
Zipf's and Heap's law.

Zipf's law.

Zipf's law is a law about the frequency distribution of words in a language (or in a collection that is
large enough so that it is representative of the language). To illustrate Zipf's law let us suppose we have
a collection and let there be V unique words in the collection (the vocabulary).
For each word in the collection we need to compute the freq(word) = how many times word occurs in
the collection. Then we rank the words in descending by their frequency (most frequent word has rank
1, next frequent word has rank 2, ...)

The slides provide an example, which we reproduce here:

Let r be the rank of word, Prob(r) be the probability of a word at rank r. We do not care about the
names of the words, we care only about their ranks and frequencies. By definition Prob(r) = freq(r) / N
where
freq(r) = the number of times the word at rank r appears in the collection and
N = total number of words in the collection (not number of unique words).

Then Zipf's law states that

r * Prob(r) = A,

where A is a constant which should empirically be determined from the data. In most cases A = 0.1.
Zipf's law is not an exact law, but a statistical law and therefore does not hold exactly but only on
average (for most words).

Taking into account that Prob(r) = freq(r) / N we can rewrite Zipf's law as

r * freq(r) = A * N

To establish that Zip's law holds we need to compute freq(r), which involves computing the
frequency of each word and then ranking the words. Then we need to compute r * freq(r) and see if
r * freq(r) is approximately a constant. This does not mean that for all words r * freq(r) has to be
exactly the same, but it has to be close to the same number for most words. The simplest way to show
that Zipf's law holds is to plot the data. Remember that looking at most frequent and least frequent
words only is misleading. For those types of words Zipf's law has the highest errors.

Instead of plotting r vs. freq(r), it is better to plot log(r) on the x-axis and log(freq(r)) on the y axis.
If Zipf's law holds we should see a line with slope -1 (this means if A is the point where the line
crosses the x-axis and B is the point where the line crosses the y-axis and O is the origin of the
coordinate system then OA = OB).
Another, equivalent way is to plot log(r) on the x-axis and log(Prob(r)) on the y axis.

Notice the slope of the line is -1.

We can use Zipf's law to calculate the number of words that appear n times in the collection.

Let MaxRank(n) = among all words that appear n
times let MaxRank(n) be the maximum of the ranks
of those words. For example, if n = 90, the words
that appear n = 90 times are “and”, “in”, “said”
with ranks 5, 6, 7. Then MaxRank(90) = max(5, 6,
7) = 7

Another example: MaxRank(79) = max(18, 19, 20)
= 20

Notice that the number of words that appear n
times is
NumberWordsOccur(n) =
MaxRank(n) – MaxRank(n + 1).

For example, the number of words that appear 79
times is MaxRank(79) – MaxRank(80) =
max(18, 19, 20) – max(17) = 20 – 17 = 3
We can look at the picture on the right side to see
that exactly 3 words appear 79 times.

We know from Zipf's law that for the frequency
and the rank are related.

If r = MaxRank(n), this means that the rank is r and
the frequency is n; So r * freq(r) = A * N means

MaxRank(n) * n = A*N, which implies

MaxRank(n) = A * N / n

Applying this formula twice we obtain

NumberWordsOccur(n) =
MaxRank(n) – MaxRank(n + 1) =
A*N / n – A * N / (n + 1) =
A* N (1/n – 1/(n + 1) = A * N / [n * (n + 1)]
So,
NumberWordsOccur(n) = A * N / [n * (n + 1)]
is the number of words that occur n times.

We need to connect A * N to the number of
unique words in the collection. This is easy
because V, which is the number of unique words
is simply the rank of the last word in the ranked
list of words. We need to assume(quite
reasonably) that the least occurring word occurs

only once.
So, Zipf's law applied to the least frequent word
gives (here: r = V, and freq(r) = 1)
r * freq(r) = A * N, V * 1 = A * N,
A * N = V

Therefore
NumberWordsOccur(n) = V / [n * (n + 1)]
is the number of words that occur n times.
where V is the number of unique words in the
collection

Application of the formula NumberWordsOccur(n) = V / [n * (n + 1)].
What fraction of all unique words appear only once?

We need “number of words that occur once” / “number of unique words” =
= NumberWordsOccur(1) / V = [V / [1 * (1 + 1)]] / V = 1 / [1 * (1 + 1)] = ½

Heap's law.

Heap's law states that the number of unique words V in a collection with N words is approximately
Sqrt[N]. The more general form of this law is

Alpha and beta and usually found by fitting the data.

Power laws
Zipf's and Heap's law belong to a class of laws called power laws.
A power law is one that has the form

k and c are constants that have to be fit from the data.
If we are to write Zipf's law as power low, we notice that

y = freq(r), x = r, k = A * N, c = -1

If we are to write Heap's law as a power law we observe that

y = V, x = N, k = K (from Heap's law), c = beta

Power laws have the useful property that if one takes the log of both sides of
one obtains a line. See picture.

Note: when you do the line fitting, do not use x and y but use x' = log(x) and y' = log(y) in the formulas
for the least squares line fitting.

Fitting Zipf's law:

If you fit data that obeys Zipf's law you should get c close to -1.

Fitting Heap's law:

(Source: Modeling Web Data by French)

If you fit data that obeys Heap's you should get c = slope of the line close to 0.5

