
KEEP IN TOUCH

© THECODINGGUYS 2013

C# Cheat Sheet

12/24/2013

A cheat sheet to the C# language, ideal for newcomers to the language for more visit
http://www.thecodingguys.net

https://twitter.com/thecodingguys
https://www.facebook.com/Thecodingguys

TABLE OF CONTENTS

LICENSE 3

LANGUAGE BASICS 4

Introduction 4

Variables 4

Syntax 4

Naming Rules 4

Example 4

Arrays 4

Syntax 4

Example 5

Strings 5

Concatenation 5

Example 5

New Line 5

Example 5

String.Format 5

Example 5

CONDITIONAL STATEMENTS 6

If statements 6

Syntax 6

Example 6

If Else Statements 6

Example 6

Switch Statement 6

Syntax 7

Example 7

LOOPS 8

While Loop 8

Syntax 8

Example 8

For Loop 8

Syntax 8

Example 9

For Each 9

Syntax 9

Example 9

ADVANCED – EXCEPTIONS, METHODS & CLASSES 10

Exceptions 10

Syntax 10

Example 10

Methods 10

Syntax 10

Example 11

Passing Parameters 11

Returning Data 11

Classes 12

Syntax 12

Example 12

SUMMARY 12

Why Not Give us a like? 12

LICENSE
This work is licensed under the creative commons Attribution-NonCommercial-NoDerivs 3.0

Unported

 You may not alter, transform, or build upon this work.

 You may not use this work for commercial purposes.

 You are free to copy, distribute and transmit the work

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

LANGUAGE BASICS

INTRODUCTION

C# is a powerful Object Orientated language, for those coming from Java or C++ you should be

able to pick up the syntax for C# quickly. A few points:

 The language is case-sensitive (So A and a are different)

 Lines terminate with semi-colons

 Code is put in code blocks { }

 Inline comments start with //

 Block comments start with /* */

 XML comments start with ///

VARIABLES

To declare a variable you specify the data type and variable name followed by a value.

SYNTAX
DataType variableName = value;

NAMING RULES
 Variables must start with underscore or letter

 Variables cannot contain spaces

 variables can contain numbers

 Cannot contain symbols (accept underscore)

EXAMPLE
string Name = "thecodingguys";

int Year = 2013;

I will use these two variables throughout.

ARRAYS

Arrays are similar to variables, but can hold more than one value.

SYNTAX
DataType[] ArrayName = { Comma Separated Values } // Array of any size

DataType[] ArrayName = new DataType[3] {Command Separated Values } //Expects 3 values

EXAMPLE
string[] MyGamesOf2013 = {"GTAV", "Battlefield3"};

string[] MyMoveisOf2013 = new string[3] {"The Amazing Spiderman", "The Expendables

2", "Rise of the planet of the apes"};

STRINGS

CONCATENATION
Concatenation is done through the + operator.

EXAMPLE
Console.WriteLine("Hello " + "World");

NEW LINE

 EXAMPLE
 Console.WriteLine("Hello \n" + "World");

STRING.FORMAT
Formats an object, you specify the formatting you wish to perform, the following formats an

integer and displays the currency symbol.

EXAMPLE
 Console.WriteLine(string.Format("{0:C}", 5));

Depending on your computers regional settings you will see £5.00 displayed (You’ll see your

countries currency symbol). The 0:C is the formatting we wish to do, in this case it means

format the first parameter (0) and show a currency sign.

CONDITIONAL STATEMENTS

IF STATEMENTS

if statement is used to execute code based on a condition the condition must evaluate to true for

the code to execute.

SYNTAX
 if (true)

 {

 }

EXAMPLE
 if (Year > 2010)

 {

 Console.WriteLine("Hello World!");

 }

IF ELSE STATEMENTS

if a condition does not evaluate to true you can use an if else statement to execute other code.

EXAMPLE
 if (Year > 2015)

 {

 Console.WriteLine("Hello World!");

 }

 else

 {

 Console.WriteLine("Year is: " + Year);

 }

SWITCH STATEMENT

Similar to the If else statement, however it has these benefits.

 Much easier to read and maintain

 Much cleaner then using nested if else

 It only evaluates one variable

SYNTAX
 switch (switch_on)

 {

 default:

 }

EXAMPLE
 switch (Year)

 {

 case 2013 :

 Console.WriteLine("It's 2013!");

 break;

 case 2012 :

 Console.WriteLine("It's 2012!");

 break;

 default :

 Console.WriteLine("It's " + Year + "!");

 break;

 }

The break keyword is required as it prevents case falling.

LOOPS

WHILE LOOP

Continuously loops code until the condition becomes false.

SYNTAX
 while (true)

 {

 }

EXAMPLE
 while (Year >= 2013)

 {

 if (Year != 2100)

 {

 Console.WriteLine(Year++);

 }

 else

 {

 break;

 }

 }

Make sure your condition evaluates to false at some point otherwise the loop is endless and it

can result in errors.

FOR LOOP

Similar to the While Loop, but you specify when the loop will end.

SYNTAX
 for (int i = 0; i < length; i++)

 {

 }

EXAMPLE
 for (int i = 0; i <= 100; i++)

 {

 Console.WriteLine(i);

 }

This prints out 1 to 100. The expression can be easily broken down like this:

I = 0;

I Is less than or equal to 100? (True)

Increment I by 1

When I reaches 100 it will stop because I will no longer be less than100 and will equal 100 so

the condition is false.

FOR EACH

The for each loop is used to loop around a collection. (Such as an array)

SYNTAX
 foreach (var item in collection)

 {

 }

EXAMPLE
 foreach (string movie in MyMoveisOf2013)

 {

 Console.WriteLine(movie);

 }

Outputs all the elements in the MyMoviesOf2013 array.

ADVANCED – EXCEPTIONS, METHODS &

CLASSES

EXCEPTIONS

To catch any exceptions which are likely to occur you use a try catch block.

SYNTAX
 try

 {

 }

 catch (Exception)

 {

 throw;

 }

EXAMPLE
 try

 {

 string result = "k";

 Console.WriteLine(Convert.ToInt32(result) + 10);

 }

 catch (Exception ex)

 {

 Console.WriteLine(ex.Message);

 }

The above code results in a format exception, because you can’t convert K to a number 

METHODS

SYNTAX
 public void MethodName()

 {

 //Does not return a value

 }

 public static void MethodName()

 {

 //Does not return a value, the class does not need to be initialized

 //for this method to be used.

 }

 public static DataType MethodName()

 {

//Requires a value to be returned, class does not need to be

initialized for this method to be used.

 }

EXAMPLE
 public static void WelcomeUser()

 {

 Console.WriteLine("Hello Guest!");

 }

Passing Parameters
 public static void WelcomeUser(string Name)

 {

 Console.WriteLine("Hello " + Name + "!");

 }

Since both methods have the same name and different parameters (One takes no parameters

and the other one does) this is said to be an overloaded method.

Returning Data
 public static DateTime Tomorrow()

 {

 return DateTime.Now.AddDays(1);

 }

All the examples above are static, this allows me to use the methods without initializing the

class. You can read more about Classes and Methods. Also public methods are available outside

of the current class, private methods are only available in the current class.

http://www.thecodingguys.net/tutorials/csharp/csharp-methods

CLASSES

SYNTAX
Class MyClassName

{

}

EXAMPLE
 class MyCar

 {

 public void Manufacturer(string Manf)

 {

 Console.WriteLine(Manf);

 }

 }

To use the method in the class, the class must be initialized first.

 MyCar NewCar = new MyCar();

 NewCar.Manufacturer("Audi");

If the method was declared static I could simply do this:

MyCar.Manufacturer(“Audi”);

Static methods are useful, make sure you are using the right design for your classes and

methods. A good example is the Math class, to perform simple calculations you do not want to

be initializing the class all the time, that’s why most methods are static.

SUMMARY
This cheat sheet sums up the basics of C#, for experienced developers who are learning C# and

users who already know programming basics, hopefully this document has helped you in some

way, there was not much information or explaining but then again I’m assuming you’ve

programmed before and know the basics  For more visit http://www.thecodingguys.net

WHY NOT GIVE US A LIKE?

https://twitter.com/thecodingguys
https://www.facebook.com/Thecodingguys

