

Data Cube: A Relational Aggregation Operator Generalizing

Group-By, Cross-Tab, and Sub-Totals

Jim Gray

Surajit Chaudhuri

Adam Bosworth

Andrew Layman

Don Reichart

Murali Venkatrao

 Frank Pellow

Hamid Pirahesh
1

May 1997

Technical Report

MSR-TR-97-32

Microsoft Research

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

This paper appeared in Data Mining and Knowledge Discovery 1(1): 29-53 (1997)

1 IBM Research, 500 Harry Road, San Jose, CA. 95120

Data Cube: A Relational Aggregation Operator

Generalizing Group-By, Cross-Tab, and Sub-Totals

Jim Gray

Surajit Chaudhuri

Adam Bosworth

Andrew Layman

Don Reichart

Murali Venkatrao

 Frank Pellow
1

Hamid Pirahesh
2

5 February 1995, Revised 15 November 1995, Expanded June 1996

Technical Report

MSR-TR-96-xx

Microsoft Research

Advanced Technology Division

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

2 IBM Research, 500 Harry Road, San Jose, CA. 95120

Data Cube 1

Data Cube: A Relational Aggregation Operator

Generalizing Group-By, Cross-Tab, and Sub-Totals
3

 Jim Gray Microsoft Gray@Microsoft.com

 Surajit Chaudhuri Microsoft SurajitC@Microsoft.com

 Adam Bosworth Microsoft AdamB@Microsoft.com

 Andrew Layman Microsoft AndrewL@Microsoft.com

 Don Reichart Microsoft DonRei@Microsoft.com

 Murali Venkatrao Microsoft MuraliV@Microsoft.com

 Hamid Pirahesh IBM Pirahesh@Almaden.IBM.com

 Frank Pellow IBM Pellow@vnet.IBM.com

Microsoft Technical report MSR-TR-95-22

5 February 1995, Revised 18 November 1995, Expanded June 1996

3 An extended abstract of this paper appeared in [Gray et.al.]

Abstract: Data analysis applications typically aggregate

data across many dimensions looking for anomalies or

unusual patterns. The SQL aggregate functions and the

GROUP BY operator produce zero-dimensional or one-

dimensional aggregates. Applications need the N-

dimensional generalization of these operators. This pa-

per defines that operator, called the data cube or simply

cube. The cube operator generalizes the histogram,

cross-tabulation, roll-up, drill-down, and sub-total con-

structs found in most report writers. The novelty is that

cubes are relations. Consequently, the cube operator can

be imbedded in more complex non-procedural data

analysis programs. The cube operator treats each of the

N aggregation attributes as a dimension of N-space. The

aggregate of a particular set of attribute values is a point

in this space. The set of points forms an N-dimensional

cube. Super-aggregates are computed by aggregating the

N-cube to lower dimensional spaces. This paper (1) ex-

plains the cube and roll-up operators, (2) shows how they

fit in SQL, (3) explains how users can define new aggre-

gate functions for cubes, and (4) discusses efficient tech-

niques to compute the cube. Many of these features are

being added to the SQL Standard.

1. Introduction
Data analysis applications look for unusual patterns in

data. They categorize data values and trends, extract sta-

tistical information, and then contrast one category with

another. There are four steps to such data analysis:

formulating a query that extracts relevant data from a

large database,

extracting the aggregated data from the database into a

file or table,

visualizing the results in a graphical way, and

analyzing the results and formulating a new query.

Visualization tools display data trends, clusters, and dif-

ferences. Some of the most exciting work in visualization

focuses on presenting new graphical metaphors that allow

people to discover data trends and anomalies. Many of

these visualization and data analysis tools represent the

dataset as an N-dimensional space. Visualization tools

render two and three-dimensional sub-slabs of this space as

2D or 3D objects.

Color and time (motion) add two more dimensions to the

display giving the potential for a 5D display. A Spread-

sheet application such as Excel is an example of a data

visualization/analysis tool that is used widely. Data analy-

sis tools often try to identify a subspace of the N-

dimensional space which is “interesting” (e.g., discriminat-

ing attributes of the data set).

Spread Sheet

Table

1

1015

1012

109

106

103

Size vs Speed

Access Time (seconds)
10

-9
10

-6
10

-3
10

0
10

 3

Cache

Main

Secondary

Disc

Nearline
Tape Offline

Tape

Online
Tape

104

102

100

10-2

10-4

Price vs Speed

Access Time (seconds)
10

-9
10

-6
10

-3
10

0
10

 3

Cache

Main
Secondary

Disc

Nearline

Tape

Offline

Tape

Online
Tape

Size(B) $/MB

Visualize

Extract
Analyze &
Formulate

Figure 1: Data analysis tools facilitate the Extract-

Visualize-Analyze loop. The cube and roll-up operators

along with system and user-defined aggregates are part of

the extraction process.

Thus, visualization as well as data analysis tools do “di-

mensionality reduction” , often by summarizing data along

the dimensions that are left out. For example, in trying to

analyze car sales, we might focus on the role of model,

year and color of the cars in sale. Thus, we ignore the dif-

ferences between two sales along the dimensions of date of

sale or dealership but analyze the totals sale for cars by

model, by year and by color only. Along with summariza-

tion and dimensionality reduction, data analysis applica-

Data Cube 2

tions use constructs such as histogram, cross-tabulation,

subtotals, roll-up and drill-down extensively.

This paper examines how a relational engine can support

efficient extraction of information from a SQL database

that matches the above requirements of the visualization

and data analysis. We begin by discussing the relevant

features in Standard SQL and some of the vendor-specific

SQL extensions. Section 2 discusses why GROUP BY
fails to adequately address the requirements. The Cube

and the ROLLUP operators are introduced in Section 3

and we also discuss how these operators overcome some

of the shortcomings of GROUP BY. Sections 4 and 5 dis-

cuss how we can address and compute the Cube.

1.1. Relational and SQL Data Extraction

How do traditional relational databases fit into this multi-

dimensional data analysis picture? How can 2D flat files

(SQL tables) model an N-dimensional problem? Further-

more, how do the relational systems support the ability to

support operations over N-dimensional representation that

are central to visualization and data analysis programs?

We address each of these two issues in this section. The

answer to the first question is that relational systems

model N-dimensional data as a relation with N-attribute

domains. For example, 4-dimensional (4D) earth tem-

perature data is typically represented by a Weather table

(Table 1). The first four columns represent the four di-

mensions: latitude, longitude, altitude, and time. Addi-

tional columns represent measurements at the 4D points

such as temperature, pressure, humidity, and wind veloc-

ity. Each individual weather measurement is recorded as

a new row of this table. Often these measured values are

aggregates over time (the hour) or space (a measurement

area centered on the point).

As mentioned in the introduction, visualization and data

analysis tools extensively use dimensionality reduction

(aggregation) for better comprehensibility. Often data

along the other dimensions that are not included in a “2-D”

representation are summarized via aggregation in the form

of histogram, cross-tabulation, subtotals etc. In SQL

Standard, we depend on aggregate functions and the Group

By operator to support aggregation.

The SQL standard [SQL], [Melton, Simon] provides five

functions to aggregate the values in a table: COUNT(),

SUM(), MIN(), MAX(), and AVG(). For example, the

average of all measured temperatures is expressed as:
 SELECT AVG(Temp)

 FROM Weather;

In addition, SQL allows aggregation over distinct values.

The following query counts the distinct number of report-

ing times in the Weather table:
 SELECT COUNT(DISTINCT Time)
 FROM Weather;

Aggregate functions return a single value. Using the

GROUP BY construct, SQL can also create a table of many

aggregate values indexed by a set of attributes. For exam-

ple, The following query reports the average temperature

for each reporting time and altitude:
SELECT Time, Altitude, AVG(Temp)
FROM Weather
GROUP BY Time, Altitude;

GROUP BY is an unusual relational operator: It partitions

the relation into disjoint tuple sets and then aggregates over

each set as illustrated in Figure 2.

SQL's aggregation functions are widely used in database

applications.Thispopularity is reflected in the presence of a

large number of queries in the decision-support benchmark

TPC-D [TPC]. The TPC-D query set has one 6D GROUP

BY and three 3D GROUP BYs. One and two dimensional

GROUP BYs are the most common. Surprisingly, aggregates

appear in the TPC online-transaction processing bench-

marks as well (TPC-A, B and C) . Table 2 shows how fre-

quently the database and transaction processing bench-

marks use aggregation and GROUP BY. A detailed descrip-

tion of these benchmarks is beyond the scope of the paper

(See [Gray] and [TPC]).

Table 1: Weather

Time (UCT) Latitude Longitude Altitude
(m)

Temp
(c)

Pres
(mb)

96/6/1:1500 37:58:33N 122:45:28W 102 21 1009

96/6/7:1500 34:16:18N 27:05:55W 10 23 1024

Grouping Values

Partitioned Table

Sum()

Aggregate Values

Figure 2: The GROUP BY relational operator partitions a

table into groups. Each group is then aggregated by a

function. The aggregation function summarizes some col-

umn of groups returning a value for each group.

many more rows like the ones above

 and below

Data Cube 3

Table 2: SQL Aggregates in Standard Benchmarks.

Benchmark Queries Aggregates GROUP BYs

TPC-A, B 1 0 0

TPC-C 18 4 0

TPC-D 16 27 15
Wisconsin 18 3 2

AS3AP 23 20 2

SetQuery 7 5 1

1.2. Extensions In Some SQL Systems

Beyond the five standard aggregate functions defined so

far, many SQL systems add statistical functions (median,

standard deviation, variance, etc.), physical functions

(center of mass, angular momentum, etc.), financial analy-

sis (volatility, Alpha, Beta, etc.), and other domain-

specific functions.

Some systems allow users to add new aggregation func-

tions. The Informix Illustra system, for example, allows

users to add aggregate functions by adding a program with

the following three callbacks to the database system [In-

formix]:

Init (&handle): Allocates the handle and initializes

the aggregate computation.

Iter (&handle, value): Aggregates the next value

into the current aggregate.

value = Final(&handle): Computes and returns the

resulting aggregate by using data saved in the handle.

This invocation deallocates the handle.

Consider implementing the Average() function. The

handle stores the count and the sum initialized to zero.

When passed a new non-null value, Iter()increments

the count and adds the sum to the value. The Final()

call deallocates the handle and returns sum divided by

count. IBM’s DB2 Common Server [Chamberlin] has a

similar mechanism. This design has been added to the

Draft Proposed standard for SQL.[SQL97].

Red Brick systems, one of the larger UNIX OLAP ven-

dors, add some interesting aggregate functions that en-

hance the GROUP BY mechanism [Red Brick]:

Rank(expression): returns the expression’s rank in the

set of all values of this domain of the table. If there

are N values in the column, and this is the highest

value, the rank is N, if it is the lowest value the rank

is 1.

N_tile(expression, n): The range of the expression

(over all the input values of the table) is computed

and divided into n value ranges of approximately

equal population. The function returns the number of

the range containing the expression’s value. If your

bank account was among the largest 10% then your

rank(account.balance,10) would return 10.

Red Brick provides just N_tile(expression,3).

Ratio_To_Total(expression): Sums all the expres-

sions. Then for each instance, divides the expression

instance by the total sum.

To give an example, the following SQL statement
SELECT Percentile, MIN(Temp), MAX(Temp)
FROM Weather
GROUP BY N_tile(Temp,10) as Percentile
HAVING Percentile = 5;

returns one row giving the minimum and maximum tem-

peratures of the middle 10% of all temperatures.

Red Brick also offers three cumulative aggregates that

operate on ordered tables.

Cumulative(expression): Sums all values so far in

an ordered list.

Running_Sum(expression,n): Sums the most recent n

values in an ordered list. The initial n-1 values are

NULL.

Running_Average(expression,n): Averages the

most recent n values in an ordered list. The initial n-1

values are NULL.

These aggregate functions are optionally reset each time a

grouping value changes in an ordered selection.

2. Problems With GROUP BY:
Certain common forms of data analysis are difficult with

these SQL aggregation constructs. As explained next,

three common problems are: (1) Histograms, (2) Roll-up

Totals and Sub-Totals for drill-downs, (3) Cross Tabula-

tions.

The standard SQL GROUP BY operator does not allow a

direct construction of histograms (aggregation over com-

puted categories). For example, for queries based on the

Weather table, it would be nice to be able to group times

into days, weeks, or months, and to group locations into

areas (e.g., US, Canada, Europe,...). If a Nation() func-

tion maps latitude and longitude into the name of the coun-

try containing that location, then the following query would

give the daily maximum reported temperature for each

nation.
SELECT day, nation, MAX(Temp)
FROM Weather
GROUP BY Day(Time) AS day,
 Nation(Latitude , Longitude)
 AS nation;

Some SQL systems support histograms directly but the

standard does not
4
. In standard SQL, histograms are com-

puted indirectly from a table-valued expression which is

then aggregated. The following statement demonstrates this

SQL92 construct using nested queries.

4 These criticisms led to a proposal to include theses features in the draft

SQL standard [SQL97].

Data Cube 4

SELECT day, nation, MAX(Temp)
FROM (SELECT Day(Time) AS day,
 Nation(Latitude, Longitude)
 AS nation,
 Temp
 FROM Weather
) AS foo
GROUP BY day, nation;

A more serious problem, and the main focus of this paper,

relates to roll-ups using totals and sub-totals for drill-

down reports. Reports commonly aggregate data at a

coarse level, and then at successively finer levels. The car

sales report in Table 3 shows the idea (this and other ex-

amples are based on the sales summary data in the table in

Figure 4) . Data is aggregated by Model, then by Year,

then by Color. The report shows data aggregated at three

levels. Going up the levels is called rolling-up the data.

Going down is called drilling-down into the data. Data

aggregated at each distinct level produces a sub-total.

Table 3.a: Sales Roll Up by Model by Year by Color

Model

Year

Color

Sales

by Model

by Year

by Color

Sales

by Model

by Year

Sales

by Model

Chevy 1994 black 50

 white 40

 90

 1995 black 85

 white 115

 200

 290

Table 3.a suggests creating 2
N
 aggregation columns for a

roll-up of N elements. Indeed, Chris Date recommends

this approach [Date1]. His design gives rise to Table 3.b

The representation of Table 3.a is not relational because

the empty cells (presumably NULL values), cannot form a

key. Representation 3.b is an elegant solution to this prob-

lem, but we rejected it because it implies enormous num-

bers of domains in the resulting tables. We were intimi-

dated by the prospect of adding 64 columns to the answer

set of a 6D TPCD query. The representation of Table 3.b

is also not convenient -- the number of columns grows as

the power set of the number of aggregated attributes, cre-

ating difficult naming problems and very long names. The

approach recommended by Date is reminiscent of pivot

tables found in Excel (and now all other spreadsheets) [Ex-

cel], a popular data analysis feature of Excel
5
.

Table 4: An Excel pivot table representation of Table 3

with Ford sales data included.

Sum Year Color

Sales 1994 1994
Total

1995 1995
Total

Grand
Total

Model black white black white

Chevy 50 40 90 85 115 200 290

Ford 50 10 60 85 75 160 220

Grand Total 100 50 150 170 190 360 510

Table 4 an alternative representation of Table 3a (with

Ford Sales data included) that illustrates how a pivot table

in Excel can present the Sales data by Model, by Year, and

then by Color. The pivot operator transposes a spreadsheet:

typically aggregating cells based on values in the cells.

Rather than just creating columns based on subsets of col-

umn names, pivot creates columns based on subsets of col-

umn values. This is a much larger set If one pivots on two

columns containing N and M values, the resulting pivot

table has NxM values. We cringe at the prospect of so

many columns and such obtuse column names.

Rather than extend the result table to have many new col-

umns, a more conservative approach prevents the exponen-

tial growth of columns by overloading column values. The

idea is to introduce an ALL value. Table 5.a demonstrates

this relational and more convenient representation. The

dummy value "ALL" has been added to fill in the super-

aggregation items.:

Table 5.a: Sales Summary

Model Year Color Units

Chevy 1994 black 50

Chevy 1994 white 40

Chevy 1994 ALL 90

Chevy 1995 black 85

Chevy 1995 white 115

Chevy 1995 ALL 200

Chevy ALL ALL 290

5
 It seems likely that a relational pivot operator will appear

in database systems in the near future.

Table 3.b: Sales Roll-Up by Model by Year by Color

as recommended by Chris Date [Date1].

Model

Year

Color

Sales

Sales

by Model

by Year

Sales

by Model

Chevy 1994 black 50 90 290

Chevy 1994 white 40 90 290

Chevy 1995 black 85 200 290

Chevy 1995 white 115 200 290

Data Cube 5

Table 5.a is not really a completely new representation or

operation. Since Table 5.a is a relation, it is not surpris-

ing that it can be built using standard SQL. The SQL

statement to build this SalesSummary table from the raw

Sales data is:
SELECT ‘ALL’, ‘ALL’, ‘ALL’, SUM(Sales)
 FROM Sales
 WHERE Model = 'Chevy'
UNION
SELECT Model, ‘ALL’, ‘ALL’, SUM(Sales)
 FROM Sales
 WHERE Model = 'Chevy'
 GROUP BY Model
UNION
SELECT Model, Year, ‘ALL’, SUM(Sales)
 FROM Sales
 WHERE Model = 'Chevy'
 GROUP BY Model, Year
UNION
SELECT Model, Year, Color, SUM(Sales)
 FROM Sales
 WHERE Model = 'Chevy'
 GROUP BY Model, Year, Color;

This is a simple 3-dimensional roll-up. Aggregating over

N dimensions requires N such unions.

Roll-up is asymmetric – notice that Table 5.a aggregates

sales by year but not by color. These rows are:

Table 5.b: Sales Summary rows missing form

Table 5.a to convert the roll-up into a cube.

Model Year Color Units

Chevy ALL black 135

Chevy ALL white 155

These additional rows could be captured by adding the

following clause to the SQL statement above:
UNION
SELECT Model, ‘ALL’, Color, SUM(Sales)
 FROM Sales
 WHERE Model = 'Chevy'
 GROUP BY Model, Color;

The symmetric aggregation result is a table called a cross-

tabulation, or cross tab for short. Tables 5.a and 5.b are

the relational form of the cross-tabs, but cross tab data is

routinely displayed in the more compact format of Table

6.

Table 6.a: Chevy Sales Cross Tab

Chevy 1994 1995 total (ALL)

black 50 85 135

white 40 115 155

 total (ALL) 90 200 290

This cross tab is a two-dimensional aggregation. If other

automobile models are added, it becomes a 3D aggrega-

tion. For example, data for Ford products adds an addi-

tional cross tab plane.

The cross-tab-array representation (Table 6.a, 6.b) is

equivalent to the relational representation using the ALL

value. Both generalize to an N-dimensional cross tab.

Most report writers build in a cross-tabs feature, building

the report up from the underlying tabular data such as Ta-

ble 5. See for example the TRANSFORM-PIVOT operator of

Microsoft Access [Access].

Table 6b: Ford Sales Cross Tab

Ford 1994 1995 total (ALL)

black 50 85 135

white 10 75 85

 total (ALL) 60 160 220

The representation suggested by Table 5 and unioned

GROUP BYs “solve” the problem of representing aggregate

data in a relational data model. The problem remains that

expressing roll-up, and cross-tab queries with conventional

SQL is daunting. A six dimension cross-tab requires a 64-

way union of 64 different GROUP BY operators to build the

underlying representation.

There is another very important reason why it is inade-

quate to use GROUP BYs. The resulting representation of

aggregation is too complex to analyze for optimization.

On most SQL systems this will result in 64 scans of the

data, 64 sorts or hashes, and a long wait.

3. CUBE and ROLLUP Operators

The generalization of group by, roll-up and cross-tab ideas

seems obvious: Figure 3 shows the concept for aggregation

up to 3-dimensions. The traditional GROUP BY generates

the N-dimensional data cube core. The N-1 lower-

dimensional aggregates appear as points, lines, planes,

cubes, or hyper-cubes hanging off the data cube core.

The data cube operator builds a table containing all these

aggregate values. The total aggregate using function f()

is represented as the tuple:
 ALL, ALL, ALL,..., ALL, f(*)

Points in higher dimensional planes or cubes have fewer

ALL values.

Data Cube 6

Creating a data cube requires generating the power set (set

of all subsets) of the aggregation columns. Since the

CUBE is an aggregation operation, it makes sense to ex-

ternalize it by overloading the SQL GROUP BY operator. In

fact, the CUBE is a relational operator, with GROUP BY and

ROLL UP as degenerate forms of the operator. This can be

conveniently specified by overloading the SQL GROUP

BY
6.

Figure 4 has an example of the cube syntax. To give an-

other, here follows a statement to aggregate the set of

temperature observations:
SELECT day, nation, MAX(Temp)
FROM Weather
GROUP BY CUBE
 Day(Time) AS day,
 Country(Latitude, Longitude)
 AS nation;

The semantics of the CUBE operator are that it first aggre-

gates over all the <select list> attributes in the

GROUP BY clause as in a standard GROUP BY. Then, it

UNIONs in each super-aggregate of the global cube -- sub-

stituting ALL for the aggregation columns. If there are N

attributes in the <select list>, there will be 2N-1 su-

per-aggregate values. If the cardinality of the N attributes

are C1, C2,..., CN then the cardinality of the resulting cube

6 An earlier version of this paper [Gray et. al.] and the Microsoft SQL

Server 6.5 product implemented a slightly different syntax. They suffix

the GROUP BY clause with a ROLLUP or CUBE modifier. The SQL

Standards body chose an infix notation so that GROUP BY and

ROLLUP and CUBE could be mixed in a single statement. The im-

proved syntax is described here.

relation is ∏ (Ci + 1). The extra value in each domain is

ALL. For example, the SALES table has 2x3x3 = 18 rows,

while the derived data cube has 3x4x4 = 48 rows.

SELECT Model, Year, Color, SUM(sales) AS Sales

FROM Sales

WHERE Model in {'Ford', 'Chevy'}

 AND Year BETWEEN 1990 AND 1992

GROUP BY CUBE Model, Year, Color;

 SALES

Model Year Color Sales
Chevy 1990 red 5

Chevy 1990 white 87

Chevy 1990 blue 62

Chevy 1991 red 54

Chevy 1991 white 95

Chevy 1991 blue 49

Chevy 1992 red 31

Chevy 1992 white 54

Chevy 1992 blue 71

Ford 1990 red 64

Ford 1990 white 62

Ford 1990 blue 63

Ford 1991 red 52

Ford 1991 white 9

Ford 1991 blue 55

Ford 1992 red 27

Ford 1992 white 62

Ford 1992 blue 39

 DATA CUBE
Model Year Color Sales

CUBE

Chevy 1990 blue 62

Chevy 1990 red 5

Chevy 1990 white 95

Chevy 1990 ALL 154

Chevy 1991 blue 49

Chevy 1991 red 54

Chevy 1991 white 95

Chevy 1991 ALL 198

Chevy 1992 blue 71

Chevy 1992 red 31

Chevy 1992 white 54

Chevy 1992 ALL 156

Chevy ALL blue 182

Chevy ALL red 90

Chevy ALL white 236

Chevy ALL ALL 508

Ford 1990 blue 63

Ford 1990 red 64

Ford 1990 white 62

Ford 1990 ALL 189

Ford 1991 blue 55

Ford 1991 red 52

Ford 1991 white 9

Ford 1991 ALL 116

Ford 1992 blue 39

Ford 1992 red 27

Ford 1992 white 62

Ford 1992 ALL 128

Ford ALL blue 157

Ford ALL red 143

Ford ALL white 133

Ford ALL ALL 433

ALL 1990 blue 125

ALL 1990 red 69

ALL 1990 white 149

ALL 1990 ALL 343

ALL 1991 blue 106

ALL 1991 red 104

ALL 1991 white 110

ALL 1991 ALL 314

ALL 1992 blue 110

ALL 1992 red 58

ALL 1992 white 116

ALL 1992 ALL 284

ALL ALL blue 339

ALL ALL red 233

ALL ALL white 369

ALL ALL ALL 941

Figure 4: A 3D data cube (right) built from the table at the

left by the CUBE statement at the top of the figure.

If the application wants only a roll-up or drill-down report,

similar to the data in Table 3.a, the full cube is overkill.

Indeed, some parts of the full cube may be meaningless. If

the answer set is not is not normalized, there may be func-

tional dependencies among columns. For example, a date

functionally defines a week, month, and year. Roll-ups by

year, week, day are common, but a cube on these three

attributes would be meaningless.

The solution is to offer ROLLUP in addition to CUBE.

ROLLUP produces just the super-aggregates:
(v1 ,v2 ,...,vn, f()),
(v1 ,v2 ,...,ALL, f()),

...
(v1 ,ALL,...,ALL, f()),
(ALL,ALL,...,ALL, f()).

Cumulative aggregates, like running sum or running aver-

age, work especially well with ROLLUP because the answer

set is naturally sequential (linear) while the full data

cube is naturally non-linear (multi-dimensional). ROLLUP

and CUBE must be ordered for cumulative operators to ap-

ply.

We investigated letting the programmer specify the exact

list of super-aggregates but encountered complexities re-

lated to collation, correlation, and expressions. We believe

ROLLUP and CUBE will serve the needs of most applica-

tions.

CHEVY

FORD 1990
1991

1992

1993

RED

WHITE

BLUE

By Color

By Make & Color

By Make & Year

By Color & Year

By Make
By Year

Sum

The Data Cube and
The Sub-Space AggregatesSum

RED

WHITE

BLUE

Chevy Ford

By Make

By Color

Cross Tab

RED

WHITE

BLUE

By Color

Sum

Group By
(with total)

Sum

Aggregate

Figure 3: The CUBE operator is the N-dimensional gener-

alization of simple aggregate functions. The 0D data cube

is a point. The 1D data cube is a line with a point. The

2D data cube is a cross tabulation, a plane, two lines, and

a point. The 3D data cube is a cube with three intersect-

ing 2D cross tabs.

Data Cube 7

3.1. The GROUP, CUBE, ROLLUP Algebra

The GROUP BY, ROLLUP, and CUBE operators have an

interesting algebra. The CUBE of a ROLLUP or GROUP

BY is a CUBE. The ROLLUP of a GROUP BY is a ROLLUP.

Algebraically, this operator algebra can be stated as:
CUBE(ROLLUP) = CUBE
ROLLUP(GROUP BY) = ROLLUP

So it makes sense to arrange the aggregation operators in

the compound order where the “most powerful” cube op-

erator at the core, then a roll-up of the cubes and then a

group by of the roll-ups. Of course, one can use any sub-

set of the three operators:
GROUP BY <select list>

ROLLUP <select list>
CUBE <select list>

The following SQL demonstrates a compound aggregate.

The “shape” of the answer is diagrammed in Figure 5:
SELECT Manufacturer,

 Year , Month, Day,
 Color, Model
 SUM(price) AS Revenue

FROM Sales
GROUP BY Manufacturer,
 ROLLUP Year(Time) AS Year ,

 Month(Time) AS Month,
 Day(Time) AS Day,

 CUBE
 Color,
 Model;

Manufacturer Year, Mo, Day

M
o

d
e

l
x

C
o

lo
r

c
u

b
e

s

Figure 5. The combination of a GROUP BY on Manufac-

ture, ROLLUP on year, month, day, and CUBE on some

attributes. The aggregate values are the contents of the

cube.

3.2. A Syntax Proposal

With these concepts in place, the syntactic extension to

SQL is fairly easily defined. The current SQL GROUP BY

syntax is:
GROUP BY
 {<column name> [collate clause] ,...}

To support histograms and other function-valued aggrega-

tions, we first extend the GROUP BY syntax to:
GROUP BY <aggregation list>

<aggregation list> ::=
 { (<column name> | <expression>)
 [AS <correlation name>]
 [<collate clause>]
 ,...}

These extensions are independent of the CUBE operator.

They remedy some pre-existing problems with GROUP BY.

Many systems already allow these extensions.

Now extend SQL’s GROUP BY operator:
 GROUP BY [<aggregation list>]

 [ROLLUP <aggregation list>]

 [CUBE <aggregation list>]

3.3. A Discussion of the ALL Value

Is the ALL value really needed? Each ALL value really

represents a set – the set over which the aggregate was

computed
7
. In the Table 5 SalesSummary data cube, the

respective sets are:
Model.ALL = ALL(Model) = {Chevy, Ford }
Year.ALL = ALL(Year) = {1990,1991,1992}
Color.ALL = ALL(Color) = {red,white,blue}

In reality, we have stumbled in to the world of nested rela-

tions – relations can be values. This is a major step for

relational systems. There is much debate on how to pro-

ceed. Rather than attack those problems here, we just use

the ALL value as a token representing these sets. Thinking

of the ALL value as the corresponding set defines the se-

mantics of the relational operators (e.g., equals and IN).

The ALL string is for display. A new ALL() function gen-

erates the set associated with this value as in the examples

above. ALL() applied to any other value returns NULL.

This design may be eased by SQL3’s support for set-

valued variables and domains.

The ALL value appears to be essential, but creates substan-

tial complexity. It is a non-value, like NULL. We do not

add it lightly – adding it touches many aspects of the SQL

language. To name a few:

• Treating each ALL value as the set of aggregates guides

the meaning of the ALL value.

• ALL becomes a new keyword denoting the set value.

• ALL [NOT] ALLOWED is added to the column definition

syntax and to the column attributes in the system cata-

logs.

• ALL, like NULL, does not participate in any aggregate

except COUNT().

• The set interpretation guides the meaning of the rela-

tional operators {=, <, <=, =, >=, >, IN}.

There are more such rules, but this gives a hint of the

added complexity. As an aside, to be consistent, if the ALL

value is a set then the other values of that domain must be

treated as singleton sets in order to have uniform operators

on the domain.

7 This is distinct from saying that ALL represents one of the members of

the set.

Data Cube 8

It is convenient to know when a column value is an ag-

gregate. One way to test this is to apply the ALL() func-

tion to the value and test for a non-NULL value. This is so

useful that we propose a Boolean function GROUPING()

that, given a select list element, returns TRUE if the ele-

ment is an ALL value, and FALSE otherwise.

3.4. Avoiding the ALL Value

Veteran SQL implementers will be terrified of the ALL

value – like NULL, it will create many special cases. If

the goal is to help report writer and GUI visualization

software, then it may be simpler to adopt the following

approach
8:

• Use the NULL value in place of the ALL value.

• Do not implement the ALL() function.

• Implement the GROUPING() function to discriminate

between NULL and ALL.

In this minimalist design, tools and users can simulate the

ALL value as by for example:

SELECT Model,Year,Color,SUM(sales),
 GROUPING(Model),
 GROUPING(Year),
 GROUPING(Color)
FROM Sales
GROUP BY CUBE Model, Year, Color;

Wherever the ALL value appeared before, now the corre-

sponding value will be NULL in the data field and TRUE in

the corresponding grouping field. For example, the global

sum of Figure 4 will be the tuple:
(NULL,NULL,NULL,941,TRUE,TRUE,TRUE)

rather than the tuple one would get with the “real” cube

operator:
 (ALL, ALL, ALL, 941).

3.5. Decorations

The next step is to allow decorations, columns that do

not appear in the GROUP BY but that are functionally de-

pendent on the grouping columns. Consider the example:
SELECT department.name, sum(sales)
FROM sales JOIN department
 USING (department_number)
GROUP BY sales.department_number;

The department.name column in the answer set is not

allowed in current SQL, since it is neither an aggregation

column (appearing in the GROUP BY list) nor is it an ag-

gregate. It is just there to decorate the answer set with the

name of the department. We recommend the rule that if a

decoration column (or column value) is functionally de-

pendent on the aggregation columns, then it may be in-

cluded in the SELECT answer list.

8 This is the syntax and approach used by Microsoft’s SQL Server (ver-

sion 6.5).

Decoration’s interact with aggregate values. If the aggre-

gate tuple functionally defines the decoration value, then

the value appears in the resulting tuple. Otherwise the

decoration field is NULL. For example, in the following

query the continent is not specified unless nation is.
SELECT day,nation,MAX(Temp),
 continent(nation) AS continent
FROM Weather
GROUP BY CUBE
 Day(Time) AS day,
 Country(Latitude, Longitude)
 AS nation

The query would produce the sample tuples:

Table 7: Demonstrating decorations and ALL

day nation max(Temp) continent

25/1/1995 USA 28 North America

ALL USA 37 North America

25/1/1995 ALL 41 NULL
ALL ALL 48 NULL

3.6. Dimensions Star, and Snowflake Queries

While strictly not part of the CUBE and ROLLUP operator

design, there is an important database design concept that

facilitates the use of aggregation operations. It is common

to record events and activities with a detailed record giving

all the dimensions of the event. For example, the sales

item record in Figure 6 gives the id of the buyer, seller, the

product purchased, the units purchased, the price, the date

and the sales office that is credited with the sale. There

are probably many more dimensions about this sale, but

this example gives the idea.

There are side tables that for each dimension value give its

attributes. For example, the San Francisco sales office is

in the Northern California District, the Western Region,

and the US Geography. This fact would be stored in a di-

mension table for the Office
9
. The dimension table may

also have decorations describing other attributes of that

Office. These dimension tables define a spectrum of ag-

gregation granularities for the dimension. Analysists might

want to cube various dimensions and then aggregate or

roll-up the cube up at any or all of these granularities.

9 Database normalization rules [Date2] would recommend that the fact

that the California District be stored once, rather than storing it once for

each Office. So there might be an office, district, and region tables,

rather than one big denormalize table. Query users find it convenient to

use the denormalized table.

Data Cube 9

ALL

Division

Group

Unit

ALL

Channel Discount District

Region

 Geography

Week
Month

Quarter

Year

Product Seller Buyer Units Price Office Date

ALL

ALL

ALL

Cust Type

ALL

Figure 6: A snowflake schema showing the core fact

table and some of the many aggregation ganularities of the

core dimensions.

The general schema of Figure 6 is so common that it has

been given a name: a snowflake schema. Simpler

schemas that have a single dimension table for each di-

mension are called a star schema. Queries against these

schemas are called snowflake queries and star queries

respectively.

The diagram of Figure 6 suggests that the granularities

form a pure hierarchy. In reality, the granularities typi-

cally form a lattice. To take just a very simple example,

days nest in weeks but weeks do not nest in months or

quarters or years (some weeks are partly in two years).

Analysts often think of dates in terms of weekdays, week-

ends, sale days, various holidays (e.g., Christmas and the

time leading up to it). So a fuller granularity graph of

Figure 6 would be quite complex. Fortunately, graphical

tools like pivot tables with pull down lists of categories

hide much of this complexity from the analyst.

4. Addressing The Data Cube

Section 5 discusses how to compute data cubes and how

users can add new aggregate operators. This section con-

siders extensions to SQL syntax to easily access the ele-

ments of a data cube -- making it recursive and allowing

aggregates to reference sub-aggregates.

It is not clear where to draw the line between the report-

ing-visualization tool and the query tool. Ideally, applica-

tion designers should be able to decide how to split the

function between the query system and the visualization

tool. Given that perspective, the SQL system must be a

Turing-complete programming environment.

SQL3 defines a Turing-complete procedural programming

language. So, anything is possible. But, many things are

not easy. Our task is to make simple and common things

easy.

The most common request is for percent-of-total as an

aggregate function. In SQL this is computed as a nested

SELECT SQL statements.

SELECT Model,Year,Color,SUM(Sales),
 SUM(Sales)/
 (SELECT SUM(Sales)
 FROM Sales

 WHERE Model IN {‘Ford’,‘Chevy’}
 AND Year Between 1990 AND 1992
)
FROM Sales

WHERE Model IN { ‘Ford’ , ‘Chevy’ }
 AND Year Between 1990 AND 1992
GROUP BY CUBE Model, Year, Color ;

It seems natural to allow the shorthand syntax to name the

global aggregate:
SELECT Model, Year, Color
 SUM(Sales) AS total,
 SUM(Sales) / total(ALL,ALL,ALL)
FROM Sales

WHERE Model IN { ‘Ford’ , ‘Chevy’ }
 AND Year Between 1990 AND 1992
GROUP BY CUBE Model, Year, Color;

This leads into deeper water. The next step is a desire to

compute the index of a value -- an indication of how far the

value is from the expected value. In a set of N values, one

expects each item to contribute one Nth to the sum. So the

1D index of a set of values is:

 index(vi) = vi / (Σj vj)

If the value set is two dimensional, this commonly used

financial function is a nightmare of indices. It is best de-

scribed in a programming language. The current approach

to selecting a field value from a 2D cube would read as:
 SELECT v
 FROM cube
 WHERE row = :i
 AND column = :j

We recommend the simpler syntax:
 cube.v(:i, :j)

as a shorthand for the above selection expression. With

this notation added to the SQL programming language, it

should be fairly easy to compute super-super-aggregates

from the base cube.

5. Computing Cubes and Roll-ups

CUBE and ROLLUP generalize aggregates and GROUP BY,

so all the technology for computing those results also apply

to computing the core of the cube [Graefe]. The basic

technique for computing a ROLLUP is to sort the table on

the aggregating attributes and then compute the aggregate

functions (there is a more detailed discussion of the kind of

aggregates in a moment.) If the ROLLUP result is small

enough to fit in main memory, it can be computed by scan-

ning the input set and applying each record to the in-

memory ROLLUP. A cube is the union of many rollups, so

the naive algorithm computes this union.

As Graefe [Graefe]. points out, the basic techniques for

computing aggregates are:

Data Cube 10

• To minimize data movement and consequent processing

cost, compute aggregates at the lowest possible system

level.

• If possible, use arrays or hashing to organize the aggre-

gation columns in memory, storing one aggregate value

for each array or hash entry.

• If the aggregation values are large strings, it may be wise

to keep a hashed symbol table that maps each string to

an integer so that the aggregate values are small. When

a new value appears, it is assigned a new integer. With

this organization, the values become dense and the ag-

gregates can be stored as an N-dimensional array.

• If the number of aggregates is too large to fit in memory,

use sorting or hybrid hashing to organize the data by

value and then aggregate with a sequential scan of the

sorted data.

• If the source data spans many disks or nodes, use paral-

lelism to aggregate each partition and then coalesce

these aggregates.

Some innovation is needed to compute the "ALL" tuples of

the cube and roll-up from the GROUP BY core. The ALL

value adds one extra value to each dimension in the CUBE.

So, an N-dimensional cube of N attributes each with car-

dinality Ci, will have ∏(Ci+1). If each Ci =4 then a 4D

CUBE is 2.4 times larger than the base GROUP BY. We

expect the Ci to be large (tens or hundreds) so that the

CUBE will be only a little larger than the GROUP BY. By

comparison, an N-dimensional roll-up will add only N

records to the answer set.

The cube operator allows many aggregate functions in the

aggregation list of the GROUP BY clause. Assume in

this discussion that there is a single aggregate function F()

being computed on an N-dimensional cube. The exten-

sion to computing a list of functions is a simple generali-

zation.

Figure 7 summarizes how aggregate functions are defined

and implemented in many systems. It defines how the

database execution engine initializes the aggregate func-

tion, calls the aggregate functions for each new value and

then invokes the aggregate function to get the final value.

More sophisticated systems allow the aggregate function

to declare a computation cost so that the query optimizer

knows to minimize calls to expensive functions. This

design (except for the cost functions) is now part of the

proposed SQL standard.

Scratchpad

sta
rt

next

e
n

d

Figure 7: System defined and user

defined aggregate functions are

initialized with a start() call that

allocates and initializes a scratch-

pad cell to compute the aggregate.

Subsequently, the next() call is

invoked for each value to be aggre-

gated. Finally, the end() call com-

putes the aggregate from the

scratchpad values, deallocates the

scratchpad and returns the result.

The simplest algorithm to compute the cube is to allocate a

handle for each cube cell. When a new tuple: (x
1
, x

2
,....,

x
N
, v) arrives, the Iter(handle, v) function is called 2N

times -- once for each handle of each cell of the cube

matching this value. The 2N comes from the fact that each

coordinate can either be xi or ALL. When all the input tu-

ples have been computed, the system invokes the fi-

nal(&handle) function for each of the ∏(Ci+1) nodes

in the cube. Call this the 2N-algorithm. There is a corre-

sponding order-N algorithm for roll-up.

If the base table has cardinality T, the 2N-algorithm in-

vokes the Iter() function T x 2N times. It is often faster

to compute the super-aggregates from the core GROUP BY,

reducing the number of calls by approximately a factor of

T. It is often possible to compute the cube from the core or

from intermediate results only M times larger than the core.

The following trichotomy characterizes the options in

computing super-aggregates.

Consider aggregating a two dimensional set of values {Xij |

i = 1,...,I; j=1,...,J}. Aggregate functions can be classified

into three categories:

Distributive: Aggregate function F() is distributive if

there is a function G() such that F({Xi,j}) = G({F({Xi,j

|i=1,...,I}) | j=1,...J}). COUNT(), MIN(), MAX(),

SUM() are all distributive. In fact, F = G for all but

COUNT(). G= SUM() for the COUNT() function. Once

order is imposed, the cumulative aggregate functions

also fit in the distributive class.

Data Cube 11

Algebraic: Aggregate function F() is algebraic if there is

an M-tuple valued function G() and a function H() such

that

F({Xi,j}) = H({G({Xi,j |i=1,.., I}) | j=1,..., J }). Aver-

age(), standard deviation, MaxN(), MinN(), cen-

ter_of_mass() are all algebraic. For Average, the func-

tion G() records the sum and count of the subset. The

H() function adds these two components and then di-

vides to produce the global average. Similar techniques

apply to finding the N largest values, the center of mass

of group of objects, and other algebraic functions. The

key to algebraic functions is that a fixed size result (an

M-tuple) can summarize the sub-aggregation.

Holistic: Aggregate function F() is holistic if there is no

constant bound on the size of the storage needed to de-

scribe a sub-aggregate. That is, there is no constant M,

such that an M-tuple characterizes the computation

F({Xi,j |i=1,...,I}). Median(), MostFrequent() (also

called the Mode()), and Rank() are common examples

of holistic functions.

We know of no more efficient way of computing super-

aggregates of holistic functions than the 2N-algorithm

using the standard GROUP BY techniques. We will not say

more about cubes of holistic functions.

Cubes of distributive functions are relatively easy to com-

pute. Given that the core is represented as an N-

dimensional array in memory, each dimension having size

Ci+1, the N-1 dimensional slabs can be computed by pro-

jecting (aggregating) one dimension of the core. For ex-

ample the following computation aggregates the first di-

mension.

CUBE(ALL, x2,...,xN) = F({CUBE(i, x2,...,xN) | i = 1,...C1}).

N such computations compute the N-1 dimensional super-

aggregates. The distributive nature of the function F()

allows aggregates to be aggregated. The next step is to

compute the next lower dimension -- an (...ALL,..., ALL...)

case. Thinking in terms of the cross tab, one has a choice

of computing the result by aggregating the lower row, or

aggregating the right column (aggregate (ALL, *) or (*,

ALL)). Either approach will give the same answer. The

algorithm will be most efficient if it aggregates the smaller

of the two (pick the * with the smallest Ci). In this way,

the super-aggregates can be computed dropping one di-

mension at a time.

Algebraic aggregates are more difficult to compute than

distributive aggregates. Recall that an algebraic aggregate

saves its computation in a handle and produces a result in

the end -- at the Final() call. Average() for example

maintains the count and sum values in its handle. The

super-aggregate needs these intermediate results rather

than just the raw sub-aggregate. An algebraic aggregate

must maintain a handle (M-tuple) for each element of the

cube (this is a standard part of the group-by operation).

When the core GROUP BY operation completes, the CUBE

algorithm passes the set of handles to each N-1 dimen-

sional super-aggregate. When this is done the handles of

these super-aggregates are passed to the super-super ag-

gregates, and so on until the (ALL, ALL, ..., ALL) aggregate

has been computed. This approach requires a new call for

distributive aggregates:
 Iter_super(&handle, &handle)
which folds the sub-aggregate on the right into the super

aggregate on the left. The same ordering idea (aggregate

on the smallest list) applies at each higher aggregation

level.

Data Cube 12

Figure 8: Computing the

cube with a minimal num-

ber of calls to aggregation

functions. If the aggrega-

tion operator is algebraic or

distributive, then it is pos-

sible to compute the core of

the cube as usual.

Then, the higher dimen-

sions of the cube are com-

puted by calling the super-

itterator function passing

the lower-level scratch-

pads.

Once an N-dimensional

space has been computed,

the operation repeats to

compute the N-1 dimen-

sional space. This repeats

until N=0.

Interestingly, the distributive, algebraic, and holistic tax-

onomy is very useful in computing aggregates for parallel

database systems. In those systems, aggregates are com-

puted for each partition of a database in parallel. Then the

results of these parallel computations are combined. The

combination step is very similar to the logic and mecha-

nism used in Figure 8.

If the data cube does not fit into memory, array techniques

do not work. Rather one must either partition the cube

with a hash function or sort it. These are standard tech-

niques for computing the GROUP BY. The super-

aggregates are likely to be orders of magnitude smaller

than the core, so they are very likely to fit in memory.

Sorting is especially convenient for ROLLUP since the user

often wants the answer set in a sorted order – so the sort

must be done anyway.

It is possible that the core of the cube is sparse. In that

case, only the non-null elements of the core and of the su-

per-aggregates should be represented. This suggests a

hashing or a B-tree be used as the indexing scheme for

aggregation values [Essbase].

6. Maintaining Cubes and Roll-ups

SQL Server 6.5 has supported the CUBE and ROLLUP

operators for about six months now. We have been sur-

prised that some customers use these operators to compute

and store the cube. These customers then define triggers

on the underlying tables so that when the tables change, the

cube is dynamically updated.

This of course raises the question: how can one incremen-

tally compute (user-defined) aggregate functions after the

cube has been materialized? Harinarayn, Rajaraman, and

Ullman have interesting ideas on pre-computing a sub-

cubes of the cube assuming all functions are holistic [Hari-

narayn, Rajaraman, and Ullman]. Our view is that users

avoid holistic functions by using approximation tech-

niques. Most functions we see in practice are distributive

or algebraic. For example, medians and quartiles are ap-

proximated using statistical techniques rather than being

computed exactly.

The discussion of distributive, algebraic, and holistic func-

tions in the previous section was completely focused on

SELECT statements, not on UPDATE, INSERT, or

DELETE statements.

Surprisingly, the issues of maintaining a cube are quite

different from computing it in the first place. To give a

simple example: it is easy to compute the maximum value

in a cube – max is a distributive function. It is also easy to

propagate inserts into a “max” N-dimensional cube. When

a record is inserted into the base table, just visit the 2N

super-aggregates of this record in the cube and take the

max of the current and new value. This computation can

be shortened -- if the new value “loses” one competition,

then it will lose in all lower dimensions. Now suppose a

delete or update changes the largest value in the base table.

Then 2
N
 elements of the cube must be recomputed. The

recomputation needs to find the global maximum. This

seems to require a recomputation of the entire cube. So,

max is a distributive for SELECT and INSERT, but it is ho-

listic for DELETE.

This simple example suggests that there are orthogonal

hierarchies for SELECT, INSERT, and DELETE functions

(update is just delete plus insert). If a function is alge-

braic for insert, update, and delete (count() and sum() are

such a functions), then it is easy to maintain the cube. If

the function is distributive for insert, update, and delete,

then by maintaining the scratchpads for each cell of the

cube, it is fairly inexpensive to maintain the cube. If the

Data Cube 13

function is delete-holistic (as max is) then it is expensive

to maintain the cube. These ideas deserve more study.

 7. Summary:

The cube operator generalizes and unifies several com-

mon and popular concepts:

 aggregates,

 group by,

 histograms,

 roll-ups and drill-downs and,

 cross tabs.

The cube operator is based on a relational representation

of aggregate data using the ALL value to denote the set

over which each aggregation is computed. In certain

cases it makes sense to restrict the cube operator to just a

roll-up aggregation for drill-down reports.

The data cube is easy to compute for a wide class of func-

tions (distributive and algebraic functions). SQL’s basic

set of five aggregate functions needs careful extension to

include functions such as rank, N_tile, cumulative, and

percent of total to ease typical data mining operations.

These are easily added to SQL by supporting user-defined

aggregates. These extensions require a new super-

aggregate mechanism to allow efficient computation of

cubes.

7. Acknowledgments

Joe Hellerstein suggested interpreting the ALL value as a

set. Tanj Bennett, David Maier and Pat O’Neil made

many helpful suggestions that improved the presentation.

8. References

 [Access] Microsoft Access Relational Database Management

System for Windows, Language Reference -- Functions,

Statements, Methods, Properties, and Actions, DB26142,

Microsoft, Redmond, WA, 1994.

[Chamberlin] D. Chamberlin, Using the New DB2 – IBM’s

Object-Relational Database System, Morgan Kaufmann,

San Francisco, CA, 1996.

[Date1] C. J. Date, “Aggregate Functions,” Database Pro-

gramming and Design, Vol. 9 No.4, April 1996, pp. 17-

19.

[Date2] C.J. Date, Introduction to Database Systems, 6th Ed.,

Addison Wesley, N.Y., N.Y., 1995.

[Essbase] Method and apparatus for storing and retrieving

multi-dimensional data in computer memory, Inventor:

Earle; Robert J., Assignee: Arbor Software Corporation,

US Patent 05359724, October 1994.

[Excel] Microsoft Excel—User’s Guide, Microsoft, Redmond,

WA, 1995.

[Graefe] G. Graefe, “Query Evaluation Techniques for Large

Databases,” ACM Computing Surveys, 25.2, June 1993, pp.

73-170.

[Gray] J. Gray (Editor) The Benchmark Handbook, Morgan

Kaufman, San Francisco, CA 1991.

 [Gray et. al.] J. Gray, A. Bosworth, A. Layman, H. Pirahesh, “

Data Cube: A Relational Operator Generalizing Group-By,

Cross-Tab, and Roll-up,” Proc International Conf. On Data

Engineering, IEEE Press, Feb 1996, New Orleans.

[Harinarayn, Rajaraman, and Ullman] . V. Harinarayn, A.

Rajaraman, and J.D.Ullman, “Implementing Data

Cubes Efficiently,” Proc. ACM SIGMOD, June 1996,

Montreal, pp. 205-216.
[Informix] DataBlade Developer's Kit: Users Guide 2.0, Infor-

mix Software, Menlo Park, CA, May 1996.

[Melton & Simon] J. Melton and A. R. Simon, Understanding

the New SQL: A Complete Guide, Morgan Kaufmann, San

Francisco, CA, 1993.

[ADGNRS] R. Agrawal, P. Deshpande, A. Gupta, J. F. Naugh-

ton, R. Ramakrishnan, S. Sarawagi, “On the Computation of

Multidimensional Aggregates,” Proc. 21st VLDB, Bombay,

Sept 1996.

[SQL Server] Microsoft SQL Server: Transact-SQL Reference,

Document 63900, May 1996, Microsoft Corp. Redmond,

WA.

[Red Brick] RISQL Reference Guide, Red Brick Warehouse VPT

Version 3, Part no: 401530, Red Brick Systems, Los Gatos,

CA, 1994.

[SDNR] A. Shukla, P. Deshpande, J. F. Naughton, K. Ramas-

wamy: “Storage Estimation for Multidimensional Aggre-

gates in the Presence of Hierarchies,” Proc. 21st VLDB,

Bombay, Sept 1996.

[SQL] IS 9075 International Standard for Database Lan-

guage SQL, document ISO/IEC 9075:1992, J. Melton,

Editor, October 1992.

[SQL97] ISO/IEC DBL:MCI-006 (ISO Working Draft)

Database Language SQL — Part 4: Persistent Stored

Modules (SQL/PSM), J. Melton, Editor, March 1996.
 [TPC] The Benchmark Handbook for Database and Transaction

Processing Systems - 2nd edition, J. Gray (ed.), Morgan

Kaufmann, San Francisco, CA, 1993. Or

http://www.tpc.org/

