is the same as the class name. For example, the property
name of the class would be , not or JDBCHelperService JDBCHelperService jDBCHelperService

.jdbcHelperService

See section 8.8 of the JavaBean specification for more information on de-capitalization
rules.

Only the top level object is subjected to injection as traversing all nested objects to
perform injection would be a performance issue.

http://www.springframework.org/

Be careful when injecting the non-default datasources. For example, using this config:

:dataSources
 :dataSource
 : pooled true
 : jmxExport true

 secondary:
 : pooled true
 : jmxExport true

You can inject the primary like you would expect:dataSource

 {class BookSqlService

 def dataSource
}

But to inject the datasource, you have to use Spring’s injection or secondary Autowired

.resources.groovy

 {class BookSqlSecondaryService

 @Autowired
 ()@Qualifier 'dataSource_secondary'
 def dataSource2
}

Dependency Injection and Services

You can inject services in other services with the same technique. If you had an AuthorService
that needed to use the , declaring the as follows would allow that:BookService AuthorService

 {class AuthorService
 bookServicedef
}

Dependency Injection and Domain Classes / Tag Libraries

You can even inject services into domain classes and tag libraries, which can aid in the
development of rich domain models and views:

 {class Book
 ...
 def bookService

 () {def buyBook
 bookService.buyBook()this
 }
}

Since Grails 3.2.8 this is not enabled by default. If you want to enable it again, take a look
at Spring Autowiring of Domain Instance

Service Bean Names

The default bean name which is associated with a service can be problematic if there are
multiple services with the same name defined in different packages. For example consider
the situation where an application defines a service class named andcom.demo.ReportingService

the application uses a plugin named and that plugin provides a serviceReportingUtilities

class named .com.reporting.util.ReportingService

The default bean name for each of those would be so they would conflictreportingService

with each other. Grails manages this by changing the default bean name for services
provided by plugins by prefixing the bean name with the plugin name.

In the scenario described above the bean would be an instance of the reportingService

http://docs.grails.org/latest/ref/Domain%20Classes/Usage.html#_spring_autowiring_of_domain_instances

 class defined in the application and the com.demo.ReportingService

 bean would be an instance of the reportingUtilitiesReportingService

 class provided by the plugin.com.reporting.util.ReportingService ReportingUtilities

For all service beans provided by plugins, if there are no other services with the same name
within the application or other plugins in the application then a bean alias will be created
which does not include the plugin name and that alias points to the bean referred to by the
name that does include the plugin name prefix.

For example, if the plugin provides a service named ReportingUtilities

 and there is no other in the application or in anycom.reporting.util.AuthorService AuthorService

of the plugins that the application is using then there will be a bean named
 which is an instance of this reportingUtilitiesAuthorService com.reporting.util.AuthorService

class and there will be a bean alias defined in the context named which pointsauthorService

to that same bean.

13 Static Type Checking And Compilation
Groovy is a dynamic language and by default Groovy uses a dynamic dispatch mechanism
to carry out method calls and property access. This dynamic dispatch mechanism provides a
lot of flexibility and power to the language. For example, it is possible to dynamically add
methods to classes at runtime and it is possible to dynamically replace existing methods at
runtime. Features like these are important and provide a lot of power to the language.
However, there are times when you may want to disable this dynamic dispatch in favor of a
more static dispatch mechanism and Groovy provides a way to do that. The way to tell the
Groovy compiler that a particular class should compiled statically is to mark the class with
the annotation as shown below.groovy.transform.CompileStatic

 import groovy.transform.CompileStatic

@CompileStatic
 {class MyClass

 // this class will be statically compiled...

}

See for more details on how worksthese notes on Groovy static compilation CompileStatic

and why you might want to use it.

One limitation of using is that when you use it you give up access to the powerCompileStatic

and flexibility offered by dynamic dispatch. For example, in Grails you would not be able to
invoke a GORM dynamic finder from a class that is marked with because theCompileStatic

compiler cannot verify that the dynamic finder method exists, because it doesn’t exist at
compile time. It may be that you want to take advantage of Groovy’s static compilation
benefits without giving up access to dynamic dispatch for Grails specific things like
dynamic finders and this is where comes in. grails.compiler.GrailsCompileStatic

 behaves just like but is aware of certain Grails features andGrailsCompileStatic CompileStatic

allows access to those specific features to be accessed dynamically.

13.1 The GrailsCompileStatic Annotation

GrailsCompileStatic

The annotation may be applied to a class or methods within a class.GrailsCompileStatic

 import grails.compiler.GrailsCompileStatic

@GrailsCompileStatic
 {class SomeClass

http://docs.groovy-lang.org/docs/latest/html/api/groovy/transform/CompileStatic.html
http://docs.groovy-lang.org/latest/html/documentation/#_static_compilation
http://docs.grails.org/6.2.0/api/grails/compiler/GrailsCompileStatic.html

 // all of the code in this class will be statically compiled

 () {def methodOne
 // ...
 }

 () {def methodTwo
 // ...
 }

 () {def methodThree
 // ...
 }
}

 import grails.compiler.GrailsCompileStatic

 {class SomeClass

 // methodOne and methodThree will be statically compiled
 // methodTwo will be dynamically compiled

 @GrailsCompileStatic
 () {def methodOne
 // ...
 }

 () {def methodTwo
 // ...
 }

 @GrailsCompileStatic
 () {def methodThree
 // ...
 }
}

It is possible to mark a class with and exclude specific methods byGrailsCompileStatic

marking them with and specifying that the type checking should beGrailsCompileStatic

skipped for that particular method as shown below.

 import grails.compiler.GrailsCompileStatic
 import groovy.transform.TypeCheckingMode

@GrailsCompileStatic
 {class SomeClass

 // methodOne and methodThree will be statically compiled
 // methodTwo will be dynamically compiled

 () {def methodOne
 // ...
 }

 (TypeCheckingMode.SKIP)@GrailsCompileStatic
 () {def methodTwo
 // ...
 }

 () {def methodThree
 // ...
 }
}

Code that is marked with will all be statically compiled except for GrailsGrailsCompileStatic

specific interactions that cannot be statically compiled but that canGrailsCompileStatic

identify as permissible for dynamic dispatch. These include things like invoking dynamic
finders and DSL code in configuration blocks like constraints and mapping closures in
domain classes.

Care must be taken when deciding to statically compile code. There are benefits associated
with static compilation but in order to take advantage of those benefits you are giving up the
power and flexibility of dynamic dispatch. For example if code is statically compiled it
cannot take advantage of runtime metaprogramming enhancements which may be provided
by plugins.

13.2 The GrailsTypeChecked Annotation

1.

2.

GrailsTypeChecked

The annotation works a lot like the grails.compiler.GrailsTypeChecked GrailsCompileStatic

annotation except that it only enables static type checking, not static compilation. This
affords compile time feedback for expressions which cannot be validated statically at
compile time while still leaving dynamic dispatch in place for the class.

 import grails.compiler.GrailsTypeChecked

@GrailsTypeChecked
 {class SomeClass

 // all of the code in this class will be statically type
 // checked and will be dynamically dispatched at runtime

 () {def methodOne
 // ...
 }

 () {def methodTwo
 // ...
 }

 () {def methodThree
 // ...
 }
}

14 Testing
Automated testing is a critical aspect of Grails development. Grails provides a rich set of
testing capabilities, ranging from low-level unit testing to high-level functional tests. This
comprehensive guide explores these diverse testing features in detail.

Automatic Test Generation

When you use the and commands, Grails automatically generates or create- generate- unit

 tests. For example, running the command as shown below:integration create-controller

grails create-controller com.example.simple

Grails generates a controller at grails-app/controllers/com/example/SimpleController.groovy
and a corresponding unit test at src/test/groovy/com/example/SimpleControllerSpec.groovy.
It’s important to note that Grails only creates the test structure; you need to implement the
test logic.

Running Tests

To execute tests, you can use the Gradle check task:

./gradlew check

This command will execute all the Unit tests in src/main/groovy/com/example/ directory.

Targeting Tests

To selectively target tests for execution, you have several options:

To run all tests for a controller named SimpleController, use this command:

./gradlew check --tests SimpleController

To test all classes ending in Controller, you can employ wildcards:

http://docs.grails.org/6.2.0/api/grails/compiler/GrailsTypeChecked.html

2.

3.

4.

5.

6.

./gradlew check --tests *Controller

To specify package names:

./gradlew check --tests some.org.*Controller

To run all tests in a package:

./gradlew check --tests some.org.*

To run all tests in a package, including subpackages:

./gradlew check --tests some.org.**.*

To target specific test methods:

./gradlew check --tests SimpleController.testLogin

You can combine multiple patterns as needed:

./gradlew check --tests some.org.* SimpleController.testLogin BookController

You might need to specify the package name before the class name and append "Spec" to
it. For instance, to run the test for the ProductController, use ./gradlew test
*.ProductControllerSpec. You can also use the star wildcard if you want to avoid typing
the entire package hierarchy.

Debugging

To debug your tests using a remote debugger, you can add after in any--debug-jvm ./gradlew

commands, like so:

./gradlew check --debug-jvm

This will open the default Java remote debugging port, 5005, allowing you to attach a
remote debugger from your code editor or integrated development environment.

Targeting Test Phases / Running Unit & Integration Separately

To execute "unit" tests, use this command:

./gradlew test

For "integration" tests, you would run:

./gradlew integrationTest

Targeting Tests When Using Phases

You can combine test and phase targeting:

./gradlew test some.org.**.*

This command will run all tests in the unit phase within the some.org package or its
subpackages. For more detailed information, it’s recommended to consult the Gradle
documentation on .Testing in Java & JVM projects

14.1 Unit Testing

https://docs.gradle.org/current/userguide/java_testing.html

Unit testing are tests at the "unit" level. In other words you are testing individual methods or
blocks of code without consideration for surrounding infrastructure. Unit tests are typically
run without the presence of physical resources that involve I/O such as databases, socket
connections or files. This is to ensure they run as quick as possible since quick feedback is
important.

Since Grails 3.3, the is used for all unit tests. ThisGrails Testing Support Framework
support provides a set of traits. An example hello world test can be seen below:

 import spock.lang.Specification
 import grails.testing.web.controllers.ControllerUnitTest

 Specification ControllerUnitTest<HelloController> {class HelloControllerTests extends implements

 () {void "Test message action"
 :when "The message action is invoked"
 controller.message()

 :then "Hello is returned"
 response.text == 'Hello'
 }
}

For more information on writing tests with Grails Testing Support see the dedicated
.documentation

Versions of Grails below 3.2 used the which was based on theGrails Test Mixin Framework
 AST transformation. This library has been superceded by the simpler and more@TestMixin

IDE friendly trait based implementation.

14.2 Integration Testing

Integration tests differ from unit tests in that you have full access to the Grails environment
within the test. You can create an integration test using the command:create-integration-test

 grails create-integration-test Example$

The above command will create a new integration test at the location
.src/integration-test/groovy/<PACKAGE>/ExampleSpec.groovy

Grails uses the test environment for integration tests and loads the application prior to the
first test run. All tests use the same application state.

Transactions

Integration test methods run inside their own database transaction by default, which is rolled
back at the end of each test method. This means that data saved during a test is not persisted
to the database (which is shared across all tests). The default generated integration test
template includes the annotation:Rollback

 import grails.testing.mixin.integration.Integration
 import grails.gorm.transactions.*
 import spock.lang.*

@Integration
@Rollback

 Specification {class ExampleSpec extends

 ...

 void () {"test something"
 :expect "fix me"
 == true false
 }
}

https://testing.grails.org
https://testing.grails.org
https://testing.grails.org
https://grails-plugins.github.io/grails-test-mixin-plugin/latest/guide/index.html
http://docs.grails.org/6.2.0/api/grails/transaction/Rollback.html

The annotation ensures that each test method runs in a transaction that is rolledRollback

back. Generally this is desirable because you do not want your tests depending on order or
application state.

In Grails 3.0 tests rely on annotation to bind the session ingrails.gorm.transactions.Rollback

integration tests. Though each test method transaction is rolled back, the method usessetup()

a separate transaction that is not rolled back. Data will persist to the database and will need
to be cleaned up manually if sets up data and persists them as shown in the belowsetup()

sample:

 import grails.testing.mixin.integration.Integration
 import grails.gorm.transactions.*
 import spock.lang.*

@Integration
@Rollback

 Specification {class BookSpec extends

 setup() {void
 // Below line would persist and not roll back
 (:).save(:)new Book name 'Grails in Action' flush true
 }

 () {void "test something"
 :expect
 .count() == Book 1
 }
}

To preload the database and automatically roll back setup logic, any persistence operations
need to be called from the test method itself so that they can run within the test method’s
rolled back transaction. Similar to usage of the method shown below whichsetupData()

creates a record in database and after running other test will be rolled back:

 import grails.testing.mixin.integration.Integration
 import grails.gorm.transactions.*
 import spock.lang.*

@Integration
@Rollback

 Specification {class BookSpec extends

 setupData() {void
 // Below line would roll back
 (:).save(:)new Book name 'Grails in Action' flush true
 }

 () {void "test something"
 :given
 setupData()

 :expect
 .count() == Book 1
 }
}

Using Spring’s Rollback annotation

Another transactional approach could be to use Spring’s instead.@Rollback

 import grails.testing.mixin.integration.Integration
 import org.springframework.test.annotation.Rollback
 import spock.lang.*

@Integration
@Rollback

 Specification {class BookSpec extends

 setup() {void
 (:).save(:)new Book name 'Grails in Action' flush true
 }

 () {void "test something"
 :expect
 .count() == Book 1
 }
}

It isn’t possible to make behave the same way as Spring’sgrails.gorm.transactions.Rollback

https://docs.spring.io/spring/docs/5.3.33/javadoc-api/org/springframework/test/annotation/Rollback.html

Rollback annotation because transforms the byte code ofgrails.gorm.transactions.Rollback

the class, eliminating the need for a proxy (which Spring’s version requires). This has the
downside that you cannot implement it differently for different cases (as Spring does for
testing).

DirtiesContext

If you do have a series of tests that will share state you can remove the and the lastRollback

test in the suite should feature the annotation which will shutdown theDirtiesContext
environment and restart it fresh (note that this will have an impact on test run times).

Autowiring

To obtain a reference to a bean you can use the annotation. For example:Autowired

...
import org.springframework.beans.factory.annotation.*

@Integration
@Rollback

 Specification {class ExampleServiceSpec extends

 @Autowired
 ExampleService exampleService
 ...

 void () {"Test example service"
 :expect
 exampleService.countExamples() == 0
 }
}

Testing Controllers

To integration test controllers it is recommended you use command tocreate-functional-test
create a Geb functional test. See the following section on functional testing for more
information.

14.3 Functional Testing

Functional tests involve making HTTP requests against the running application and
verifying the resultant behaviour. This is useful for end-to-end testing scenarios, such as
making REST calls against a JSON API.

Grails by default ships with support for writing functional tests using the .Geb framework
To create a functional test you can use the command which will createcreate-functional-test

a new functional test:

 grails create-functional-test MyFunctional$

The above command will create a new Spock spec called in the MyFunctionalSpec.groovy

 directory. The test is annotated with the annotation tosrc/integration-test/groovy Integration
indicate it is an integration test and extends the super class:GebSpec

@Integration
 GebSpec {class HomeSpec extends

 () {def setup
 }

 () {def cleanup
 }

 () {void "Test the home page renders correctly"
 :when "The home page is visited"
 go '/'

https://docs.spring.io/spring/docs/5.3.33/javadoc-api/org/springframework/test/annotation/DirtiesContext.html
https://docs.spring.io/spring/docs/5.3.33/javadoc-api/org/springframework/beans/factory/annotation/Autowired.html
http://www.gebish.org
http://docs.grails.org/6.2.0/api/grails/test/mixin/integration/Integration.html

 :then "The title is correct"
 ().text() == $ 'title' "Welcome to Grails"
 }
}

When the test is run the application container will be loaded up in the background and you
can send requests to the running application using the Geb API.

Note that the application is only loaded once for the entire test run, so functional tests share
the state of the application across the whole suite.

In addition the application is loaded in the JVM as the test, this means that the test has full
access to the application state and can interact directly with data services such as GORM to
setup and cleanup test data.

The annotation supports an optional attribute which may be usedIntegration applicationClass

to specify the application class to use for the functional test. The class must extend
.GrailsAutoConfiguration

(applicationClass=com.demo.Application)@Integration
 GebSpec {class HomeSpec extends

 // ...

}

If the is not specified then the test runtime environment will attempt to locateapplicationClass

the application class dynamically which can be problematic in multiproject builds where
multiple application classes may be present.

When running the server port by default will be randomly assigned. The Integration
annotation adds a property of to the test class that you can use if you want to knowserverPort

what port the application is running on this isn’t needed if you are extending the asGebSpec

shown above but can be useful information.

If you want to run the tests on a fixed port (defined by the configurationserver.port

property), you need to manually annotate your test with :@SpringBootTest

 import grails.testing.mixin.integration.Integration
 import org.springframework.boot.test.context.SpringBootTest
 import spock.lang.Specification

@Integration
(webEnvironment = SpringBootTest.WebEnvironment.DEFINED_PORT)@SpringBootTest

 Specification {class MySpec extends

 // ...

}

15 Internationalization
Grails supports Internationalization (i18n) out of the box by leveraging the underlying
Spring MVC internationalization support. With Grails you are able to customize the text that
appears in a view based on the user’s Locale. To quote the javadoc for the class:Locale

A Locale object represents a specific geographical, political, or cultural region. An operation
that requires a Locale to perform its task is called locale-sensitive and uses the Locale to
tailor information for the user. For example, displaying a number is a locale-sensitive
operation—the number should be formatted according to the customs/conventions of the
user’s native country, region, or culture.

A Locale is made up of a and a . For example "en_US" is thelanguage code country code

http://docs.grails.org/6.2.0/api/grails/boot/config/GrailsAutoConfiguration.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Locale.html
http://www.loc.gov/standards/iso639-2/php/English_list.php
http://www.iso.org/iso/country_codes/iso_3166_code_lists/country_names_and_code_elements.htm

code for US English, whilst "en_GB" is the code for British English.

15.1 Understanding Message Bundles

Now that you have an idea of locales, to use them in Grails you create message bundle file
containing the different languages that you wish to render. Message bundles in Grails are
located inside the directory and are simple Java properties files.grails-app/i18n

Each bundle starts with the name by convention and ends with the locale. Grailsmessages

ships with several message bundles for a whole range of languages within the grails-app/i18n
directory. For example:

messages.properties

messages_da.properties

messages_de.properties

messages_es.properties

messages_fr.properties

…

By default Grails looks in for messages unless the user has specified amessages.properties

locale. You can create your own message bundle by simply creating a new properties file
that ends with the locale you are interested in. For example formessages_en_GB.properties

British English.

15.2 Changing Locales

By default, the user locale is detected from the incoming header. You canAccept-Language

provide users the capability to switch locales by simply passing a parameter called tolang

Grails as a request parameter:

list?lang=es/book/

Grails will automatically switch the user’s locale and subsequent requests will use the
switched locale.

By default, Grails uses as the bean.SessionLocaleResolver localeResolver

You can change the default locale easily:

grails-app/conf/spring/resources.groovy
 import org.springframework.web.servlet.i18n.SessionLocaleResolver

beans = {
 localeResolver(SessionLocaleResolver) {
 defaultLocale= ()new Locale 'es'
 }
}

Other are available. For example, you could use save the switched locale in alocaleResolver

Cookie:

https://docs.spring.io/spring/docs/5.3.33/javadoc-api/org/springframework/web/servlet/i18n/SessionLocaleResolver.html

grails-app/conf/spring/resources.groovy
 import org.springframework.web.servlet.i18n.CookieLocaleResolver

beans = {
 localeResolver(CookieLocaleResolver) {
 defaultLocale= ()new Locale 'es'
 }
}

Or fix the locale:

grails-app/conf/spring/resources.groovy
 import org.springframework.web.servlet.i18n.FixedLocaleResolver

beans = {
 localeResolver(FixedLocaleResolver, ())new Locale 'de'
}

15.3 Reading Messages

Reading Messages in the View

The most common place that you need messages is inside the view. Use the tag formessage
this:

 = <g:message code "my.localized.content" />

As long as you have a key in your (with appropriate locale suffix) such asmessages.properties

the one below then Grails will look up the message:

my.localized.content=Hola, me llamo John. Hoy es domingo.

Messages can also include arguments, for example:

 = = <g:message code "my.localized.content" args "${ ['Juan', 'lunes'] }" />

The message declaration specifies positional parameters which are dynamically specified:

my.localized.content=Hola, me llamo { }. Hoy es { }.0 1

Reading Messages in Grails Artifacts with MessageSource

In a Grails artifact, you can inject and use the method with themessageSource getMessage

arguments: message code, message arguments, default message and locale to retrieve a
message.

 import org.springframework.context.MessageSource
 import org.springframework.context.i18n.LocaleContextHolder

 {class MyappController

 MessageSource messageSource

 () {def show
 msg = messageSource.getMessage(, [,] , , LocaleContextHolder.locale)def 'my.localized.content' 'Juan' 'lunes' as Object[] 'Default Message'
 }

Reading Messages in Controllers and Tag Libraries with the Message Tag

Additionally, you can read a message inside Controllers and Tag Libraries with the Message
. However, using the message tag relies on GSP support which a Grails application mayTag

not necessarily have; e.g. a rest application.

In a controller, you can invoke tags as methods.

https://gsp.grails.org/6.2.1/ref/Tags/message.html
http://gsp.grails.org/latest/ref/Tags/message.html
http://gsp.grails.org/latest/ref/Tags/message.html

 () {def show
 msg = message(: , : [,])def code "my.localized.content" args 'Juan' 'lunes'
}

The same technique can be used in , but if your tag library uses a custom tag libraries
 then you must prefix the call with :namespace g.

 myTag = { attrs, body ->def
 msg = g.message(: , : [,])def code "my.localized.content" args 'Juan' 'lunes'
}

15.4 Scaffolding and i18n

Grails templates for controllers and views are fully i18n-aware. The GSPs usescaffolding
the tag for labels, buttons etc. and controller messages use i18n to resolvemessage flash

locale-specific messages.

The scaffolding includes locale specific labels for domain classes and domain fields. For
example, if you have a domain class with a field:Book title

 {class Book
 titleString
}

The scaffolding will use labels with the following keys:

book.label = Libro
book.title.label = Título del libro

You can use this property pattern if you’d like or come up with one of your own. There is
nothing special about the use of the word as part of the key other than it’s thelabel

convention used by the scaffolding.

16 Security
Grails is no more or less secure than Java Servlets. However, Java servlets (and hence
Grails) are extremely secure and largely immune to common buffer overrun and malformed
URL exploits due to the nature of the Java Virtual Machine underpinning the code.

Web security problems typically occur due to developer naivety or mistakes, and there is a
little Grails can do to avoid common mistakes and make writing secure applications easier to
write.

What Grails Automatically Does

Grails has a few built in safety mechanisms by default.

All standard database access via domain objects is automatically SQL escaped toGORM
prevent SQL injection attacks

The default templates HTML escape all data fields when displayedscaffolding

Grails link creating tags (, , , and others) all uselink form createLink createLinkTo
appropriate escaping mechanisms to prevent code injection

Grails provides to let you trivially escape data when rendered as HTML, JavaScriptcodecs
and URLs to prevent injection attacks here.

https://gsp.grails.org/6.2.1/ref/Tags/message.html
https://gsp.grails.org/6.2.1/ref/Tags/link.html
https://gsp.grails.org/6.2.1/ref/Tags/form.html
https://gsp.grails.org/6.2.1/ref/Tags/createLink.html
https://gsp.grails.org/6.2.1/ref/Tags/createLinkTo.html

16.1 Securing Against Attacks

SQL injection

Hibernate, which is the technology underlying GORM domain classes, automatically
escapes data when committing to database so this is not an issue. However it is still possible
to write bad dynamic HQL code that uses unchecked request parameters. For example doing
the following is vulnerable to HQL injection attacks:

 () {def vulnerable
 books = .find(+ params.title +)def Book "from Book as b where b.title ='" "'"
}

or the analogous call using a GString:

 () {def vulnerable
 books = .find()def Book "from Book as b where b.title =' params.title${ }'"
}

Do do this. Use named or positional parameters instead to pass in parameters:not

 () {def safe
 books = .find(,def Book "from Book as b where b.title = ?"
 [params.title])
}

or

 () {def safe
 books = .find(,def Book "from Book as b where b.title = :title"
 [: params.title])title
}

Phishing

This really a public relations issue in terms of avoiding hijacking of your branding and a
declared communication policy with your customers. Customers need to know how to
identify valid emails.

XSS - cross-site scripting injection

It is important that your application verifies as much as possible that incoming requests were
originated from your application and not from another site. It is also important to ensure that
all data values rendered into views are escaped correctly. For example when rendering to
HTML or XHTML you must ensure that people cannot maliciously inject JavaScript or
other HTML into data or tags viewed by others.

Grails 2.3 and above include special support for automatically encoded data placed into GSP
pages. See the documentation on for furtherCross Site Scripting (XSS) prevention
information.

You must also avoid the use of request parameters or data fields for determining the next
URL to redirect the user to. If you use a parameter for example to determinesuccessURL

where to redirect a user to after a successful login, attackers can imitate your login
procedure using your own site, and then redirect the user back to their own site once logged
in, potentially allowing JavaScript code to then exploit the logged-in account on the site.

Cross-site request forgery

CSRF involves unauthorized commands being transmitted from a user that a website trusts.
A typical example would be another website embedding a link to perform an action on your

website if the user is still authenticated.

The best way to decrease risk against these types of attacks is to use the attribute onuseToken

your forms. See for more information on how to useHandling Duplicate Form Submissions
it. An additional measure would be to not use remember-me cookies.

HTML/URL injection

This is where bad data is supplied such that when it is later used to create a link in a page,
clicking it will not cause the expected behaviour, and may redirect to another site or alter
request parameters.

HTML/URL injection is easily handled with the supplied by Grails, and the tagcodecs
libraries supplied by Grails all use where appropriate. If you create your ownencodeAsURL
tags that generate URLs you will need to be mindful of doing this too.

Denial of service

Load balancers and other appliances are more likely to be useful here, but there are also
issues relating to excessive queries for example where a link is created by an attacker to set
the maximum value of a result set so that a query could exceed the memory limits of the
server or slow the system down. The solution here is to always sanitize request parameters
before passing them to dynamic finders or other GORM query methods:

 limit = int 100
 safeMax = .min(params.max?.toInteger() ?: limit, limit) def Math // limit to 100 results

 .list(:safeMax)return Book max

Guessable IDs

Many applications use the last part of the URL as an "id" of some object to retrieve from
GORM or elsewhere. Especially in the case of GORM these are easily guessable as they are
typically sequential integers.

Therefore you must assert that the requesting user is allowed to view the object with the
requested id before returning the response to the user.

Not doing this is "security through obscurity" which is inevitably breached, just like having
a default password of "letmein" and so on.

You must assume that every unprotected URL is publicly accessible one way or another.

16.2 Cross Site Scripting (XSS) Prevention

Cross Site Scripting (XSS) attacks are a common attack vector for web applications. They
typically involve submitting HTML or Javascript code in a form such that when that code is
displayed, the browser does something nasty. It could be as simple as popping up an alert
box, or it could be much worse like for example one could access other users session
cookies.

The solution is to escape all untrusted user input when it is displayed in a page. For
example,

<script>alert();<'Got ya!' /script>

will become

https://blog.codinghorror.com/protecting-your-cookies-httponly/
https://blog.codinghorror.com/protecting-your-cookies-httponly/

<script>alert();<'Got ya!' /script>

when rendered, nullifying the effects of the malicious input.

By default, Grails plays it safe and escapes all content in expressions in GSPs. All the${}

standard GSP tags are also safe by default, escaping any relevant attribute values.

So what happens when you want to stop Grails from escaping some content? There are valid
use cases for putting HTML into the database and rendering it as-is, as long as that content
is . In such cases, you can tell Grails that the content is safe as should be renderedtrusted
raw, i.e. without any escaping:

<section> {raw(page.content)}<$ /section>

The method you see here is available from controllers, tag libraries and GSP pages.raw()

XSS prevention is hard and requires a lot of developer attention

Although Grails plays it safe by default, that is no guarantee that your application will be
invulnerable to an XSS-style attack. Such an attack is less likely to succeed than would
otherwise be the case, but developers should always be conscious of potential attack
vectors and attempt to uncover vulnerabilities in the application during testing. It’s also
easy to switch to an unsafe default, thereby increasing the risk of a vulnerability being
introduced.

There are more details about the XSS in and OWASP - XSS prevention rules OWASP -
. Types of XSS are: , and Types of Cross-Site Scripting Stored XSS Reflected XSS DOM

. is coming more important because of thebased XSS DOM based XSS prevention
popularity of Javascript client side templating and Single Page Apps.

Grails codecs are mainly for preventing stored and reflected XSS type of attacks. Grails 2.4
includes HTMLJS codec that assists in preventing some DOM based XSS attacks.

It’s difficult to make a solution that works for everyone, and so Grails provides a lot of
flexibility with regard to fine-tuning how escaping works, allowing you to keep most of
your application safe while switching off default escaping or changing the codec used for
pages, tags, page fragments, and more.

Configuration

It is recommended that you review the configuration of a newly created Grails application to
garner an understanding of XSS prevention works in Grails.

When you tag a cookie with the HttpOnly flag, it tells the browser that this particular cookie
should only be accessed by the server. Any attempt to access the cookie from client script is
strictly forbidden. This can be configured in the configuration file as seenapplication.yml

below:

:server
 :session
 :cookie
 : example.orgdomain
 http- : only true
 : path /
 : secure true

GSP features the ability to automatically HTML encode GSP expressions, and as of Grails
2.3 this is the default configuration. The default configuration (found in) for aapplication.yml

newly created Grails application can be seen below:

https://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%29_Prevention_Cheat_Sheet#XSS_Prevention_Rules
https://www.owasp.org/index.php/Types_of_Cross-Site_Scripting
https://www.owasp.org/index.php/Types_of_Cross-Site_Scripting
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)#Stored_XSS_Attacks
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)#Reflected_XSS_Attacks
https://www.owasp.org/index.php/DOM_Based_XSS
https://www.owasp.org/index.php/DOM_Based_XSS
https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet

:grails
 :views
 :gsp
 : UTF-encoding 8
 : xml use xml escaping instead of HTML4 escapinghtmlcodec #
 :codecs
 : html escapes values inside {}expression # $
 : html escapes output from scriptlets GSPsscriptlets # in
 : none escapes output from taglibstaglib #
 : none escapes output from template partsstaticparts # static

GSP features several codecs that it uses when writing the page to the response. The codecs
are configured in the block and are described below:codecs

expression - The expression codec is used to encode any code found within ${..} expressions.
The default for newly created application is encoding.html

scriptlet - Used for output from GSP scriplets (<% %>, <%= %> blocks). The default for
newly created applications is encodinghtml

taglib - Used to encode output from GSP tag libraries. The default is for newnone

applications, as typically it is the responsibility of the tag author to define the encoding of a
given tag and by specifying Grails remains backwards compatible with older tagnone

libraries.

staticparts - Used to encode the raw markup output by a GSP page. The default is .none

Double Encoding Prevention

Versions of Grails prior to 2.3, included the ability to set the default codec to , howeverhtml

enabling this setting sometimes proved problematic when using existing plugins due to
encoding being applied twice (once by the codec and then again if the plugin manuallyhtml

called).encodeAsHTML

Grails 2.3 includes double encoding prevention so that when an expression is evaluated, it
will not encode if the data has already been encoded (Example).${foo.encodeAsHTML()}

Raw Output

If you are 100% sure that the value you wish to present on the page has not been received
from user input, and you do not wish the value to be encoded then you can use the raw
method:

{raw(book.title)}$

The 'raw' method is available in tag libraries, controllers and GSP pages.

Per Plugin Encoding

Grails also features the ability to control the codecs used on a per plugin basis. For example
if you have a plugin named installed, then placing the following configuration in your foo

 will disable encoding for only the pluginapplication.groovy foo

foo.grails.views.gsp.codecs.expression = "none"

Per Page Encoding

You can also control the various codecs used to render a GSP page on a per page basis,
using a page directive:

<% expressionCodec= %>@page "none"

Per Tag Library Encoding

Each tag library created has the opportunity to specify a default codec used to encode output
from the tag library using the "defaultEncodeAs" property:

 defaultEncodeAs = static 'html'

Encoding can also be specified on a per tag basis using "encodeAsForTags":

 encodeAsForTags = [:]static tagName 'raw'

Context Sensitive Encoding Switching

Certain tags require certain encodings and Grails features the ability to enable a codec only a
certain part of a tag’s execution using the "withCodec" method. Consider for example the
"<g:javascript>"" tag which allows you to embed JavaScript code in the page. This tag
requires JavaScript encoding, not HTML coding for the execution of the body of the tag (but
not for the markup that is output):

out.println '<script type="text/javascript">'
 withCodec() {"JavaScript"
 out << body()
 }
 out.println()
 out.println '</script>'

Forced Encoding for Tags

If a tag specifies a default encoding that differs from your requirements you can force the
encoding for any tag by passing the optional 'encodeAs' attribute:

< :message code= encodeAs= />g "foo.bar" "JavaScript"

Default Encoding for All Output

The default configuration for new applications is fine for most use cases, and backwards
compatible with existing plugins and tag libraries. However, you can also make your
application even more secure by configuring Grails to always encode all output at the end of
a response. This is done using the configuration in filteringCodecForContentType

:application.groovy

grails.views.gsp.filteringCodecForContentType. = 'text/html' 'html'

Note that, if activated, the codec typically needs to be set to so that staticstaticparts raw

markup is not encoded:

codecs {
 expression = 'html' // escapes values inside ${}
 scriptlet = 'html' // escapes output from scriptlets in GSPs
 taglib = 'none' // escapes output from taglibs
 staticparts = 'raw' // escapes output from static template parts
 }

16.3 Encoding and Decoding Objects

Grails supports the concept of dynamic encode/decode methods. A set of standard codecs
are bundled with Grails. Grails also supports a simple mechanism for developers to
contribute their own codecs that will be recognized at runtime.

Codec Classes

A Grails codec class is one that may contain an encode closure, a decode closure or both.

When a Grails application starts up the Grails framework dynamically loads codecs from the
 directory.grails-app/utils/

The framework looks under for class names that end with the convention grails-app/utils/

. For example one of the standard codecs that ships with Grails is .Codec HTMLCodec

If a codec contains an closure Grails will create a dynamic method and add thatencode encode

method to the class with a name representing the codec that defined the encodeObject

closure. For example, the class defines an closure, so Grails attaches it withHTMLCodec encode

the name .encodeAsHTML

The and classes also define a closure, so Grails attaches those withHTMLCodec URLCodec decode

the names and respectively. Dynamic codec methods may be invokeddecodeHTML decodeURL

from anywhere in a Grails application. For example, consider a case where a report contains
a property called 'description' which may contain special characters that must be escaped to
be presented in an HTML document. One way to deal with that in a GSP is to encode the
description property using the dynamic encode method as shown below:

{report.description.encodeAsHTML()}$

Decoding is performed using syntax.value.decodeHTML()

Encoder and Decoder interfaces for staticly compiled code

A preferred way to use codecs is to use the codecLookup bean to get hold of and Encoder

 instances .Decoder

 org.grails.encoder;package

 CodecLookup {public interface
 lookupEncoder(codecName);public Encoder String
 Decoder lookupDecoder(codecName);public String
}

example of using and interfaceCodecLookup Encoder

 import org.grails.encoder.CodecLookup

 {class CustomTagLib
 CodecLookup codecLookup

 myTag = { attrs, body ->def Map
 out << codecLookup.lookupEncoder().encode(attrs.something)'HTML'
 }
}

Standard Codecs

HTMLCodec

This codec performs HTML escaping and unescaping, so that values can be rendered safely
in an HTML page without creating any HTML tags or damaging the page layout. For
example, given a value "Don’t you know that 2 > 1?" you wouldn’t be able to show this
safely within an HTML page because the > will look like it closes a tag, which is especially
bad if you render this data within an attribute, such as the value attribute of an input field.

Example of usage:

<input name= value= />"comment.message" " comment.message.encodeAsHTML()${ }"

Note that the HTML encoding does not re-encode apostrophe/single quote so you must use
double quotes on attribute values to avoid text with apostrophes affecting your page.

HTMLCodec defaults to HTML4 style escaping (legacy HTMLCodec implementation in
Grails versions before 2.3.0) which escapes non-ascii characters.

You can use plain XML escaping instead of HTML4 escaping by setting this config
property in :application.groovy

grails.views.gsp.htmlcodec = 'xml'

XMLCodec

This codec performs XML escaping and unescaping. It escapes & , < , > , " , ' , \\\\ , @ , ` ,
non breaking space (\\\\u00a0), line separator (\\\\u2028) and paragraph separator
(\\\\u2029).

HTMLJSCodec

This codec performs HTML and JS encoding. It is used for preventing some DOM-XSS
vulnerabilities. See for guidelines ofOWASP - DOM based XSS Prevention Cheat Sheet
preventing DOM based XSS attacks.

URLCodec

URL encoding is required when creating URLs in links or form actions, or any time data is
used to create a URL. It prevents illegal characters from getting into the URL and changing
its meaning, for example "Apple & Blackberry" is not going to work well as a parameter in
a GET request as the ampersand will break parameter parsing.

Example of usage:

"/mycontroller/find?searchKey= lastSearch.encodeAsURL()${ }"
Repeat last search

Base64Codec

Performs Base64 encode/decode functions. Example of usage:

Your registration code : {user.registrationCode.encodeAsBase64()}is $

JavaScriptCodec

Escapes Strings so they can be used as valid JavaScript strings. For example:

.update(,Element '${elementId}'
)'${render(template: "/common/message").encodeAsJavaScript()}'

HexCodec

Encodes byte arrays or lists of integers to lowercase hexadecimal strings, and can decode
hexadecimal strings into byte arrays. For example:

Selected : {[, ,].encodeAsHex()}colour #$ 255 127 255

MD5Codec

Uses the MD5 algorithm to digest byte arrays or lists of integers, or the bytes of a string (in
default system encoding), as a lowercase hexadecimal string. Example of usage:

Your API : {user.uniqueID.encodeAsMD5()}Key $

https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet

MD5BytesCodec

Uses the MD5 algorithm to digest byte arrays or lists of integers, or the bytes of a string (in
default system encoding), as a byte array. Example of usage:

 passwordHash = params.password.encodeAsMD5Bytes()byte[]

SHA1Codec

Uses the SHA1 algorithm to digest byte arrays or lists of integers, or the bytes of a string (in
default system encoding), as a lowercase hexadecimal string. Example of usage:

Your API : {user.uniqueID.encodeAsSHA1()}Key $

SHA1BytesCodec

Uses the SHA1 algorithm to digest byte arrays or lists of integers, or the bytes of a string (in
default system encoding), as a byte array. Example of usage:

 passwordHash = params.password.encodeAsSHA1Bytes()byte[]

SHA256Codec

Uses the SHA256 algorithm to digest byte arrays or lists of integers, or the bytes of a string
(in default system encoding), as a lowercase hexadecimal string. Example of usage:

Your API : {user.uniqueID.encodeAsSHA256()}Key $

SHA256BytesCodec

Uses the SHA256 algorithm to digest byte arrays or lists of integers, or the bytes of a string
(in default system encoding), as a byte array. Example of usage:

 passwordHash = params.password.encodeAsSHA256Bytes()byte[]

Custom Codecs

Applications may define their own codecs and Grails will load them along with the standard
codecs. A custom codec class must be defined in the directory and the classgrails-app/utils/

name must end with . The codec may contain a closure, a Codec static encode static decode

closure or both. The closure must accept a single argument which will be the object that the
dynamic method was invoked on. For Example:

 {class PigLatinCodec
 encode = { str ->static
 // convert the string to pig latin and return the result
 }
}

With the above codec in place an application could do something like this:

${lastName.encodeAsPigLatin()}

16.4 Authentication

Grails has no default mechanism for authentication as it is possible to implement
authentication in many different ways. It is however, easy to implement a simple
authentication mechanism using . This is sufficient for simple use cases but it’sinterceptors
highly preferable to use an established security framework, for example by using the Spring

 or the plugin.Security Shiro

Interceptors let you apply authentication across all controllers or across a URI space. For
example you can create a new set of filters in a class called

 by running:grails-app/controllers/SecurityInterceptor.groovy

grails create-interceptor security

and implement your interception logic there:

 {class SecurityInterceptor

 SecurityInterceptor() {
 matchAll()
 .except(: , :)controller 'user' action 'login'
 }

 before() {boolean
 (!session.user && actionName !=) {if "login"
 redirect(: , :)controller "user" action "login"
 return false
 }
 return true
 }

}

Here the interceptor intercepts execution all actions except are executed, and ifbefore login

there is no user in the session then redirect to the action.login

The action itself is simple too:login

 () {def login
 (request.get) {if
 return // render the login view
 }

 u = User.findByLogin(params.login)def
 (u) {if
 (u.password == params.password) {if
 session.user = u
 redirect(:)action "home"
 }
 {else
 render(: , : [:])view "login" model message "Password incorrect"
 }
 }
 {else
 render(: , : [:])view "login" model message "User not found"
 }
}

16.5 Security Plugins

If you need more advanced functionality beyond simple authentication such as
authorization, roles etc. then you should consider using the spring security core plugin.

16.5.1 Spring Security

The Spring Security plugins are built on the project which provides aSpring Security
flexible, extensible framework for building all sorts of authentication and authorization
schemes. The plugins are modular so you can install just the functionality that you need for
your application. The Spring Security plugins are the official security plugins for Grails and
are actively maintained and supported.

There is a plugin which supports form-based authentication,Spring Security Core
encrypted/salted passwords, HTTP Basic authentication, etc. and secondary dependent

https://spring.io/projects/spring-security
https://plugins.grails.org/plugin/grails/spring-security-core

plugins provide alternate functionality such as , , ACL support single sign-on with Jasig CAS
, , and a plugin providing LDAP authentication Kerberos authentication user interface

 and security workflows.extensions

See the plugin page for basic information and for detailedSpring Security Core user guide
information.

17 Plugins
Grails is first and foremost a web application framework, but it is also a platform. By
exposing a number of extension points that let you extend anything from the command line
interface to the runtime configuration engine, Grails can be customised to suit almost any
needs. To hook into this platform, all you need to do is create a plugin.

Extending the platform may sound complicated, but plugins can range from trivially simple
to incredibly powerful. If you know how to build a Grails application, you’ll know how to
create a plugin for or some static resources.sharing a data model

17.1 Creating and Installing Plugins

Creating Plugins

Creating a Grails plugin is a simple matter of running the command:

grails create-plugin <<PLUGIN NAME>>

This will create a web-plugin project for the name you specify. For example running grails
 would create a new web-plugin project called .create-plugin example example

In Grails 3.0 you should consider whether the plugin you create requires a web environment
or whether the plugin can be used with other profiles. If your plugin does not require a web
environment then use the "plugin" profile instead of the default "web-plugin" profile:

grails create-plugin <<PLUGIN NAME>> --profile=plugin

Make sure the plugin name does not contain more than one capital letter in a row, or it won’t
work. Camel case is fine, though.

Being a regular Grails project has a number of benefits in that you can immediately test your
plugin by running (if the plugin targets the "web" profile):

./gradlew bootRun

Plugin projects don’t provide an index.gsp by default since most plugins don’t need it. So,
if you try to view the plugin running in a browser right after creating it, you will receive a
page not found error. You can easily create a for your plugin ifgrails-app/views/index.gsp

you’d like.

The structure of a Grails plugin is very nearly the same as a Grails application project’s
except that in the directory under the plugin package structure you will find asrc/main/groovy

plugin descriptor class (a class that ends in "GrailsPlugin"). For example:

 import grails.plugins.*

https://plugins.grails.org/plugin/grails/spring-security-acl
https://plugins.grails.org/plugin/grails/spring-security-cas
https://plugins.grails.org/plugin/grails/spring-security-ldap
https://plugins.grails.org/plugin/grails/spring-security-kerberos
https://plugins.grails.org/plugin/grails/spring-security-ui
https://plugins.grails.org/plugin/grails/spring-security-ui
https://plugins.grails.org/plugin/grails/spring-security-core
https://grails.github.io/grails-spring-security-core/latest/index.html

 Plugin {class ExampleGrailsPlugin extends
 ...
}

All plugins must have this class under the directory, otherwise they are notsrc/main/groovy

regarded as a plugin. The plugin class defines metadata about the plugin, and optionally
various hooks into plugin extension points (covered shortly).

You can also provide additional information about your plugin using several special
properties:

title - short one-sentence description of your plugin

grailsVersion - The version range of Grails that the plugin supports. eg. "1.2 > *" (indicating
1.2 or higher)

author - plugin author’s name

authorEmail - plugin author’s contact e-mail

developers - Any additional developers beyond the author specified above.

description - full multi-line description of plugin’s features

documentation - URL of the plugin’s documentation

license - License of the plugin

issueManagement - Issue Tracker of the plugin

scm - Source code management location of the plugin

Here is a slimmed down example from the :Quartz Grails plugin

 quartzpackage

@Slf4j
 Plugin {class QuartzGrailsPlugin extends

 // the version or versions of Grails the plugin is designed for
 grailsVersion = def "3.0.0.BUILD-SNAPSHOT > *"
 // resources that are excluded from plugin packaging
 pluginExcludes = [def
 "grails-app/views/error.gsp"
]
 title = def "Quartz" // Headline display name of the plugin
 author = def "Jeff Brown"
 authorEmail = def "zzz@yyy.com"
 description = def '''\
Adds Quartz job scheduling features
'''
 profiles = []def 'web'
 loadAfter = [, , ,]List 'hibernate3' 'hibernate4' 'hibernate5' 'services'
 documentation = def "http://grails.org/plugin/quartz"
 license = def "APACHE"
 issueManagement = [: , :]def system "Github Issues" url "http://github.com/grails3-plugins/quartz/issues"
 developers = [def
 [: , :]name "Joe Dev" email "joedev@gmail.com"
]
 scm = [:]def url "https://github.com/grails3-plugins/quartz/"

 Closure doWithSpring()......

Plugin Configuration

Instead of directly accessing Grails configuration as
, use a Spring Boot configurationgrailsApplication.config.getProperty('mail.hostName', String)

bean (or a POJO) annotated with annotation. Here is an exampleConfigurationProperties
plugin configuration:

https://github.com/grails-plugins/grails-quartz
https://docs.spring.io/spring-boot/docs/2.7.16/api/org/springframework/boot/context/properties/ConfigurationProperties.html

./src/main/groovy/example/MailPluginConfiguration.groovy

package example

import org.springframework.boot.context.properties.ConfigurationProperties

@ConfigurationProperties(prefix = "mail")
class MailPluginConfiguration {

 String hostName
 int port
 String from
}

You can inject the bean into your bean like any other bean.MailPluginConfiguration

./grails-app/services/example/MailService.groovy

package example

class MailService {

 MailPluginConfiguration mailPluginConfiguration

 void sendMail() {

 }

}

Please read the section for more information.Spring Boot Externalized Configuration

Installing Local Plugins

In order to install the Grails plugin to your local Maven, you could use Gradle Maven
 plugin. You may also need to configure the publishing extension as:Publish

publishing {
 publications {
 maven(MavenPublication) {
 versionMapping {
 usage() {'java-api'
 fromResolutionOf()'runtimeClasspath'
 }
 usage() {'java-runtime'
 fromResolutionResult()
 }
 }
 from components.java
 }
 }
}

Please refer to the Gradle Maven Publish plugin documentation for up-to-date information.

To make your plugin available for use in a Grails application run the ./gradlew
 command:publishToMavenLocal

./gradlew publishToMavenLocal

This will install the plugin into your local Maven cache. Then to use the plugin within an
application declare a dependency on the plugin in your file and include build.gradle

 in your repositories hash:mavenLocal()

...
repositories {
 ...
 mavenLocal()
}
...
implementation "org.grails.plugins:quartz:0.1"

In Grails 2.x plugins were packaged as ZIP files, however in Grails 3.x plugins are simple
JAR files that can be added to the classpath of the IDE.

https://docs.spring.io/spring-boot/docs/2.7.16/reference/html/features.html#features.external-config
https://docs.gradle.org/current/userguide/publishing_maven.html
https://docs.gradle.org/current/userguide/publishing_maven.html

Plugins and Multi-Project Builds

If you wish to setup a plugin as part of a multi project build then follow these steps.

Step 1: Create the application and the plugin

Using the command create an application and a plugin:grails

 grails create-app myapp$
 grails create-plugin myplugin$

Step 2: Create a settings.gradle file

In the same directory create a file with the following contents:settings.gradle

include , "myapp" "myplugin"

The directory structure should be as follows:

PROJECT_DIR
 - settings.gradle
 - myapp
 - build.gradle
 - myplugin
 - build.gradle

Step 3: Declare a project dependency on the plugin

Within the of the application declare a dependency on the plugin within the build.gradle

 block:plugins

grails {
 plugins {
 implementation project()':myplugin'
 }
}

You can also declare the dependency within the block, however you will notdependencies

get subproject reloading if you do this!

Step 4: Configure the plugin to enable reloading

In the plugin directory, add or modify the file. A new property gradle.properties exploded=true

needs to be set in order for the plugin to add the exploded directories to the classpath.

Step 5: Run the application

Now run the application using the command from the root of the./gradlew bootRun

application directory, you can use the flag to see the Gradle output:verbose

 cd myapp$
 .$ /gradlew bootRun --verbose

You will notice from the Gradle output that plugins sources are built and placed on the
classpath of your application:

: :compileAstJava UP-TO-DATEmyplugin
: :compileAstGroovy UP-TO-DATEmyplugin
: :processAstResources UP-TO-DATEmyplugin
: :astClasses UP-TO-DATEmyplugin
: :compileJava UP-TO-DATEmyplugin
: :configScript UP-TO-DATEmyplugin
: :compileGroovymyplugin
: :copyAssets UP-TO-DATEmyplugin
: :copyCommands UP-TO-DATEmyplugin
: :copyTemplates UP-TO-DATEmyplugin
: :processResourcesmyplugin

: :compileJava UP-TO-DATEmyapp
: :compileGroovymyapp
: :processResources UP-TO-DATEmyapp
: :classesmyapp
: :findMainClassmyapp
: :bootRunmyapp
Grails application running at :http //localhost:8080 in environment: development

Notes on excluded Artefacts

Although the command creates certain files for you so that the plugin can becreate-plugin
run as a Grails application, not all of these files are included when packaging a plugin. The
following is a list of artefacts created, but not included by :package-plugin

grails-app/build.gradle (although it is used to generate)dependencies.groovy

grails-app/conf/application.yml (renamed to plugin.yml)

grails-app/conf/spring/resources.groovy

grails-app/conf/logback.groovy

Everything within /src/test/**

SCM management files within and **/.svn/** **/CVS/**

Customizing the plugin contents

When developing a plugin you may create test classes and sources that are used during the
development and testing of the plugin but should not be exported to the application.

To exclude test sources you need to modify the property of the pluginpluginExcludes

descriptor AND exclude the resources inside your file. For example say youbuild.gradle

have some classes under the package that are in your plugin source tree but shouldcom.demo

not be packaged in the application. In your plugin descriptor you should exclude these:

// resources that should be loaded by the plugin once installed in the application
 pluginExcludes = [def
 '**/com/demo/**'
]

And in your you should exclude the compiled classes from the JAR file:build.gradle

jar {
 exclude "com/demo/**/**"
}

Inline Plugins in Grails 3.0

In Grails 2.x it was possible to specify inline plugins in , in Grails 3.x thisBuildConfig

functionality has been replaced by Gradle’s multi-project build feature.

To set up a multi project build create an appliation and a plugin in a parent directory:

 grails create-app myapp$
 grails create-plugin myplugin$

Then create a file in the parent directory specifying the location of yoursettings.gradle

application and plugin:

include , 'myapp' 'myplugin'

Finally add a dependency in your application’s on the plugin:build.gradle

implementation project()':myplugin'

Using this technique you have achieved the equivalent of inline plugins from Grails 2.x.

17.2 Plugin Repositories

Distributing Plugins in the Grails Central Plugin Repository

The preferred way to distribute plugin is to publish to the official Grails Central Plugin
Repository. This will make your plugin visible to the command:list-plugins

grails list-plugins

which lists all plugins that are in the central repository. Your plugin will also be available to
the command:plugin-info

grails plugin-info [plugin-name]

which prints extra information about it, such as its description, who wrote, etc.

If you have created a Grails plugin and want it to be hosted in the central repository, you’ll
find instructions for getting an account on the website.plugin portal

17.3 Providing Basic Artefacts

Add Command Line Commands

A plugin can add new commands to the Grails 3.0 interactive shell in one of two ways. First,
using the you can create a code generation script which will become availablecreate-script
to the application. The command will create the script in the create-script src/main/scripts

directory:

+ src/main/scripts <-- additional scripts here
 + grails-app
 + controllers
 + services
 + etc.

Code generation scripts can be used to create artefacts within the project tree and automate
interactions with Gradle.

If you want to create a new shell command that interacts with a loaded Grails application
instance then you should use the command:create-command

 grails create-command MyExampleCommand$

This will create a file called thatgrails-app/commands/PACKAGE_PATH/MyExampleCommand.groovy

extends :ApplicationCommand

 import grails.dev.commands.*

 ApplicationCommand {class MyExampleCommand implements

 handle(ExecutionContext ctx) {boolean
 println "Hello World"
 return true
 }
}

An has access to the instance and is subject to autowiringApplicationCommand GrailsApplication

like any other Spring bean.

http://plugins.grails.org/
http://docs.grails.org/6.2.0/api/grails/dev/commands/ApplicationCommand.html

You can also inform Grails to skip the execution of files with a simpleBootstrap.groovy

property in your command:

 ApplicationCommand {class MyExampleCommand implements

 skipBootstrap = boolean true

 handle(ExecutionContext ctx) {boolean
 ...
 }
}

For each present Grails will create a shell command and a Gradle task toApplicationCommand

invoke the . In the above example you can invoke the classApplicationCommand MyExampleCommand

using either:

 grails my-example$

Or

 gradle myExample$

The Grails version is all lower case hyphen separated and excludes the "Command" suffix.

The main difference between code generation scripts and instances is thatApplicationCommand

the latter has full access to the Grails application state and hence can be used to perform
tasks that interactive with the database, call into GORM etc.

In Grails 2.x Gant scripts could be used to perform both these tasks, in Grails 3.x code
generation and interacting with runtime application state has been cleanly separated.

Adding a new grails-app artifact (Controller, Tag Library, Service, etc.)

A plugin can add new artifacts by creating the relevant file within the tree.grails-app

+ grails-app
 + controllers <-- additional controllers here
 + services <-- additional services here
 + etc. <-- additional XXX here

Providing Views, Templates and View resolution

When a plugin provides a controller it may also provide default views to be rendered. This is
an excellent way to modularize your application through plugins. Grails' view resolution
mechanism will first look for the view in the application it is installed into and if that fails
will attempt to look for the view within the plugin. This means that you can override views
provided by a plugin by creating corresponding GSPs in the application’s grails-app/views
directory.

For example, consider a controller called that’s provided by an 'amazon'BookController

plugin. If the action being executed is , Grails will first look for a view called list

 then if that fails it will look for the same view relative to thegrails-app/views/book/list.gsp

plugin.

However if the view uses templates that are also provided by the plugin then the following
syntax may be necessary:

< :render template= plugin= />g "fooTemplate" "amazon"

Note the usage of the attribute, which contains the name of the plugin where theplugin

template resides. If this is not specified then Grails will look for the template relative to the
application.

Excluded Artefacts

By default Grails excludes the following files during the packaging process:

grails-app/conf/logback.groovy

grails-app/conf/application.yml (renamed to)plugin.yml

grails-app/conf/spring/resources.groovy

Everything within /src/test/**

SCM management files within and **/.svn/** **/CVS/**

The default file is not excluded, so remove any mappings that are notUrlMappings.groovy

required for the plugin to work. You are also free to add a UrlMappings definition under a
different name which be included. For example a file called will

 is fine.grails-app/controllers/BlogUrlMappings.groovy

The list of excludes is extensible with the property:pluginExcludes

// resources that are excluded from plugin packaging
 pluginExcludes = [def

 "grails-app/views/error.gsp"
]

This is useful for example to include demo or test resources in the plugin repository, but not
include them in the final distribution.

17.4 Evaluating Conventions

Before looking at providing runtime configuration based on conventions you first need to
understand how to evaluate those conventions from a plugin. Every plugin has an implicit

 variable which is an instance of the interface.application GrailsApplication

The interface provides methods to evaluate the conventions within theGrailsApplication

project and internally stores references to all artifact classes within your application.

Artifacts implement the interface, which represents a Grails resource such as aGrailsClass
controller or a tag library. For example to get all instances you can do:GrailsClass

 (grailsClass application.allClasses) {for in
 println grailsClass.name
}

GrailsApplication has a few "magic" properties to narrow the type of artefact you are
interested in. For example to access controllers you can use:

 (controllerClass application.controllerClasses) {for in
 println controllerClass.name
}

The dynamic method conventions are as follows:

*Classes - Retrieves all the classes for a particular artefact name. For example
.application.controllerClasses

get*Class - Retrieves a named class for a particular artefact. For example
application.getControllerClass("PersonController")

http://docs.grails.org/6.2.0/api/grails/core/GrailsApplication.html
http://docs.grails.org/6.2.0/api/grails/core/GrailsClass.html

is*Class - Returns if the given class is of the given artefact type. For example true

application.isControllerClass(PersonController)

The interface has a number of useful methods that let you further evaluate andGrailsClass

work with the conventions. These include:

getPropertyValue - Gets the initial value of the given property on the class

hasProperty - Returns if the class has the specified propertytrue

newInstance - Creates a new instance of this class.

getName - Returns the logical name of the class in the application without the trailing
convention part if applicable

getShortName - Returns the short name of the class without package prefix

getFullName - Returns the full name of the class in the application with the trailing convention
part and with the package name

getPropertyName - Returns the name of the class as a property name

getLogicalPropertyName - Returns the logical property name of the class in the application
without the trailing convention part if applicable

getNaturalName - Returns the name of the property in natural terms (e.g. 'lastName' becomes
'Last Name')

getPackageName - Returns the package name

For a full reference refer to the .javadoc API

17.5 Hooking into Runtime Configuration

Grails provides a number of hooks to leverage the different parts of the system and perform
runtime configuration by convention.

Hooking into the Grails Spring configuration

First, you can hook in Grails runtime configuration overriding the method fromdoWithSpring

the class and returning a closure that defines additional beans. For example thePlugin
following snippet is from one of the core Grails plugins that provides support:i18n

 import org.springframework.web.servlet.i18n.CookieLocaleResolver
 import org.springframework.web.servlet.i18n.LocaleChangeInterceptor
 import org.springframework.context.support.ReloadableResourceBundleMessageSource
 import grails.plugins.*

 Plugin {class I18nGrailsPlugin extends

 version = def "0.1"

 Closure doWithSpring() {{->
 messageSource(ReloadableResourceBundleMessageSource) {
 basename = "WEB-INF/grails-app/i18n/messages"
 }
 localeChangeInterceptor(LocaleChangeInterceptor) {
 paramName = "lang"
 }
 localeResolver(CookieLocaleResolver)
 }}
}

http://docs.grails.org/6.2.0/api/grails/core/GrailsClass.html
http://docs.grails.org/6.2.0/api/grails/plugins/Plugin.html

This plugin configures the Grails bean and a couple of other beans to managemessageSource

Locale resolution and switching. It using the syntax to do so.Spring Bean Builder

Customizing the Servlet Environment

In previous versions of Grails it was possible to dynamically modify the generated .web.xml

In Grails 3.x there is no file and it is not possible to programmatically modify the web.xml

 file anymore.web.xml

However, it is possible to perform the most commons tasks of modifying the Servlet
environment in Grails 3.x.

Adding New Servlets

If you want to add a new Servlet instance the simplest way is simply to define a new Spring
bean in the method:doWithSpring

Closure doWithSpring() {{->
 myServlet(MyServlet)
}}

If you need to customize the servlet you can use Spring Boot’s :ServletRegistrationBean

Closure doWithSpring() {{->
 myServlet(ServletRegistrationBean, MyServlet(),) {new "/myServlet/*"
 loadOnStartup = 2
 }
}}

Adding New Servlet Filters

Just like Servlets, the simplest way to configure a new filter is to simply define a Spring
bean:

Closure doWithSpring() {{->
 myFilter(MyFilter)
}}

However, if you want to control the order of filter registrations you will need to use Spring
Boot’s :FilterRegistrationBean

myFilter(FilterRegistrationBean) {
 filter = bean(MyFilter)
 urlPatterns = []'/*'
 order = Ordered.HIGHEST_PRECEDENCE
}

Grails' internal registered filters (, etc.) areGrailsWebRequestFilter HiddenHttpMethodFilter

defined by incrementing by 10 thus allowing several filters to be insertedHIGHEST_PRECEDENCE

before or between Grails' filters.

Doing Post Initialisation Configuration

Sometimes it is useful to be able do some runtime configuration after the Spring
 has been built. In this case you can define a ApplicationContext doWithApplicationContext

closure property.

 Plugin{class SimplePlugin extends

 name = def "simple"
 version = def "1.1"

 @Override
 doWithApplicationContext() {void
 sessionFactory = applicationContext.sessionFactorydef

http://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/context/embedded/ServletRegistrationBean.html
http://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/web/servlet/FilterRegistrationBean.html
https://docs.spring.io/spring/docs/5.3.33/javadoc-api/org/springframework/context/ApplicationContext.html

 // do something here with session factory
 }
}

17.6 Adding Methods at Compile Time

Grails 3.0 makes it easy to add new traits to existing artefact types from a plugin. For
example say you wanted to add methods for manipulating dates to controllers. This can be
done by defining a trait in :src/main/groovy

 mypluginpackage

()@Enhances "Controller"
trait DateTrait {
 currentDate() {Date
 ()return new Date
 }
}

The annotation defines the types of artefacts that the trait should be applied to.@Enhances

As an alternative to using the annotation above, you can implement a @Enhances TraitInjector
to tell Grails which artefacts you want to inject the trait into at compile time:

 mypluginpackage

@CompileStatic
 TraitInjector {class ControllerTraitInjector implements

 @Override
 getTrait() {Class
 SomeTrait
 }

 @Override
 getArtefactTypes() {String[]
 [] 'Controller' as String[]
 }
}

The above will add the to all controllers. The methodTraitInjector SomeTrait getArtefactTypes

defines the types of artefacts that the trait should be applied to.

Applying traits conditionally

A implementation can also implement the interface toTraitInjector SupportsClassNode
apply traits to only those artefacts which satisfy a custom requirement. For example, if a
trait should only be applied if the target artefact class has a specific annotation, it can be
done as below

 mypluginpackage

@CompileStatic
 TraitInjector, SupportsClassNode {class AnnotationBasedTraitInjector implements

 @Override
 getTrait() {Class
 SomeTrait
 }

 @Override
 getArtefactTypes() {String[]
 [] 'Controller' as String[]
 }

 supports(ClassNode classNode) {boolean
 GrailsASTUtils.hasAnnotation(classNode, SomeAnnotation)return
 }
}

Above will add the to only those controllers which has the TraitInjector SomeTrait

 declared.SomeAnnotation

The framework discovers trait injectors by way of a descriptor thatMETA-INF/grails.factories

http://docs.grails.org/6.2.0/api/grails/compiler/traits/TraitInjector.html
http://docs.grails.org/6.2.0/api/grails/compiler/ast/SupportsClassNode.html

is in the .jar file. This descriptor is automatically generated. The descriptor generated for the
code shown above would look like this:

#Grails Factories File
grails.compiler.traits.TraitInjector=
myplugin.ControllerTraitInjector,myplugin.DateTraitTraitInjector

Due to formatting issues, above code snippet includes a line break after equal sign.

That file is generated automatically and added to the .jar file at build time. If for any reason
the application defines its own file at grails.factories

, it is important that the trait injectors be explicitlysrc/main/resources/META-INF/grails.factories

defined in that file. The auto-generated metadata is only reliable if the application does not
define its own file.src/main/resources/META-INF/grails.factores

17.7 Adding Dynamic Methods at Runtime

The Basics

Grails plugins let you register dynamic methods with any Grails-managed or other class at
runtime. This work is done in a method.doWithDynamicMethods

Note that Grails 3.x features newer features such as traits that are usable from code
compiled with . It is recommended that dynamic behavior is only added forCompileStatic

cases that are not possible with traits.

 Plugin {class ExamplePlugin extends
 doWithDynamicMethods() {void
 (controllerClass grailsApplication.controllerClasses) {for in
 controllerClass.metaClass.myNewMethod = {-> println }"hello world"
 }
 }
}

In this case we use the implicit application object to get a reference to all of the controller
classes' MetaClass instances and add a new method called to each controller. IfmyNewMethod

you know beforehand the class you wish the add a method to you can simply reference its
 property.metaClass

For example we can add a new method to :swapCase java.lang.String

 Plugin {class ExamplePlugin extends

 @Override
 doWithDynamicMethods() {void
 .metaClass.swapCase = {->String
 sb = ()def new StringBuilder
 delegate.each {
 sb << (.isUpperCase() ?Character it as char
 .toLowerCase() :Character it as char
 .toUpperCase())Character it as char
 }
 sb.toString()
 }

 == .swapCase()assert "UpAndDown" "uPaNDdOWN"
 }
}

Interacting with the ApplicationContext

The closure gets passed the Spring instance. This isdoWithDynamicMethods ApplicationContext

useful as it lets you interact with objects within it. For example if you were implementing a
method to interact with Hibernate you could use the instance in combinationSessionFactory

with a :HibernateTemplate

 import org.springframework.orm.hibernate3.HibernateTemplate

 Plugin{class ExampleHibernatePlugin extends

 doWithDynamicMethods() {void

 (domainClass grailsApplication.domainClasses) {for in

 domainClass.metaClass.static.load = { id->Long
 sf = applicationContext.sessionFactorydef
 template = HibernateTemplate(sf)def new
 template.load(delegate, id)
 }
 }
 }
}

Also because of the autowiring and dependency injection capability of the Spring container
you can implement more powerful dynamic constructors that use the application context to
wire dependencies into your object at runtime:

 {class MyConstructorPlugin

 doWithDynamicMethods()void
 (domainClass grailsApplication.domainClasses) {for in
 domainClass.metaClass.constructor = {->
 applicationContext.getBean(domainClass.name)return
 }
 }
 }
}

Here we actually replace the default constructor with one that looks up prototyped Spring
beans instead!

17.8 Participating in Auto Reload Events

Monitoring Resources for Changes

Often it is valuable to monitor resources for changes and perform some action when they
occur. This is how Grails implements advanced reloading of application state at runtime. For
example, consider this simplified snippet from the Grails :ServicesPlugin

 Plugin {class ServicesGrailsPlugin extends
 ...
 def watchedResources = "file:./grails-app/services/**/*Service.groovy"

 ...
 void onChange(< , > event) {Map String Object
 (event.source) {if
 serviceClass = grailsApplication.addServiceClass(event.source)def
 serviceName = def " serviceClass.propertyName${ }"
 beans {
 (serviceClass.getClazz()) { bean ->" serviceName$ "
 bean.autowire = true
 }
 }
 }
 }
}

First it defines as either a String or a List of strings that contain either thewatchedResources

references or patterns of the resources to watch. If the watched resources specify a Groovy
file, when it is changed it will automatically be reloaded and passed into the closureonChange

in the object.event

The object defines a number of useful properties:event

event.source - The source of the event, either the reloaded or a Spring Class Resource

event.ctx - The Spring instanceApplicationContext

event.plugin - The plugin object that manages the resource (usually)this

event.application - The instanceGrailsApplication

event.manager - The instanceGrailsPluginManager

These objects are available to help you apply the appropriate changes based on what
changed. In the "Services" example above, a new service bean is re-registered with the

 when one of the service classes changes.ApplicationContext

Influencing Other Plugins

In addition to reacting to changes, sometimes a plugin needs to "influence" another.

Take for example the Services and Controllers plugins. When a service is reloaded, unless
you reload the controllers too, problems will occur when you try to auto-wire the reloaded
service into an older controller Class.

To get around this, you can specify which plugins another plugin "influences". This means
that when one plugin detects a change, it will reload itself and then reload its influenced
plugins. For example consider this snippet from the :ServicesGrailsPlugin

 influences = []def 'controllers'

Observing other plugins

If there is a particular plugin that you would like to observe for changes but not necessary
watch the resources that it monitors you can use the "observe" property:

 observe = []def "controllers"

In this case when a controller is changed you will also receive the event chained from the
controllers plugin.

It is also possible for a plugin to observe all loaded plugins by using a wildcard:

 observe = []def "*"

The Logging plugin does exactly this so that it can add the property back to artefactlog any
that changes while the application is running.

17.9 Understanding Plugin Load Order

Controlling Plugin Dependencies

Plugins often depend on the presence of other plugins and can adapt depending on the
presence of others. This is implemented with two properties. The first is called . FordependsOn

example, take a look at this snippet from the Hibernate plugin:

 {class HibernateGrailsPlugin

 version = def "1.0"

 dependsOn = [: ,def dataSource "1.0"
 : ,domainClass "1.0"
 : ,i18n "1.0"
 :]core "1.0"
}

The Hibernate plugin is dependent on the presence of four plugins: the , ,dataSource domainClass

 and plugins.i18n core

The dependencies will be loaded before the Hibernate plugin and if all dependencies do not
load, then the plugin will not load.

The property also supports a mini expression language for specifying versiondependsOn

ranges. A few examples of the syntax can be seen below:

 dependsOn = [:]def foo "* > 1.0"
 dependsOn = [:]def foo "1.0 > 1.1"
 dependsOn = [:]def foo "1.0 > *"

When the wildcard * character is used it denotes "any" version. The expression syntax also
excludes any suffixes such as -BETA, -ALPHA etc. so for example the expression "1.0 >
1.1" would match any of the following versions:

1.1

1.0

1.0.1

1.0.3-SNAPSHOT

1.1-BETA2

Controlling Load Order

Using establishes a "hard" dependency in that if the dependency is not resolved, thedependsOn

plugin will give up and won’t load. It is possible though to have a weaker dependency using
the and properties:loadAfter loadBefore

 loadAfter = []def 'controllers'

Here the plugin will be loaded after the plugin if it exists, otherwise it will just becontrollers

loaded. The plugin can then adapt to the presence of the other plugin, for example the
Hibernate plugin has this code in its closure:doWithSpring

 (manager?.hasGrailsPlugin()) {if "controllers"
 openSessionInViewInterceptor(OpenSessionInViewInterceptor) {
 flushMode = HibernateAccessor.FLUSH_MANUAL
 sessionFactory = sessionFactory
 }
 grailsUrlHandlerMapping.interceptors << openSessionInViewInterceptor
}

Here the Hibernate plugin will only register an if the OpenSessionInViewInterceptor controllers

plugin has been loaded. The variable is an instance of the manager GrailsPluginManager
interface and it provides methods to interact with other plugins.

You can also use the property to specify one or more plugins that your pluginloadBefore

should load before:

 loadBefore = []def 'rabbitmq'

Scopes and Environments

It’s not only plugin load order that you can control. You can also specify which
environments your plugin should be loaded in and which scopes (stages of a build). Simply
declare one or both of these properties in your plugin descriptor:

 environments = [, ,]def 'development' 'test' 'myCustomEnv'

http://docs.grails.org/6.2.0/api/grails/plugins/GrailsPluginManager.html

 scopes = [:]def excludes 'war'

In this example, the plugin will only load in the 'development' and 'test' environments. Nor
will it be packaged into the WAR file, because it’s excluded from the 'war' phase. This
allows plugins to not be packaged for production use.development-only

The full list of available scopes are defined by the enum , but here’s a summary:BuildScope

test - when running tests

functional-test - when running functional tests

run - for run-app and run-war

war - when packaging the application as a WAR file

all - plugin applies to all scopes (default)

Both properties can be one of:

a string - a sole inclusion

a list - a list of environments or scopes to include

a map - for full control, with 'includes' and/or 'excludes' keys that can have string or list
values

For example,

 environments = def "test"

will only include the plugin in the test environment, whereas

 environments = [,]def "development" "test"

will include it in both the development test environments. Finally,and

 environments = [: [,]]def includes "development" "test"

will do the same thing.

17.10 The Artefact API

You should by now understand that Grails has the concept of artefacts: special types of
classes that it knows about and can treat differently from normal Groovy and Java classes,
for example by enhancing them with extra properties and methods. Examples of artefacts
include domain classes and controllers. What you may not be aware of is that Grails allows
application and plugin developers access to the underlying infrastructure for artefacts, which
means you can find out what artefacts are available and even enhance them yourself. You
can even provide your own custom artefact types.

17.10.1 Asking About Available Artefacts

As a plugin developer, it can be important for you to find out about what domain classes,
controllers, or other types of artefact are available in an application. For example, the

 needs to know what domain classes exist so it can check them for any Elasticsearch plugin
 properties and index the appropriate ones. So how does it do it? The answer liessearchable

http://docs.grails.org/6.2.0/api/grails/util/BuildScope.html
https://grails.org/plugins.html#plugin/elasticsearch

with the object, and instance of that’s availablegrailsApplication GrailsApplication
automatically in controllers and GSPs and can be everywhere else.injected

The object has several important properties and methods for queryinggrailsApplication

artefacts. Probably the most common is the one that gives you all the classes of a particular
artefact type:

 (cls grailsApplication.<artefactType>Classes) {for in
 ...
}

In this case, is the property name form of the artefact type. With core Grails youartefactType

have:

domain

controller

tagLib

service

codec

bootstrap

urlMappings

So for example, if you want to iterate over all the domain classes, you use:

 (cls grailsApplication.domainClasses) {for in
 ...
}

and for URL mappings:

 (cls grailsApplication.urlMappingsClasses) {for in
 ...
}

You need to be aware that the objects returned by these properties are not instances of .Class
Instead, they are instances of that has some particularly useful properties andGrailsClass
methods, including one for the underlying :Class

shortName - the class name of the artefact without the package (equivalent of).Class.simpleName

logicalPropertyName - the artefact name in property form without the 'type' suffix. So
 becomes 'myGreat'.MyGreatController

isAbstract() - a boolean indicating whether the artefact class is abstract or not.

getPropertyValue(name) - returns the value of the given property, whether it’s a static or an
instance one. This works best if the property is initialised on declaration, e.g. static

.transactional = true

The artefact API also allows you to fetch classes by name and check whether a class is an
artefact:

get<type>Class(String name)

http://docs.grails.org/6.2.0/api/grails/core/GrailsApplication.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Class.html
http://docs.grails.org/6.2.0/api/grails/core/GrailsClass.html

is<type>Class(Class clazz)

The first method will retrieve the instance for the given name, e.g.GrailsClass

'MyGreatController'. The second will check whether a class is a particular type of artefact.
For example, you can use tograilsApplication.isControllerClass(org.example.MyGreatController)

check whether is in fact a controller.MyGreatController

17.10.2 Adding Your Own Artefact Types

Plugins can easily provide their own artefacts so that they can easily find out what
implementations are available and take part in reloading. All you need to do is create an

 implementation and register it in your main plugin class:ArtefactHandler

 {class MyGrailsPlugin
 artefacts = [org.somewhere.MyArtefactHandler]def
 ...
}

The list can contain either handler classes (as above) or instances of handlers.artefacts

So, what does an artefact handler look like? Well, put simply it is an implementation of the
 interface. To make life a bit easier, there is a skeleton implementation thatArtefactHandler

can readily be extended: .ArtefactHandlerAdapter

In addition to the handler itself, every new artefact needs a corresponding wrapper class that
implements . Again, skeleton implementations are available such as GrailsClass

, which is particularly useful as it turns your artefact into aAbstractInjectableGrailsClass
Spring bean that is auto-wired, just like controllers and services.

The best way to understand how both the handler and wrapper classes work is to look at the
Quartz plugin:

GrailsJobClass

DefaultGrailsJobClass

JobArtefactHandler

Another example is the which adds a realm artefact.Shiro plugin

18 Grails and Spring
This section is for advanced users and those who are interested in how Grails integrates with
and builds on the . It is also useful for consideringSpring Framework plugin developers
doing runtime configuration Grails.

18.1 Configuring Additional Beans

Using the Spring Bean DSL

You can easily register new (or override existing) beans by configuring them in
 which uses the Grails . Beans are definedgrails-app/conf/spring/resources.groovy Spring DSL

inside a property (a Closure):beans

http://docs.grails.org/6.2.0/api/grails/core/ArtefactHandler.html
http://docs.grails.org/6.2.0/api/grails/core/ArtefactHandlerAdapter.html
http://docs.grails.org/6.2.0/api/grails/core/GrailsClass.html
http://docs.grails.org/6.2.0/api/org/grails/core/AbstractInjectableGrailsClass.html
https://github.com/grails-plugins/grails-quartz/blob/master/src/main/groovy/grails/plugins/quartz/GrailsJobClass.java
https://github.com/grails-plugins/grails-quartz/blob/master/src/main/groovy/grails/plugins/quartz/DefaultGrailsJobClass.java
https://github.com/grails-plugins/grails-quartz/blob/master/src/main/groovy/grails/plugins/quartz/JobArtefactHandler.groovy
http://github.com/pledbrook/grails-shiro
http://spring.io/

beans = {
 // beans here
}

As a simple example you can configure a bean with the following syntax:

 import my.company.MyBeanImpl

beans = {
 myBean(MyBeanImpl) {
 someProperty = 42
 otherProperty = "blue"
 }
}

Once configured, the bean can be auto-wired into Grails artifacts and other classes that
support dependency injection (for example and integration tests) byBootStrap.groovy

declaring a public field whose name is your bean’s name (in this case):myBean

 {class ExampleController

 myBeandef
 ...
}

Using the DSL has the advantage that you can mix bean declarations and logic, for example
based on the :environment

 import grails.util.Environment
 import my.company.mock.MockImpl
 import my.company.MyBeanImpl

beans = {
 (Environment.current) {switch
 Environment.PRODUCTION:case
 myBean(MyBeanImpl) {
 someProperty = 42
 otherProperty = "blue"
 }
 break

 Environment.DEVELOPMENT:case
 myBean(MockImpl) {
 someProperty = 42
 otherProperty = "blue"
 }
 break
 }
}

The object can be accessed with the variable and can be used toGrailsApplication application

access the Grails configuration (amongst other things):

 import grails.util.Environment
 import my.company.mock.MockImpl
 import my.company.MyBeanImpl

beans = {
 (application.config.getProperty()) {if 'my.company.mockService'
 myBean(MockImpl) {
 someProperty = 42
 otherProperty = "blue"
 }
 } {else
 myBean(MyBeanImpl) {
 someProperty = 42
 otherProperty = "blue"
 }
 }
}

If you define a bean in with the same name as one previously registered byresources.groovy

Grails or an installed plugin, your bean will replace the previous registration. This is a
convenient way to customize behavior without resorting to editing plugin code or other
approaches that would affect maintainability.

Using XML

Beans can also be configured using a . In earlier versionsgrails-app/conf/spring/resources.xml

of Grails this file was automatically generated for you by the script, but the DSL in run-app

 is the preferred approach now so it isn’t automatically generated now. But itresources.groovy

is still supported - you just need to create it yourself.

This file is typical Spring XML file and the Spring documentation has an excellent reference
on how to configure Spring beans.

The bean that we configured using the DSL would be configured with this syntax inmyBean

the XML file:

 = =<bean id "myBean" class "my.company.MyBeanImpl">
 = = <property name "someProperty" value "42" />
 = = <property name "otherProperty" value "blue" />
</bean>

Like the other bean it can be auto-wired into any class that supports dependency injection:

 {class ExampleController

 myBeandef
}

Referencing Existing Beans

Beans declared in or can reference other beans by convention.resources.groovy resources.xml

For example if you had a class its Spring bean name would be , so yourBookService bookService

bean would reference it like this in the DSL:

beans = {
 myBean(MyBeanImpl) {
 someProperty = 42
 otherProperty = "blue"
 bookService = ref()"bookService"
 }
}

or like this in XML:

 = =<bean id "myBean" class "my.company.MyBeanImpl">
 = = <property name "someProperty" value "42" />
 = = <property name "otherProperty" value "blue" />
 = = <property name "bookService" ref "bookService" />
</bean>

The bean needs a public setter for the bean reference (and also the two simple properties),
which in Groovy would be defined like this:

 my.companypackage

 {class MyBeanImpl
 somePropertyInteger
 otherPropertyString
 BookService bookService // or just "def bookService"
}

or in Java like this:

 my.company;package

 {class MyBeanImpl

 BookService bookService;private
 someProperty;private Integer
 otherProperty;private String

 setBookService(BookService theBookService) {public void
 .bookService = theBookService;this
 }

 setSomeProperty(someProperty) {public void Integer
 .someProperty = someProperty;this
 }

http://docs.spring.io/spring/docs/4.0.x/spring-framework-reference/html/beans.html#beans-basics

 setOtherProperty(otherProperty) {public void String
 .otherProperty = otherProperty;this
 }
}

Using (in XML or the DSL) is very powerful since it configures a runtime reference, soref

the referenced bean doesn’t have to exist yet. As long as it’s in place when the final
application context configuration occurs, everything will be resolved correctly.

For a full reference of the available beans see the plugin reference in the reference guide.

18.2 Runtime Spring with the Beans DSL

This Bean builder in Grails aims to provide a simplified way of wiring together
dependencies that uses Spring at its core.

In addition, Spring’s regular way of configuration (via XML and annotations) is static and
difficult to modify and configure at runtime, other than programmatic XML creation which
is both error prone and verbose. Grails' changes all that by making it possibleBeanBuilder
to programmatically wire together components at runtime, allowing you to adapt the logic
based on system properties or environment variables.

This enables the code to adapt to its environment and avoids unnecessary duplication of
code (having different Spring configs for test, development and production environments)

The BeanBuilder class

Grails provides a class that uses dynamic Groovy to constructgrails.spring.BeanBuilder
bean definitions. The basics are as follows:

 import org.apache.commons.dbcp.BasicDataSource
 import org.grails.orm.hibernate.ConfigurableLocalSessionFactoryBean
 import org.springframework.context.ApplicationContext
 import grails.spring.BeanBuilder

 bb = BeanBuilder()def new

bb.beans {

 dataSource(BasicDataSource) {
 driverClassName = "org.h2.Driver"
 url = "jdbc:h2:mem:grailsDB"
 username = "sa"
 password = ""
 }

 sessionFactory(ConfigurableLocalSessionFactoryBean) {
 dataSource = ref()'dataSource'
 hibernateProperties = [: ,"hibernate.hbm2ddl.auto" "create-drop"
 :]"hibernate.show_sql" "true"
 }
}

ApplicationContext appContext = bb.createApplicationContext()

Within and the file you don’t need to create aplugins grails-app/conf/spring/resources.groovy

new instance of . Instead the DSL is implicitly available inside the BeanBuilder doWithSpring

and blocks respectively.beans

This example shows how you would configure Hibernate with a data source with the
 class.BeanBuilder

Each method call (in this case and calls) maps to the name of thedataSource sessionFactory

bean in Spring. The first argument to the method is the bean’s class, whilst the last argument
is a block. Within the body of the block you can set properties on the bean using standard
Groovy syntax.

http://docs.grails.org/6.2.0/api/grails/spring/BeanBuilder.html
http://docs.grails.org/6.2.0/api/grails/spring/BeanBuilder.html

Bean references are resolved automatically using the name of the bean. This can be seen in
the example above with the way the bean resolves the reference.sessionFactory dataSource

Certain special properties related to bean management can also be set by the builder, as seen
in the following code:

sessionFactory(ConfigurableLocalSessionFactoryBean) { bean ->
 // Autowiring behaviour. The other option is 'byType'. <<autowire>>
 bean.autowire = 'byName'
 // Sets the initialisation method to 'init'. [init-method]
 bean.initMethod = 'init'
 // Sets the destruction method to 'destroy'. [destroy-method]
 bean.destroyMethod = 'destroy'
 // Sets the scope of the bean. <<scope>>
 bean.scope = 'request'
 dataSource = ref()'dataSource'
 hibernateProperties = [: ,"hibernate.hbm2ddl.auto" "create-drop"
 :]"hibernate.show_sql" "true"
}

The strings in square brackets are the names of the equivalent bean attributes in Spring’s
XML definition.

Using BeanBuilder with Spring MVC

Include the file in your classpath to use BeanBuilder in a regulargrails-spring-<version>.jar

Spring MVC application. Then add the following values to your <context-param>

 file:/WEB-INF/web.xml

<context-param>
 contextConfigLocation<param-name> </param-name>
 /WEB-INF/applicationContext.groovy<param-value> </param-value>
</context-param>

<context-param>
 contextClass<param-name> </param-name>
 <param-value>
 grails.web.servlet.context.GrailsWebApplicationContext
 </param-value>
</context-param>

Then create a file that does the rest:/WEB-INF/applicationContext.groovy

 import org.apache.commons.dbcp.BasicDataSource

beans {
 dataSource(BasicDataSource) {
 driverClassName = "org.h2.Driver"
 url = "jdbc:h2:mem:grailsDB"
 username = "sa"
 password = ""
 }
}

Loading Bean Definitions from the File System

You can use the class to load external Groovy scripts that define beans using theBeanBuilder

same path matching syntax defined here. For example:

 bb = BeanBuilder()def new
bb.loadBeans()"classpath:*SpringBeans.groovy"

 applicationContext = bb.createApplicationContext()def

Here the loads all Groovy files on the classpath ending with andBeanBuilder SpringBeans.groovy

parses them into bean definitions. An example script can be seen below:

 import org.apache.commons.dbcp.BasicDataSource
 import org.grails.orm.hibernate.ConfigurableLocalSessionFactoryBean

beans {

 dataSource(BasicDataSource) {

 driverClassName = "org.h2.Driver"
 url = "jdbc:h2:mem:grailsDB"
 username = "sa"
 password = ""
 }

 sessionFactory(ConfigurableLocalSessionFactoryBean) {
 dataSource = dataSource
 hibernateProperties = [: ,"hibernate.hbm2ddl.auto" "create-drop"
 :]"hibernate.show_sql" "true"
 }
}

Adding Variables to the Binding (Context)

If you’re loading beans from a script you can set the binding to use by creating a Groovy
:Binding

 binding = ()def new Binding
binding.maxSize = 10000
binding.productGroup = 'finance'

 bb = BeanBuilder()def new
bb.binding = binding
bb.loadBeans()"classpath:*SpringBeans.groovy"

 ctx = bb.createApplicationContext()def

Then you can access the and properties in your DSL files.maxSize productGroup

18.3 The BeanBuilder DSL Explained

Using Constructor Arguments

Constructor arguments can be defined using parameters to each bean-defining method. Put
them after the first argument (the Class):

bb.beans {
 exampleBean(MyExampleBean, ,) {"firstArgument" 2
 someProperty = [, ,]1 2 3
 }
}

This configuration corresponds to a with a constructor that looks like this:MyExampleBean

MyExampleBean(foo, bar) {String int
 ...
}

Configuring the BeanDefinition (Using factory methods)

The first argument to the closure is a reference to the bean configuration instance, which you
can use to configure factory methods and invoke any method on the AbstractBeanDefinition
class:

bb.beans {
 exampleBean(MyExampleBean) { bean ->
 bean.factoryMethod = "getInstance"
 bean.singleton = false
 someProperty = [, ,]1 2 3
 }
}

As an alternative you can also use the return value of the bean defining method to configure
the bean:

bb.beans {
 example = exampleBean(MyExampleBean) {def
 someProperty = [, ,]1 2 3

https://docs.spring.io/spring/docs/5.3.33/javadoc-api/org/springframework/beans/factory/support/AbstractBeanDefinition.html

 }
 example.factoryMethod = "getInstance"
}

Using Factory beans

Spring defines the concept of factory beans and often a bean is created not directly from a
new instance of a Class, but from one of these factories. In this case the bean has no Class
argument and instead you must pass the name of the factory bean to the bean defining
method:

bb.beans {

 myFactory(ExampleFactoryBean) {
 someProperty = [, ,]1 2 3
 }

 myBean(myFactory) {
 name = "blah"
 }
}

Another common approach is provide the name of the factory method to call on the factory
bean. This can be done using Groovy’s named parameter syntax:

bb.beans {

 myFactory(ExampleFactoryBean) {
 someProperty = [, ,]1 2 3
 }

 myBean(:) {myFactory "getInstance"
 name = "blah"
 }
}

Here the method on the bean will be called to create the getInstance ExampleFactoryBean myBean

bean.

Creating Bean References at Runtime

Sometimes you don’t know the name of the bean to be created until runtime. In this case
you can use a string interpolation to invoke a bean defining method dynamically:

 beanName = def "example"
bb.beans {
 (MyExampleBean) {" beanName${ }Bean"
 someProperty = [, ,]1 2 3
 }
}

In this case the variable defined earlier is used when invoking a bean definingbeanName

method. The example has a hard-coded value but would work just as well with a name that
is generated programmatically based on configuration, system properties, etc.

Furthermore, because sometimes bean names are not known until runtime you may need to
reference them by name when wiring together other beans, in this case using the method:ref

 beanName = def "example"
bb.beans {

 (MyExampleBean) {" beanName${ }Bean"
 someProperty = [, ,]1 2 3
 }

 anotherBean(AnotherBean) {
 example = ref()" beanName${ }Bean"
 }
}

Here the example property of is set using a runtime reference to the .AnotherBean exampleBean

The method can also be used to refer to beans from a parent that isref ApplicationContext

provided in the constructor of the :BeanBuilder

ApplicationContext parent = ...//
 bb = BeanBuilder(parent)def new

bb.beans {
 anotherBean(AnotherBean) {
 example = ref(,)" beanName${ }Bean" true
 }
}

Here the second parameter specifies that the reference will look for the bean in thetrue

parent context.

Using Anonymous (Inner) Beans

You can use anonymous inner beans by setting a property of the bean to a block that takes
an argument that is the bean type:

bb.beans {

 marge(Person) {
 name = "Marge"
 husband = { Person p ->
 name = "Homer"
 age = 45
 props = [: , :]overweight true height "1.8m"
 }
 children = [ref(), ref()]'bart' 'lisa'
 }

 bart(Person) {
 name = "Bart"
 age = 11
 }

 lisa(Person) {
 name = "Lisa"
 age = 9
 }
}

In the above example we set the bean’s husband property to a block that creates anmarge

inner bean reference. Alternatively if you have a factory bean you can omit the type and just
use the specified bean definition instead to setup the factory:

bb.beans {

 personFactory(PersonFactory)

 marge(Person) {
 name = "Marge"
 husband = { bean ->
 bean.factoryBean = "personFactory"
 bean.factoryMethod = "newInstance"
 name = "Homer"
 age = 45
 props = [: , :]overweight true height "1.8m"
 }
 children = [ref(), ref()]'bart' 'lisa'
 }
}

Abstract Beans and Parent Bean Definitions

To create an abstract bean definition define a bean without a parameter:Class

 {class HolyGrailQuest
 () { println }def start "lets begin"
}

 {class KnightOfTheRoundTable

 nameString
 leaderString
 HolyGrailQuest quest

 KnightOfTheRoundTable(name) {String
 .name = namethis
 }

 () {def embarkOnQuest
 quest.start()
 }
}

 import grails.spring.BeanBuilder

 bb = BeanBuilder()def new
bb.beans {
 abstractBean {
 leader = "Lancelot"
 }
 ...
}

Here we define an abstract bean that has a property with the value of . To useleader "Lancelot"

the abstract bean set it as the parent of the child bean:

bb.beans {
 ...
 quest(HolyGrailQuest)

 knights(KnightOfTheRoundTable,) { bean ->"Camelot"
 bean.parent = abstractBean
 quest = ref()'quest'
 }
}

When using a parent bean you must set the parent property of the bean before setting any
other properties on the bean!

If you want an abstract bean that has a specified you can do it this way:Class

 import grails.spring.BeanBuilder

 bb = BeanBuilder()def new
bb.beans {

 abstractBean(KnightOfTheRoundTable) { bean ->
 bean. = 'abstract' true
 leader = "Lancelot"
 }

 quest(HolyGrailQuest)

 knights() { bean ->"Camelot"
 bean.parent = abstractBean
 quest = quest
 }
}

In this example we create an abstract bean of type and use the beanKnightOfTheRoundTable

argument to set it to abstract. Later we define a knights bean that has no defined, butClass

inherits the from the parent bean.Class

Using Spring Namespaces

Since Spring 2.0, users of Spring have had easier access to key features via XML
namespaces. You can use a Spring namespace in BeanBuilder by declaring it with this
syntax:

xmlns :context "http://www.springframework.org/schema/context"

and then invoking a method that matches the names of the Spring namespace tag and its
associated attributes:

context. (:)'component-scan' 'base-package' "my.company.domain"

You can do some useful things with Spring namespaces, such as looking up a JNDI
resource:

xmlns :jee "http://www.springframework.org/schema/jee"

jee. (: , :)'jndi-lookup' id "dataSource" 'jndi-name' "java:comp/env/myDataSource"

This example will create a Spring bean with the identifier by performing a JNDIdataSource

lookup on the given JNDI name. With Spring namespaces you also get full access to all of
the powerful AOP support in Spring from BeanBuilder. For example given these two
classes:

 {class Person

 ageint
 nameString

 birthday() {void
 ++age;
 }
}

 {class BirthdayCardSender

 peopleSentCards = List []

 onBirthday(Person person) {void
 peopleSentCards << person
 }
}

You can define an aspect that uses a pointcut to detect whenever the method isbirthday()

called:

xmlns :aop "http://www.springframework.org/schema/aop"

fred(Person) {
 name = "Fred"
 age = 45
}

birthdayCardSenderAspect(BirthdayCardSender)

aop {
 config(:) {"proxy-target-class" true
 aspect(: , :) {id "sendBirthdayCard" ref "birthdayCardSenderAspect"
 after : ,method "onBirthday"
 : pointcut "execution(void ..Person.birthday()) and this(person)"
 }
 }
}

18.4 Property Placeholder Configuration

Grails supports the notion of property placeholder configuration through an extended
version of Spring’s .PropertyPlaceholderConfigurer

Settings defined in either scripts or Java properties files can be used asConfigSlurper
placeholder values for Spring configuration in and grails-app/conf/spring/resources.xml

. For example given the following entries in grails-app/conf/spring/resources.groovy

 (or an externalized config):grails-app/conf/application.groovy

database.driver="com.mysql.jdbc.Driver"
database.dbname="mysql:mydb"

You can then specify placeholders in as follows using the familiar ${..} syntax:resources.xml

 =<bean id "dataSource"
 =class "org.springframework.jdbc.datasource.DriverManagerDataSource">
 =<property name "driverClassName">
 ${database.driver}<value> </value>
 </property>
 =<property name "url">
 jdbc:${database.dbname}<value> </value>
 </property>
 </bean>

To specify placeholders in you need to use single quotes:resources.groovy

dataSource(org.springframework.jdbc.datasource.DriverManagerDataSource) {
 driverClassName = '${database.driver}'
 url = 'jdbc:${database.dbname}'

https://docs.spring.io/spring/docs/5.3.33/javadoc-api/org/springframework/beans/factory/config/PropertyPlaceholderConfigurer.html
https://docs.groovy-lang.org/3.0.21/html/gapi/groovy/util/ConfigSlurper.html

}

This sets the property value to a literal string which is later resolved against the config by
Spring’s PropertyPlaceholderConfigurer.

A better option for is to access properties through the resources.groovy grailsApplication

variable:

dataSource(org.springframework.jdbc.datasource.DriverManagerDataSource) {
 driverClassName = grailsApplication.config.getProperty(,)'database.driver' String
 url = "jdbc\: grailsApplication.config.getProperty(,)${ 'database.dbname' String }"
}

Using this approach will keep the types as defined in your config.

18.5 Property Override Configuration

Grails supports setting of bean properties via .configuration

You define a block with the names of beans and their values:beans

beans {
 bookService {
 webServiceURL = "http://www.amazon.com"
 }
}

The general format is:

<<bean name>>.<<property name>> = <<value>>

The same configuration in a Java properties file would be:

beans.bookService.webServiceURL= :http //www.amazon.com

18.6 Spring Boot Actuators

Spring Boot Actuator endpoints allow you to monitor and interact with your application.
Spring Boot includes a number of built-in endpoints. For example the endpointhealth

provides basic application health information.

These endpoints are disabled by default since Grails 3.1.8.

You can enable actuator endpoints in your as follows:application.yml

grails-app/conf/application.yml
:management

 :endpoints
 : enabled-by-default true

19 Scaffolding
Scaffolding lets you generate some basic CRUD interfaces for a domain class, including:

The necessary views

Controller actions for create/read/update/delete (CRUD) operations

https://docs.spring.io/spring-boot/docs/2.7.16/reference/html/production-ready-endpoints.html

The way for an application to express a dependency on the scaffolding plugin is by
including the following in .build.gradle

dependencies {
 // ...
 implementation "org.grails.plugins:scaffolding"
 // ...
 }

Dynamic Scaffolding

The simplest way to get started with scaffolding is to enable it by setting the scaffold
property in the controller to a specific domain class:

 {class BookController
 scaffold = static Book // Or any other domain class such as "Author", "Publisher"
}

With this configured, when you start your application the actions and views will be
autogenerated at runtime. The following actions are dynamically implemented by default by
the runtime scaffolding mechanism:

index

show

edit

delete

create

save

update

A CRUD interface will also be generated. To access this open in ahttp://localhost:8080/book

browser.

Note: The old alternative of defining property:scaffold

 {class BookController
 scaffold = static true
}

is no longer supported above Grails 3.0.

If you prefer to keep your domain model in Java and you can stillmapped with Hibernate
use scaffolding, simply import the domain class and set its name as the argument.scaffold

You can add new actions to a scaffolded controller, for example:

 {class BookController

 scaffold = static Book

 () {def changeAuthor
 b = .get(params.id)def Book
 b.author = Author.get(params[])"author.id"
 b.save()

 // redirect to a scaffolded action
 redirect(:show)action
 }
}

http://localhost:8080/book
https://hibernate.org/

You can also override the scaffolded actions:

 {class BookController

 scaffold = static Book

 // overrides scaffolded action to return both authors and books
 () {def index
 [: .list(),bookInstanceList Book
 : .count(),bookInstanceTotal Book
 : Author.list()]authorInstanceList
 }

 () {def show
 book = .get(params.id)def Book
 log.error(, book)"{}"
 [bookInstance : book]
 }
}

All of this is what is known as "dynamic scaffolding" where the CRUD interface is
generated dynamically at runtime.

By default, the size of text areas in scaffolded views is defined in the CSS, so adding 'rows'
and 'cols' attributes will have no effect.

Also, the standard scaffold views expect model variables of the form
 for collections and for single instances. It’s<propertyName>InstanceList <propertyName>Instance

tempting to use properties like 'books' and 'book', but those won’t work.

Static Scaffolding

Grails lets you generate a controller and the views used to create the above interface from
the command line. To generate a controller type:

grails generate-controller Book

or to generate the views:

grails generate-views Book

or to generate everything:

grails generate-all Book

If you have a domain class in a package or are generating from a Hibernate mapped class
remember to include the fully qualified package name:

grails generate-all com.bookstore.Book

Customizing the Generated Views

The views adapt to . For example you can change the order that fieldsValidation constraints
appear in the views simply by re-ordering the constraints in the builder:

 constraints = {def
 title()
 releaseDate()
}

You can also get the generator to generate lists instead of text inputs if you use the inList
constraint:

 constraints = {def
 title()
 category(: [, ,])inList "Fiction" "Non-fiction" "Biography"
 releaseDate()
}

https://hibernate.org

Or if you use the constraint on a number:range

 constraints = {def
 age(: ..)range 18 65
}

Restricting the size with a constraint also effects how many characters can be entered in the
d view:

 constraints = {def
 name(: ..)size 0 30
}

The Fields Plugin

The Grails scaffolding templates make use of the . Once you’ve generatedThe Fields Plugin
the scaffold views, you can customize the forms and tables using the provided by theTaglib

plugin (see the for details).Fields plugin docs

%-- Generate an HTML table from bookInstanceList, showing only 'title' and 'category' columns --%< >
 = =<f:table collection "bookInstanceList" properties "['title', 'category']"/>

Customizing the Scaffolding templates

The templates used by Grails to generate the controller and views can be customized by
installing the templates with the command.install-templates

20 Deployment
Grails applications can be deployed in a number of ways, each of which has its pros and
cons.

20.1 Standalone

"./gradlew bootRun"

You should be very familiar with this approach by now, since it is the most common method
of running an application during the development phase. An embedded Tomcat server is
launched that loads the web application from the development sources, thus allowing it to
pick up any changes to application files.

You can run the application in the production environment using:

./gradlew bootRun -Dgrails.env=prod

You can run the app using the Gradle task. The next command uses the bootRun Gradle
.Wrapper

./gradlew bootRun

You can specify an environment supplying system property.grails.env

./gradlew -Dgrails.env=prod bootRun

Runnable WAR or JAR file

https://grails.org/plugins.html#plugin/fields
http://grails3-plugins.github.io/fields/snapshot/
https://docs.gradle.org/current/userguide/gradle_wrapper.html
https://docs.gradle.org/current/userguide/gradle_wrapper.html

Another way to deploy in Grails 3.0 or above is to use the new support for runnable JAR or
WAR files. To create runnable archives, run :grails package

grails package

Alternatively, you could use the Gradle task.assemble

./gradlew assemble

You can then run either the WAR file or the JAR using your Java installation:

java -Dgrails.env=prod -jar build/libs/mywar- .war (or .jar)0.1

A TAR/ZIP distribution

Note: TAR/ZIP distribution assembly has been removed from Grails 3.1.

20.2 Container Deployment (e.g. Tomcat)

Grails apps can be deployed to a Servlet Container or Application Server.

WAR file

A common approach to Grails application deployment in production is to deploy to an
existing Servlet container via a WAR file. Containers allow multiple applications to be
deployed on the same port with different paths.

Creating a WAR file is as simple as executing the command:war

grails war

This will produce a WAR file that can be deployed to a container, in the directory.build/libs

Note that by default Grails will include an embeddable version of Tomcat inside the WAR
file so that it is runnable (see the previous section), this can cause problems if you deploy to
a different version of Tomcat. If you don’t intend to use the embedded container then you
should either remove the Tomcat dependencies or change the scope to testImplementation
prior to deploying to your production container in :build.gradle

testImplementation "org.springframework.boot:spring-boot-starter-tomcat"

Application servers

The Grails framework requires that runtime containers support Servlet 3.0 and above. By
default, Grails framework applications are bundled with an embeddable Tomcat and testing
is primarily done with Tomcat. Any servlet container meeting the minimum requirements
should be able to run Grails framework applications, but some workarounds may be required
for container-specific bugs or configurations.

20.3 Deployment Configuration Tasks

Setting up HTTPS and SSL certificates for standalone deployment

To configure an SSL certificate and to listen on an HTTPS port instead of HTTP, add
properties like these to :application.yml

:server
 : The port to listen onport 8443 #
 :ssl
 : Activate HTTPS mode on the server portenabled true #
 key- : <the-location-of-your-keystore> e.g. tomcat7/keystore/tomcat.keystorestore # /etc/
 key-store- : <your-key-store-password> e.g. changeitpassword #
 key- : <your-key-alias> e.g. tomcatalias #
 key- : <usually-the-same- -your-key-store-password>password as

These settings control the embedded Tomcat container for a production deployment.
Alternatively, the properties can be specified on the command-line. Example:

.-Dserver.ssl.enabled=true -Dserver.ssl.key-store=/path/to/keystore

Configuration of both an HTTP and HTTPS connector via application properties is not
supported. If you want to have both, then you’ll need to configure one of them
programmatically. (More information on how to do this can be found in the how-to guide
below.)

There are other relevant settings. Further reference:

Spring Boot: Embed Webservers - Configure SSL

Spring Book: Enable Multiple Connectors with Tomcat

Spring Boot: Common Application Properties

21 Contributing to Grails
Grails is an open source project with an active community and we rely heavily on that
community to help make Grails better. As such, there are various ways in which people can
contribute to Grails. One of these is by and making them publiclywriting useful plugins
available. In this chapter, we’ll look at some of the other options.

21.1 Report Issues in Github's issue tracker

Grails uses Github to track issues in the . Similarly for its documentationcore framework
there is a . If you’ve found a bug or wish to see a particular feature added,separate tracker
these are the places to start. You’ll need to create a (free) github account in order to either
submit an issue or comment on an existing one in either of these.

When submitting issues, please provide as much information as possible and in the case of
bugs, make sure you explain which versions of Groovy, Grails and various plugins you are
using. Other environment details - OS version, JDK, Gradle etc. should also be included.
Also, an issue is much more likely to be dealt with if you upload a reproducible sample
application on a github repository and provide a link in the issue.

Reviewing issues

There are quite a few old issues in github, some of which may no longer be valid. The core
team can’t track down these alone, so a very simple contribution that you can make is to
verify one or two issues occasionally.

Which issues need verification? Going to the will display all issues that haven’tissue tracker
been resolved.

Once you’ve verified an issue, simply add a short comment explaining what you found. Be
sure to metion your environment details and grails version.

https://docs.spring.io/spring-boot/docs/current/reference/html/howto.html#howto-configure-ssl
https://docs.spring.io/spring-boot/docs/current/reference/html/howto.html#howto-enable-multiple-connectors-in-tomcat
https://docs.spring.io/spring-boot/docs/current/reference/html/common-application-properties.html
https://github.com/grails/grails-core/issues
https://github.com/grails/grails-doc/issues
https://github.com/grails/grails-core/issues?q=is%3Aopen+is%3Aissue

21.2 Build From Source and Run Tests

If you’re interested in contributing fixes and features to any part of grails, you will have to
learn how to get hold of the project’s source, build it and test it with your own applications.
Before you start, make sure you have:

A JDK (11 or above)

A git client

Once you have all the pre-requisite packages installed, the next step is to download the
Grails source code, which is hosted at in several repositories owned by the GitHub "grails"

. This is a simple case of cloning the repository you’re interested in. ForGitHub user
example, to get the core framework run:

git clone :http //github.com/grails/grails-core.git

This will create a "grails-core" directory in your current working directory containing all the
project source files. The next step is to get a Grails installation from the source.

Creating a Grails installation

If you look at the project structure, you’ll see that it doesn’t look much like a standard
 installation. But, it’s very simple to turn it into one. Just run this from the rootGRAILS_HOME

directory of the project:

./gradlew install

This will fetch all the standard dependencies required by Grails and then build a GRAILS_HOME
installation. Note that this target skips the extensive collection of Grails test classes, which
can take some time to complete.

Once the above command has finished, simply set the environment variable toGRAILS_HOME

the checkout directory and add the "bin" directory to your path. When you next type grails
command to run, you’ll be using the version you just built.

If you are using then that can also be used to work with this local installation viaSDKMAN
the following:

sdk install grails dev /path/to/grails-core

You will also need to publish your local installation to your local maven.

./gradlew pTML

Now you will have a dev version in your local which you can use to test your features.

Running the test suite

All you have to do to run the full suite of tests is:

./gradlew test

These will take a while (15-30 mins), so consider running individual tests using the
command line. For example, to run the test spec simply execute theBinaryPluginSpec

following command:

./gradlew :grails-core:test --tests *.BinaryPluginSpec

http://github.com
http://github.com/grails
http://github.com/grails
http://sdkman.io

Note that you need to specify the sub-project that the test case resides in, because the
top-level "test" target won’t work….

Developing in IntelliJ IDEA

You need to run the following gradle task:

./gradlew idea

Then open the project file which is generated in IDEA. Simple!

Developing in STS / Eclipse

You need to run the following gradle task:

./gradlew cleanEclipse eclipse

Before importing projects to STS do the following action:

Edit grails-scripts/.classpath and remove the line "<classpathentry kind="src"
path="../scripts"/>".

Use "ImportGeneralExisting Projects into Workspace" to import all projects to STS. There
will be a few build errors. To fix them do the following:

Add the springloaded-core JAR file in
$GRAILS_HOME/lib/org.springsource.springloaded/springloaded-core/jars to grails-core’s
classpath.

Remove "src/test/groovy" from grails-plugin-testing’s source path GRECLIPSE-1067

Add the jsp-api JAR file in $GRAILS_HOME/lib/javax.servlet.jsp/jsp-api/jars to the
classpath of grails-web

Fix the source path of grails-scripts. Add linked source folder linking to "../scripts". If you
get build errors in grails-scripts, do "../gradlew cleanEclipse eclipse" in that directory and
edit the .classpath file again (remove the line "<classpathentry kind="src"
path="../scripts"/>"). Remove possible empty "scripts" directory under grails-scripts if you
are not able to add the linked folder.

Do a clean build for the whole workspace.

To use Eclipse GIT scm team provider: Select all projects (except "Servers") in the
navigation and right click Team Share project (not "Share projects"). Choose "Git". Then
check "Use or create repository in parent folder of project" and click "Finish".

Get the recommended code style settings from the (final style not decidedmailing list thread
yet, currently). Import the code style xml file to STS inprofile.xml
WindowPreferencesJavaCode StyleFormatterImport . Grails code uses spaces instead of tabs
for indenting.

Debugging Grails or a Grails application

To enable debugging, run:

./gradlew bootRun --debug-jvm

http://grails.1312388.n4.nabble.com/Grails-development-code-style-IDE-formatting-settings-tp3854216p3854216.html
http://grails.1312388.n4.nabble.com/attachment/3854262/0/profile.xml

By default Grails forks a JVM to run the application in. The argument causes the-debug-jvm

debugger to be associated with the forked JVM.

21.3 Submit Patches to Grails Core

If you want to submit patches to the project, you simply need to fork the repository on
GitHub rather than clone it directly. Then you will commit your changes to your fork and
send a pull request for a core team member to review.

Forking and Pull Requests

One of the benefits of is the way that you can easily contribute to a project by GitHub
 and with your changes.forking the repository sending pull requests

What follows are some guidelines to help ensure that your pull requests are speedily dealt
with and provide the information we need. They will also make your life easier!

Make sure your fork is up to date

Making changes to outdated sources is not a good idea. Someone else may have already
made the change.

git pull upstream master

Create a local branch for your changes

Your life will be greatly simplified if you create a local branch to make your changes on.
For example, as soon as you fork a repository and clone the fork locally, execute

git checkout -b issue_123

This will create a new local branch called "issue_123" based off the "master" branch. Of
course, you can name the branch whatever you like, but a good idea would be to reference
the GitHub issue number that the change is relevant to. Each Pull Request should have its
own branch.

Create Github issues for non-trivial changes

For any non-trivial changes, raise an issue on github if one doesn’t already exist. That helps
us keep track of what changes go into each new version of Grails.

Include github issue ID in commit messages

This may not seem particularly important, but having a github issue ID in a commit message
means that we can find out at a later date why a change was made. Include the ID in any and
all commits that relate to that issue. If a commit isn’t related to an issue, then there’s no need
to include an issue ID.

Make sure your fork is up to date again and rebase

Since the core developers must merge your commits into the main repository, it makes life
much easier if your fork on GitHub is up to date before you send a pull request.

Let’s say you have the main repository set up as a remote called "upstream" and you want to
submit a pull request. Also, all your changes are currently on the local "issue_123" branch
but not on "master". The first step involves pulling any changes from the main repository
that have been added since you last fetched and merged:

http://github.com
https://help.github.com/articles/fork-a-repo/
https://help.github.com/articles/creating-a-pull-request/

git checkout master
git pull upstream master

This should complete without any problems or conflicts. Next, rebase your local branch
against the now up-to-date master:

git checkout issue_123
git rebase master

What this does is rearrange the commits such that all of your changes come after the most
recent one in master. Think adding some cards to the top of a deck rather than shuffling
them into the pack.

Push your branch to GitHub and send Pull Request

Finally, you must push your changes to your fork on GitHub, otherwise the core developers
won’t be able to pick them up:

git push origin issue_123

You should not merge your branch to your forks master. If the Pull Request is not
accepted, your master will then be out of sync with upstream forever.

You’re now ready to send the pull request from the GitHub user interface.

Say what your pull request is for

A pull request can contain any number of commits and it may be related to any number of
issues. In the pull request message, please specify the IDs of all issues that the request
relates to. Also give a brief description of the work you have done, such as: "I refactored the
data binder and added support for custom number editors. Fixes #xxxx".

21.4 Submit Patches to Grails Documentation

Contributing Simple Changes

The user guide is written using . The simplest way to contribute fixes is toAsciidoctor
simply click on the "Improve this doc" link that is to the right of each section of the
documentation.

This will link to the Github edit screen where you can make changes, preview them and
create a pull request.

Building the Guide

If you want to make significant changes, such as changing the structure of the table of
contents etc. then we recommend you build the user guide. To do that simply checkout the
sources from github:

$ git clone https://github.com/grails/grails-doc/
$ cd grails-doc

The source files can be found in the directory. Whilst the Table of Contentssrc/en/guide

(TOC) is defined in the file.src/en/guide/toc.yml

Each YAML key points to a Asciidoc template. For example consider the following YAML:

:introduction
 : title Introduction

http://asciidoctor.org/docs/user-manual/

 :whatsNew
 : title What's new in Grails 3.2?
 ...

The key points to . The key defines the titleintroduction src/en/guide/introduction.adoc title

that is dislayed in the TOC. Because key is nested underneath the key itwhatsNew introduction

points to , which is nested in a directory called src/en/guide/introduction/whatsNew.adoc

.introduction

Essentially, using the file and the directory structure you can manipulate the structuretoc.yml

of the user guide.

To generate the documentation run the task:publishGuide

$./gradlew publishGuide -x apiDocs

In the above example we skip the task to speed up building of the guide, otherwiseapiDocs

all Groovydoc documentation will be built too!

Once the guide is built simply open the file in a browser to review yourbuild/docs/index.html

changes.

Copies of this document may be made for your own use and for distribution to others, provided that you
do not charge any fee for such copies and further provided that each copy contains this Copyright Notice,
whether distributed in print or electronically.

