
Efficient Reconciliation and Flow Control
for Anti-Entropy Protocols

Robbert van Renesse
∗

Dan Dumitriu
†

Valient Gough Chris Thomas

Amazon.com, Seattle

ABSTRACT
The paper shows that anti-entropy protocols can process
only a limited rate of updates, and proposes and evaluates a
new state reconciliation mechanism as well as a flow control
scheme for anti-entropy protocols.

Categories and Subject Descriptors: C.2.1 [Computer-Com-
munication Networks]: Network Architecture and Design
– network communications; C.2.4 [Computer-Communic-
ation Networks]: Distributed Systems – distributed appli-
cations; D.1.3 [Programming Techniques]: Concurrent
Programming – distributed programming ; D.4.4 [Operating
Systems]: Communications Management – network com-
munication; D.4.5 [Operating Systems]: Reliability – fault
tolerance;

General Terms: Algorithms, Reliability.

Additional Key Words and Phrases: Epidemics, Anti-Entropy,
Gossip, Flow Control

1. INTRODUCTION
Anti-entropy, or gossip, is an attractive way of replicating
state that does not have strong consistency requirements [3].
With few limitations, updates spread in expected time that
grows logarithmic in the number of participating hosts, even
in the face of host failures and message loss. The behavior
of update propagation is easily modeled with well-known
epidemic analysis techniques. As a result, many distributed
applications use gossip to contain various inconsistencies.

In spite of its popularity, little study has been done into
how gossip protocols behave under high update load. Gos-
sip protocols purport to deliver messages within a certain
configurable number of rounds with high probability, and
thus provide synchronous guarantees. Like any other syn-

∗Contact author. Current address: Dept. of Comp. Sc.,
Cornell University. Email: rvr@cs.cornell.edu
†Current address: Ballista Securities, New York.

chronous communication channel, gossip has capacity that is
limited by available bandwidth for transporting gossip data
and CPU cycles for generating and processing the gossip
messages. Under high update load, a gossip protocol may
not be able to send all updates required to reconcile differ-
ences between peers. Updates would take arbitrary time to
propagate as the gossip channel gets backed up.

Gossip protocols are designed to be non-invasive and have
predictable performance, and for this a designer has to fix
not only the gossip rate per participant but also the max-
imum size of gossip messages (e.g., maximum UDP packet
size). While this avoids network and CPU overload, it also
limits the capacity of the gossip channel.

This paper makes two contributions. First, it presents a
new state reconciliation mechanism that is designed both for
minimal CPU overhead and for situations in which only lim-
ited bandwidth is available (Section 3). Second, it proposes
and analyzes a flow control scheme for gossip (Section 4).
Related work is discussed in Section 5.

2. GOSSIP BASICS
There are two classes of gossip: anti-entropy and rumor-
mongering protocols. Anti-entropy protocols gossip infor-
mation until it is made obsolete by newer information, and
are useful for reliably sharing information among a group of
participants. Rumor-mongering has participants gossip in-
formation for some amount of time chosen sufficiently high
so that with high likelihood all participants receive the in-
formation. In this paper, we shall focus on anti-entropy—
reconciliation and flow control for rumor-mongering have re-
ceived considerably attention already (see Section 5).

Let P = {p, q, ...} be a set of participants. Each participant
maintains state, which we model as a mapping σ ∈ S = K →
(V×N). Here K is a set of keys, V a set of values, and N an
infinite ordered set of version numbers. σ(k) = (v, n) means
that key k is mapped to value v and version n. A more
recent mapping for the same key contains a larger version
number. Both value and version number spaces contain a ⊥
element, and in case of N , ⊥ is the lowest element. Initially
all keys on all participants are mapped to (⊥,⊥).

A participant’s state is mutable and is replicated onto all
participants. We model this as a mutable mapping µp : P →
S maintained by each participant p. A participant p is only

allowed to update its own state µp(p) directly. µp(q), p 6= q,
can only be updated indirectly through gossip.

Anti-entropy protocols use a merge or reconciliation opera-
tor ⊕ that operates on two states in S and returns a new
state. The semantics of σ = σ1 ⊕ σ2 is as follows. Let
σ1(k) = (v1, n1), and σ2(k) = (v2, n2). Then σ(k) = (v1, n1)
if n1 ≥ n2, and (v2, n2) otherwise.

Each participant p has a set of peers Fp ⊆ P − {p} that it
gossips with. In many protocols, Fp = P−{p}. Periodically,
p chooses a participant q from Fp at random, and initiates
gossip with q. p and q then apply the reconciliation operator
to their copies of the participants’ states.

There are three styles of gossip that are used. In the most
basic form, p simply sends µp to q, and q applies ⊕ to all
mappings in µq . That is, ∀r : µ′

q(r) = µq(r) ⊕ µp(r). This
is often referred to as push-gossip. In pull-gossip, p sends to
q a digest of its state, which is essentially µp with the val-
ues removed, leaving only the keys and version numbers. q
then returns to p only the necessary updates to µp, avoiding
sending values that are not needed. Push-pull-gossip is like
pull-gossip, except that q also sends a list of participant-key
pairs for which it has outdated entries compared to p. Upon
receipt, p sends the corresponding entries of µp back to q.
Push-pull is the most efficient style, and it is the one we
focus on in this paper.

If a particular key on a particular participant is no longer
updated, its value will propagate to all other participants
in expected time that is logarithmic in the number of par-
ticipants, and is guaranteed to get to all other participants
eventually with probability 1 (assuming Fp is chosen suffi-
ciently large [5]). Message loss and individual participant
failures, within reason, do little to slow gossip down.

While seemingly simple, tricky issues arise when gossip is
used under high update load while available network band-
width or CPU cycles are limited. Gossip exchanges use CPU
and network resources, but in most published works these
have been considered negligible. If the amount of data in
updates is significant, then a backlog can build up.

Say that each participant introduces updates at the same
rate. While expected latencies continue to grow logarithmic
in N , the size of gossip messages grows linearly in N . In
practice, the maximum size of gossip messages is limited by
the maximum amount of network bandwidth that the gossip
protocol may use or by other considerations such as CPU
time used for generating and handling messages. This means
that it is important that gossip messages are used efficiently,
and that the rate of updates is carefully controlled. If the
rate of updates were too high, latency may grow without
bounds.

In practice, we expect that limiting the rate of updates is
less of a problem for applications than increasing the latency
of updates. Information that is gossiped is sampled at cer-
tain intervals. Applications are typically more interested in
recency of information than in how often it is sampled.

For this paper we assume that a gossip message contains at
most mtu (Maximum Transmission Unit) tuples, each tuple
consisting of a participant identifier p, a key k, a value v,
and a version number n, signifying that µp(p)(k) = (v, n)
at some time in the past. We call such tuples deltas. (In
practice, different deltas may have different sizes—but this
is not a major complication.)

3. RECONCILIATION
When two participants p and q gossip using reconciliation
mechanism π, p ends up sending to q a set of deltas ∆p→q

π ⊆
{(r, k, v, n) | µp(r)(k) = (v, n)} while q sends to p a similar
set ∆q→p

π . Should |∆p→q

π | > mtu, then only a subset of size
mtu may be sent, and the same holds for ∆q→p

π . To decide
which deltas to send, deltas are totally ordered by <π, so
that for any two different elements δ1 and δ2 in ∆π, either
δ1 <π δ2 or δ2 <π δ1. Only the highest mtu deltas are
included in a gossip message. The possible orderings for a
reconciliation mechanism may be constrained by correctness
requirements. Within those constraints, different orderings
may lead to different performance as we will demonstrate
later.

We now present two different reconciliation mechanisms.
The first, precise reconciliation, sends only necessary up-
dates, and is used for baseline measurements. Next we
present our own mechanism, Scuttlebutt.

3.1 Precise Reconciliation
In precise reconciliation, the two participants in a gossip
exchange send exactly those mappings that are more recent
than those of the peer. Thus, if the participants are p and
q, p sends to q the set of deltas

∆p→q

precise = {(r, k,v, n) ∈ P ×K × V ×N | µp(r)(k) = (v, n)

∧ µq(r)(k) = (·, n′) ∧ n > n′}

while q sends to p a similar set ∆q→p

precise .

On receipt, q uses ∆p→q

precise to update µq(r). Due to concur-
rent gossip activity, not all entries may be updates, so it only
applies an update if the version number is larger than what
is in its current µq(r). The same holds for p and ∆q→p

precise .

In practice, precise reconciliation is quite difficult. To de-
termine the differences between the participants, digests of
the participants’ states have to be exchanged. As described
before, and as is clear from the definitions of ∆p→q

precise and
∆q→p

precise , this can consist of sending the state without the
values. This could still amount to a considerable amount of
data, while compressions schemes (e.g., using hashes) may
consume significant CPU cycles.

How to order deltas in these sets for best results in case an
mtu is enforced is not clear. Ordering may be done randomly
or deterministically. In this paper, we use two deterministic
approaches for baseline purposes. For the “precise-oldest”
approach, the mtu most out-of-date deltas are included in
the gossip message. For the “precise-newest” approach, the
most recent updates are used instead. The latter may result

t = 1 t = 2

p

µp(r)(a) = (·, 1)
µp(r)(b) = (·, 2)
µp(r)(c) = (·, 3)

µp(r)(a) = (·, 21)
µp(r)(b) = (·, 2)
µp(r)(c) = (·, 3)

q

µq(r)(a) = (·, 11)
µq(r)(b) = (·, 12)
µq(r)(c) = (·, 13)

µq(r)(a) = (·, 21)
µq(r)(b) = (·, 12)
µq(r)(c) = (·, 13)

r

µr(r)(a) = (·, 21)
µr(r)(b) = (·, 22)
µr(r)(c) = (·, 23)

µr(r)(a) = (·, 21)
µr(r)(b) = (·, 22)
µr(r)(c) = (·, 23)

Figure 1: The state of the system at two times. Val-
ues are omitted.

in starvation, where some older updates never get a chance
to propagate.

Note that, if implemented, both these orderings would re-
quire a synchronized clock among the members and that all
updates be timestamped with this clock.

3.2 Scuttlebutt Reconciliation
Next we present a mechanism that can be more efficient than
precise reconciliation, both in terms of network bandwidth
used and CPU cycles spent. Let max(σ) be the maximum
version number used in σ ∈ S. A participant p is allowed to
update its own state σp = µp(p) one key at a time. Say that
the participant wishes to update key k0 to value v0, creating
a new state σ′

p. Scuttlebutt requires that the participant
uses a version number higher than any used before, that is,
σ′

p(k0) = (v0, n0) where n0 > max(σp), and σ′

p(k) = σp(k)
for all k 6= k0. As a result, it is not possible for two different
keys in a state to map to the same version number.

When p and q start gossiping, they first exchange digests
{(r, max(µp(r))) | r ∈ P} and {(r, max(µq(r))) | r ∈ P}
resp.1 On receipt, p sends to q

∆p→q

scuttle = {(r, k,v, n) | µp(r)(k) = (v, n) ∧ n > max(µq(r))}

while q sends to p a similar set ∆q→p

scuttle .

A gossiper never transmits updates that were already known
at the receiver. If gossip messages were unlimited in size,
then the sets contains the exact differences, just like with
precise reconciliation. If a set does not fit in the gossip
message, then it is not allowed to use an arbitrary subset
as in precise reconciliation. Scuttlebutt requires that if a
certain delta (r, k, v, n) is omitted, then all the deltas with
higher version numbers for the same r should be omitted
as well. We enforce this using a constraint on the ordering
between deltas:

n > n′ ⇒ (r, k, v, n) <scuttle (r, k′, v′, n′) (1)

1In practice, the gossiper sends the first message, and the
gossipee responds on receipt. For clarity, we simplify the
protocol here.

Scuttlebutt satisfies the global invariant C(p, q) for any two
processes p and q:

C(p, q) ≡ ∀k ∈ K :



µp(p)(k) = µq(p)(k) ∨
µp(p)(k).n > max(µq(p))

(2)

In other words, each process q either has the current map-
ping for a key k at process p, or the current version of k
is larger than the maximum that q has for p. Because ini-
tially all keys at all processes are mapped to (⊥,⊥), and ⊥
is the lowest possible version number, this invariant holds
in the initial state of the system. It is obvious too that at
all times C(p, p) holds, and thus local updates to a mapping
preserve the invariant. Finally, it is easy to verify that a
gossip exchange of the mapping of r between processes p
and q maintains the invariant, that is, the new version of
µp(r) satisfies C(r, p) while the new version of µq(r) satisfies
C(r, q). (In fact, at most one of the two tables, the one with
the smaller maximum version number, would be updated.)
This is why it is important that deltas are communicated in
the order of version number; if not, the invariant could be
violated.

A remarkable property of Scuttlebutt is that the gossip ex-
change between two participants is not designed to eliminate
all differences between the two participants, even if there is
sufficient room in the gossip messages. See Figure 1 for an
example. The table shows part of the states of participant
r at participants p, q, and r for keys a, b, and c. Between
times t = 1 and t = 2, p and r have been able to exchange
one delta, as have q and r. At time t = 2, max(µp(r)) and
max(µq(r)) are the same, and should p and q gossip, q will
not send its more recent entries to p.

This may appear to be a shortcoming—precise reconciliation
can eliminate all differences and therefore potentially con-
verge faster. However, the differences that would be elim-
inated involve keys that have already been updated at r,
and thus would have to be reconciled again. Not sending
the unnecessary updates leaves room in the gossip message
for deltas of other participants.

Given invariant C(p, q), the following property holds be-
cause no key of p can have a version number higher than
max(µp(p)):

max(µq(p)) = max(µp(p)) ⇒ µq(p) = µp(p) (3)

It is then clear that Scuttlebutt converges to consistency in
spite of not necessarily updating all keys in every exchange.

More than one ordering satisfies the constraint in Equa-
tion 1, but these may result in different performance charac-
teristics. We present two possible orderings. The “scuttle-
breadth” ordering function tries to be fair to all participants
by including in each gossip message deltas from as many dif-
ferent participants as possible. It uses a ranking on deltas
for the same participant. The delta with the lowest version
number has rank 0, the next lowest rank 1, and so on. The
deltas are first ordered by rank so that deltas with lower

ranks are included before deltas with higher ranks. For two
different deltas with the same rank, and thus necessarily for
different participants, the ordering is based on an ordering
among the participants. This ordering should be different
for each gossip exchange to eliminate long-term bias, and
our experiments use a different pseudo-random ordering for
each gossip message. Note that this ordering easily satisfies
the constraint on <scuttle .

The other ordering function we present, “scuttle-depth,” is
the best we encountered from various trials. Instead of being
fair to all participants, it prioritizes updates for those who
are most left behind. That is, scuttle-depth prefers deltas of
participants for which more deltas are available over deltas
of participants with few available deltas. For participants
with the same number of available deltas, random ordering
among participants is used to remove bias (as in scuttle-
breadth). Finally, deltas from the same participant are in-
versely ordered by their version number, consistent with the
ordering constraint.

So far we have assumed that a Scuttlebutt digest, consisting
of a version number for each participant, fits in a network
message, but in a large system this may not be the case.
Large systems that use gossip are often organized hierarchi-
cally (e.g., [13]) such that individual gossip populations are
limited in size. If need be, multiple messages may be used
to exchange the digests. or the set of participant identifiers
and corresponding version numbers itself could be reconciled
using some reconciliation mechanism. For example, instead
of including all participants in a digest, it is possible to in-
clude a pseudo-random participants subset of the required
maximum size, which still works but increases propagation
time.

3.3 Evaluation
To evaluate the reconciliation strategies discussed, we ran
various simulated experiments in overload scenarios. There
are 128 participants, each having 64 key/value pairs. Each
participant gossips once per second. The values are updated
at a certain rate, the same for each participant. Values are
updated uniformly at random.

The experiment starts at time t = 0. The initial update rate
per participant, ρ, is 1 per second. In the first 15 seconds
of the simulation, no message size limit is enforced, allowing
the system to warm up to remove bias. After this, a message
limit is enforced. At t = 25, we double the rate. At t =
75, we restore the rate. Finally, at t = 120, updates are
terminated, allowing the system to converge on a single set
of values.

In Figure 2(a) we report maximum staleness as a function
of time for a typical experiment with mtu = 100. A key-
value mapping µq(p)(k) is stale if µq(p)(k) 6= µp(p)(k). The
staleness of such a mapping µq(p)(k) is the amount of time
that has lapsed since µq(p)(k) was last updated.

The aggregate update rate is 128 updates per second, and
in a system without message size limitations one would ex-
pect the average gossip message to contain half this number
of updates (as there is a gossip message in each direction
in a gossip exchange). Thus we would expect each of the

protocols to work well, and the experiments bear this out.
Latency of dissemination under these conditions is about 5
or 6 rounds of gossip, as can be derived from epidemic anal-
ysis.

At t = 25 the aggregate rate doubles to 256 updates per
second, creating overload, and we see that the different ap-
proaches diverge. Precise-newest results in the highest max-
imum staleness due to starvation of values that did not get a
chance to be disseminated early on, but recovers fastest after
the update stream stops. To see why this is, see Figure 2(b),
which reports the number of stale mappings as a function
of time: precise-newest has the fewest stale mappings of all
protocols. This explains its fast recovery: it has the fewest
values to disseminate after t = 75. Precise-oldest has much
better maximum staleness, but recovers slowly exactly be-
cause it generates the most stale mappings.

There appears to be a trade-off between maximum stale-
ness and the number of stale mappings, although as we can
see, scuttle-depth scores well on both metrics. The scuttle-
breadth protocol has disappointing results, strongly indicat-
ing the importance of a good ordering. After updates cease
at t = 120, the states of the participants converges for all
protocols.

We did various other experiments, using different numbers of
participants, different numbers of gossip neighbors, different
update rates and message sizes, and using a Zipf distribution
for updates, but in all cases the trends are much the same.

Scuttle-depth performs best, almost able to keep up in some
of these heavy load cases and recovering quickly. But no
matter how good the reconciliation protocol, overload re-
mains a problem.

4. FLOW CONTROL
The objective of a flow control mechanism for gossip is to
determine, adaptively, the maximum rate at which a partic-
ipant can submit updates without creating a backlog of up-
dates. A flow control mechanism should be fair, and under
high load afford each participant that wants to submit up-
dates the same update rate. As there is no global oversight,
the flow control mechanism has to be decentralized, where
the desired behavior emerges from participants responding
to local events.

Local events that may be monitored are overflows of gossip
messages. Occasional overflow is not problematic—all our
reconciliation protocols can deal with this. But if there is
a trend in which the overflow becomes increasingly worse,
then a participant should back off generating updates.

In isolation, such a strategy by itself results in some par-
ticipants backing off, while other participants increase their
update rate. To compensate for such unfairness, we can use
the gossip mechanism itself. When two participants gossip,
they exchange their current maximum update rates. Assum-
ing both participants wish to update at the maximum rate
possible, they split the difference, each ending up with the
same maximum update rate, which is the average of their
old update rates. The aggregate update rate will not have
changed, but the system as a whole has increased its fairness.

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100 120 140

m
ax

 s
ta

le
ne

ss
 (

se
co

nd
s)

Time (seconds)

precise-newest
scuttle-breadth
precise-oldest
scuttle-depth

(b)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 20 40 60 80 100 120 140

st

al
e

Time (seconds)

precise-newest
scuttle-breadth
precise-oldest
scuttle-depth

Figure 2: (a) Maximum staleness and (b) total number of values that are stale in a system with mtu = 100
and ρ = 1.

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 20 40 60 80 100 120 140 160 180

m
ax

im
um

 r
at

e

Time (seconds)

precise-newest, N = 64
precise-oldest, N = 64
scuttle-depth, N = 64

precise-newest, N = 128
precise-oldest, N = 128
scuttle-depth, N = 128

(b)

 0

 5

 10

 15

 20

 25

 20 40 60 80 100 120 140 160 180

m
ax

 o
ut

 o
f d

at
e

Time (seconds)

N = 64, precise-newest
N = 64, precise-oldest
N = 64, scuttle-depth

N = 128, precise-newest
N = 128, precise-oldest
N = 128, scuttle-depth

Figure 3: (a) Update rate and (b) Maximum staleness at one participant for mtu = 100.

If one of the participants is not updating at the maximum
rate available to it, the participant can reduce its maximum
update rate and transfer the remainder to its peer.

4.1 Spreading Capacity Fairly
Each participant p has a desired update rate ρp,

2 but will
not submit updates faster than a maximum update rate, τp,
which it adjusts as necessary. When two participants p and
q gossip, they exchange their values of these variables. If
ρp + ρq ≤ τp + τq , both will be able to send at their desired
rates, and the remainder may be split evenly between them:

• τ ′

p = ρp + (τp + τq − ρp − ρq)/2

• τ ′

q = ρq + (τp + τq − ρp − ρq)/2

Should, however, ρp + ρq > τp + τq, at least one of the two
participants will not be able to send at their desired rate. If
ρp ≥ (τp + τq)/2 ∧ ρq ≥ (τp + τq)/2, then the participants
both get the same share:

• τ ′

p = (τp + τq)/2, τ ′

q = (τp + τq)/2

If either p or q wants to send less than the average maximum
rate, that participant can be accommodated while the other
receives the remainder. Without loss of generality, say ρp <
(τp + τq)/2. Then

• τ ′

p = ρp, τ ′

q = τp + τq − ρp

Note that in all three cases, τ ′

p +τ ′

q = τp +τq, so no capacity
is lost or gained in the process.

4.2 Local Adaptation
For local adaptation, we use an approach inspired by TCP
flow control [4]. In TCP, the send window adapts accord-
ing to a strategy called Additive Increase Multiplicative De-
crease (AIMD). In this strategy, window size grows linearly
with each successful transmission, but is decreased by a cer-
tain factor whenever overflow occurs. In the case of TCP,
the overflow signal is the absence of an acknowledgment.

We apply a similar strategy to adapt τp, the maximum num-
ber of updates that p can send per gossip interval. The
overflow signal is generated whenever a certain number of
consecutive gossip messages are completely filled. We found
that a single such occurrence is not a good indicator. Our
AIMD rules are as follows:

• if for φ1 gossip exchanges in a row one or both (sent
and received) of the delta sets is larger than mtu , then
τ ′

p = α · τp, 0 < α < 1;

• if for φ2 gossip exchanges in a row both delta sets are
smaller than mtu, then τ ′

p = min(τp + β,mtu), β > 0.

For our experiments, φ1 = φ2 = 3, α = 0.75, and β = .2.
2 To determine the desired update rate, each participant
would monitor the rate at which updates become available.

4.3 Evaluation
To demonstrate the efficacy of the adaptation, we ran more
experiments. Each participant submits as many updates as
its maximum update rate allows, starting at t = 15 seconds.
At this time mtu = 100. At time t = 90, we synthetically
created a sudden network load increase by reducing the mtu
to 50.

Figures 3(a) shows the update rate at a randomly chosen
participant for a selection of reconciliation mechanisms and
orderings. (We now exclude scuttle-breadth for readability.)
As can be seen, starting at t = 15 the rate creeps up and
the participant is sending increasingly faster until a balance
is achieved. At t = 90, when the gossip message size is
halved, the rate quickly drops and settles at a rate that
can be supported with the new message size limit. The
adaptation appears mostly independent of the protocol used,
although precise-oldest has more trouble adjusting at t =
90 and drops temporarily to well below a rate that it can
handle.

Figures 3(b) shows the maximum staleness as seen across
all participants. At t = 90, when the mtu is halved, the
protocols are having some difficulty adjusting. All proto-
cols recover, but scuttle-depth provides the best trade-off
between recovery time and maximum staleness.

5. RELATED WORK
In the seminal Clearinghouse paper [3], the authors pro-
pose an iterative precise reconciliation technique, exchang-
ing most recent updates first until hashes show that the
states have been reconciled. Our experiments with this ap-
proach have been disappointing, and we found that two-
thirds or more of updates are sent unnecessarily. Tracht-
enberg, Minsky, and Zippel [8] as well as Byers, Considine,
and Mitzenmacher [1] propose techniques that work well for
rumor-mongering, but cannot support anti-entropy.

For global adaptation, a variety of papers have addressed
flow control for multicast protocols (e.g., [2]). Typically
these protocols consider a single sender trying to send mes-
sages as quickly as possible without overloading the receivers,
and use end-to-end feedback from the receivers to the sender.
Anti-entropy protocols, on the other hand, have all partic-
ipants contributing traffic, and are mostly interested in re-
ducing staleness of information.

Previous work on flow control for gossip has focused on
rumor-mongering, where the objective is dissemination of
message streams rather than fixing inconsistencies between
participants. Several projects have proposed strategies for
dealing with limited message buffering capacity at partici-
pants [9, 7, 6]. Pereira et al. [10] present NEEM, an epi-
demic multicast protocol that uses TCP connections be-
tween participants to provide flow control. To deal with
backlog on TCP connections, the authors propose various
message purging strategies.

Rodrigues et al. [12] use a strategy similar to ours, piggy-
backing resource information on existing gossip traffic and
adjusting senders’ rates accordingly. Their objective is to
reduce the number of messages dropped. Pereira et al. [11]

look at reducing latency in rumor-mongering protocols by
strategically picking gossip partners.

6. CONCLUSION
Anti-entropy has a limited capacity given a certain budget of
network bandwidth and CPU cycles. We have demonstrated
that if too much data is gossiped, anti-entropy protocols
lose their objective of predictable performance. The paper
presents two complementary techniques.

The first technique is a new reconciliation mechanism that,
in the face of overload, aggressively selects updates that have
not been made obsolete by later updates, but without starv-
ing updates that are not yet obsolete. The second technique
is a flow control mechanism for anti-entropy protocols. In
this mechanism, each participant locally adapts its rate of
updates. The protocol assures fairness by dividing the avail-
able network capacity among the participants that are ac-
tively gossiping new updates.

While each technique is useful by itself, the combination
appears particularly effective. We believe that both tech-
niques are amenable to further improvements, such as giv-
ing differentiated performance for classes of updates, and
accommodating heterogeneous participants, for example in
environments where not all participants have equal network
access.

Acknowledgments
We thank the anonymous LADIS 2008 reviewers for their
helpful suggestions; they have significantly improved the
quality of this paper.

7. REFERENCES
[1] J. Byers, J. Considine, and M. Mitzenmacher. Fast

approximate reconciliation of set differences. Technical
Report 2002-019, CS Dept., Boston University, July
2002.

[2] P. Danzig. Flow control for limited buffer multicast.
IEEE Trans. on Software Engineering, 20(1), Jan.
1994.

[3] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry.
Epidemic algorithms for replicated database
maintenance. In Proc. of the 6th ACM Symp. on
Principles of Distributed Computing, pages 1–12,
Vancouver, BC, Aug. 1987.

[4] V. Jacobson. Congestion avoidance and control. In
ACM SIGCOMM’88, Stanford, CA, Aug. 1988.

[5] A.-M. Kermarrec, L. Massoulié, and A. Ganesh.
Probabilistic reliable dissemination in large-scale
systems. IEEE Trans. on Par. and Distr. Systems,
14(3), Mar. 2003.

[6] B. Koldehofe. Buffer management in probabilistic
peer-to-peer communication protocols. In Proc. of the
22nd Symp. on Reliable Distributed Systems (SRDS
’03), Oct. 2003.

[7] P. Kouznetsov, R. Guerraoui, S. Handurukande, and
A.-M. Kermarrec. Reducing noise in gossip-based
reliable broadcast. In Proc. of the 20th IEEE Symp.
on Reliable Distributed Systems (SRDS ’01). IEEE,
Oct. 2001.

[8] Y. Minsky, A. Trachtenberg, and R. Zippel. Set
reconciliation with nearly optimal communication
complexity. IEEE Trans. on Information Theory,
49(9), Sept. 2003.

[9] O. Ozkasap, R. van Renesse, K. Birman, and Z. Xiao.
Efficient buffering in reliable multicast protocols. In
Proceedings of the First International Workshop on
Networked Group Communication (NGC), Pisa, Italy,
Nov. 1999.

[10] J. Pereira, L. Rodrigues, M. Monteiro, R. Oliveira,
and A.-M. Kermarrec. NEEM: Network-friendly
epidemic multicast. In Proc. of the 22nd Symp. on
Reliable Distributed Systems (SRDS ’03), Oct. 2003.

[11] J. Pereira, L. Rodrigues, A. Pinto, and R. Oliveira.
Low latency probabilistic broadcast in wide area
networks. In Proc. of the 23rd Int. Symp. on Reliable
Distributed Systems, Florianópolis, Brazil, Oct. 2004.

[12] L. Rodrigues, S. Handurukande, J. Pereira,
R. Guerraoui, and A.-M. Kermarrec. Adaptive
gossip-based broadcast. In Proc. of the International
Conference on Distributed Systems and Networks
(DSN), San Francisco, CA, June 2003. IEEE.

[13] R. van Renesse, K. Birman, and W. Vogels. Astrolabe:
A robust and scalable technology for distributed
systems monitoring, management, and data mining.
ACM Transactions on Computer Systems, 21(3), May
2003.

	Introduction
	Gossip Basics
	Reconciliation
	Precise Reconciliation
	Scuttlebutt Reconciliation
	Evaluation

	Flow Control
	Spreading Capacity Fairly
	Local Adaptation
	Evaluation

	Related Work
	Conclusion
	References

