
© Alberto Montresor 1

Gossip protocols for
large-scale distributed systems

Alberto Montresor

© Alberto Montresor

University of Trento

2

© Alberto Montresor 3

© Alberto Montresor 4

Gossip definition

✦ In a recent workshop on the future of gossip
✦ many attempts to formally define gossip
✦ we failed!

✦ either too broad
✦ or too strict

✦ Gossip best described with a prototypical gossip scheme
✦ “I cannot define gossip, but I can recognize it when I see it”

© Alberto Montresor 5

A generic gossip protocol - executed by process p

do once every δ time units
 q = getPeer(state)
 sp = prepareMsg(state, q)
 send (REQ, sp, p) to q

do forever
 receive (t, sq, q) from *
 if (t = REQ) then
 sp = prepareMsg(state, q)
 send (REP, sp, p) to q
 state = update(state, sq)

A "cycle" of
length δ

Init: initialize my local state

Active thread Passive thread

© Alberto Montresor

Epidemic cycle

✦ During a cycle of length δ, every node has the possibility of contacting
one random node

6

© Alberto Montresor 7

A generic gossip protocol

✦ Generic scheme is... too generic!

✦ Gossip “rules of thumb”
✦ peer selection must be random, or at least guarantee enough peer diversity
✦ only local information is available at all nodes

✦ communication is round-based (periodic)
✦ transmission and processing capacity per round is limited

✦ all nodes run the same protocol

© Alberto Montresor 8

A bit of history

✦ 1987
✦ Demers et al. introduced the first gossip protocol, for information

dissemination

✦ '90s
✦ Gossip applied to solve communication problems

✦ '00s
✦ Gossip revival: beyond dissemination

✦ 2006
✦ First workshop on the future of gossip, Leiden (NL)

© Alberto Montresor 9

What is going on?

✦ In the last decade, we have seen dramatic changes in the distributed system area

✦ Shift in the scale of distributed systems
✦ larger
✦ geographically more dispersed

✦ Traditional failure model do not hold any more
✦ “let p1 ... pn be a set of processes...”
✦ f < 3n+1, f<n/2 anyone?

✦ dynamic membership: “churn”

© Alberto Montresor 10

What is going on?

✦ We need to re-think our solutions
✦ Focus on behavior under continuous change
✦ Focus on large-scale

✦ Focus on convergence, maintenance

✦ The laid-back approach of gossip is the right answer
✦ gossip protocols are indifferent to changes in the group of communicating nodes,

single nodes are not important

✦ nodes act based on local knowledge, they are only aware of a small (constant/
logarithmic size) portion of the global state

✦ convergence is quick (often logarithmic in size)

© Alberto Montresor 11

The plan

✦ Introduce gossip ✓

✦ Let’s start from the beginning
✦ Information dissemination

✦ Beyond dissemination
✦ Peer sampling

✦ Aggregation
✦ Average computation
✦ Size estimation

✦ Topology management

✦ Slicing
✦

© Alberto Montresor 12

Gossip Lego

✦ Gossip solves a diverse collection of problems

✦ Solutions can be combined to solve more complex problems

✦ Toward Gossip Lego?

Peer sampling

Aggregation Slicing

... Load balancing Topology boostrap ...

Swarm intelligence Dist. optimization Heuristics

© Alberto Montresor

Information Dissemination

✦ Bibliography
✦ Alan Demers et al. Epidemic algorithms for replicated database maintenance.

In Proc. of the 6th ACM Symposium on Principles of Distributed Computing
(PODC’87), 1–12, ACM Press.

13

© Alberto Montresor 14

Setting the stage

✦ XEROX Clearinghouse Servers
✦ Database replicated at thousands of nodes
✦ Heterogeneous, unreliable network

✦ Independent updates to single elements of the DB are injected at multiple nodes
✦ Updates must propagate to all other nodes or be supplanted by a later updates of that

same element
✦ Replicas become consistent after no more new updates

✦ Assuming a reasonable update rate, most information at any given replica is “current”

© Alberto Montresor 15

Model of epidemics

✦ Epidemics study the spread of a disease or infection in terms of populations of
infected/uninfected individuals and their rates of change

✦ Following the epidemiology literature, we will name a node p as:
✦ Susceptible if p has not yet received an update
✦ Infective if p holds an update it is willing to share

✦ Removed if p has the update but is no longer willing to share it

Removed

Infective Susceptible

© Alberto Montresor 16

Model of epidemics

✦ How does it work?
✦ Initially, a single individual is infective
✦ Individuals get in touch with each other, spreading the update

✦ Rumor spreading, or gossiping, is based on the same principles

✦ Can we apply the same ideas to distributed systems?
✦ Our goal is to spread the “infection” (update) as fast as possible!

© Alberto Montresor 17

System model

✦ A database that is replicated at a set of n nodes S = { s1,…, sn }

✦ The copy of the database at node s can be represented by a time-varying partial
function:
✦ s.value: K → V ×T

✦ K set of keys
✦ V set of values
✦ T set of timestamps

✦ In the following slides
✦ We will omit the key and we will consider only a single key,value pair

© Alberto Montresor 18

System model

✦ For simplicity we will assume a database that stores value and timestamp of a single
entry at each node s
✦ s.value = (v, t)

✦ To indicate a deletion at time t
✦ s.value = (deleted, t)

✦ The update operation is formalized as
✦ s.value ← (v, now())
✦ It is assumed by this work that now() is a function returning a globally unique

timestamp (no details)

✦ So, a pair with a larger timestamp is considered “newer”

© Alberto Montresor 19

The goal

Eventual Consistency: If no updates take place for a long time, all
replicas will gradually become consistent (i.e., the same)

∀r,s ∈ S : r.value=s.value

When a database is replicated at many sites, maintaining consistency in the
presence of updates is a significant problem.

© Alberto Montresor 20

Several algorithms for distributing updates

✦ Best effort

✦ Anti-entropy (simple epidemics)
✦ Push
✦ Pull

✦ Push-pull

✦ Rumor mongering (complex epidemics)
✦ Push

✦ Pull
✦ Push-pull

✦ Eager epidemic dissemination

© Alberto Montresor 21

Best effort (Direct mail)

✦ How it works?
✦ Notify all other nodes of an update soon after it occurs.
✦ When receiving an update, check if it is “news”

✦ Node s executes:
 upon s.value ← (v, now()) do
 foreach r ∈ S do

 send <UPDATE, s.value> to r

 upon receive <UPDATE, (v, t)> do
 if s.value.time < t then

 s.value ← (v, t)

✦ Not an epidemic algorithm: just the simplest
✦ What happens if the sender fail “in between”?
✦ What happens if messages are lost?

✦ What is the load of the sender?

© Alberto Montresor 22

A generic gossip protocol - executed by process p

do once every δ time units
 q = getPeer(state)
 sp = prepareMsg(state, q)
 send (REQ, sp, p) to q

do forever
 receive (t, sq, q) from *
 if (t = REQ) then
 sp = prepareMsg(state, q)
 send (REP, sp, p) to q
 state = update(state, sq)

A "cycle" of
length δ

Init: initialize my local state

Active thread Passive thread

© Alberto Montresor 23

Anti-entropy - Simple epidemics

✦ With respect to a single update (identified by its timestamp), all nodes are either
✦ susceptible (they don’t know the update), or
✦ infective (they know the update)

✦ Every node regularly chooses another node at random and exchanges database
contents, resolving differences
✦ Method getPeer()

✦ Select a random member from S-{p}
✦ Method prepareMsg()

✦ Simple version: return s.value
✦ In most cases: prepare a digest of new updates

✦ Method update()
✦ Simple version: see next page
✦ In most cases: ask for other data

© Alberto Montresor 24

Implementation of update()

✦ Push

if p.value.time > r.value.time then

 r.value ← p.value

✦ Pull

if p.value.time < r.value.time then

 p.value ← r.value

✦ Push-pull

if p.value.time > r.value.time then

 r.value ← p.value

else

 p.value ← r.value

Rumor

Rumor

Susceptible node

Infective node

Rumor

RumorPush

Rumor

Pull

© Alberto Montresor

Anti-entropy

25

© Alberto Montresor

Anti-entropy

25

© Alberto Montresor 26

Anty-entropy: Convergence

© Alberto Montresor 26

Anty-entropy: Convergence

✦ To analyze convergence, we must consider what happens when only a few nodes
remain susceptible
✦ Let p(i) be the probability of a node being (remaining) susceptible after the i-th

anti-entropy cycle.
✦ Pull:

© Alberto Montresor 26

Anty-entropy: Convergence

✦ To analyze convergence, we must consider what happens when only a few nodes
remain susceptible
✦ Let p(i) be the probability of a node being (remaining) susceptible after the i-th

anti-entropy cycle.
✦ Pull:

✦ p(i+1) = p(i)2

✦ Push:

© Alberto Montresor 26

Anty-entropy: Convergence

✦ To analyze convergence, we must consider what happens when only a few nodes
remain susceptible
✦ Let p(i) be the probability of a node being (remaining) susceptible after the i-th

anti-entropy cycle.
✦ Pull:

✦ p(i+1) = p(i)2

✦ Push:
✦ p(i+1) = p(i)(1 - 1/n)n(1-p(i))

For small p(i), p(i+1) ~ p(i)/e
✦ Push-pull:

✦ both mechanisms are used, convergence is even more rapid
✦ All converge to 0, but pull is more rapid than push, so in practice pull

(or push-pull) is used

© Alberto Montresor 27

Push vs pull

© Alberto Montresor 28

Anti-entropy: Comments

✦ Benefits:
✦ Simple epidemics eventually “infect” all the population
✦ For a push implementation, the expected time to infect

everyone is log2(n) + ln(n)

✦ Drawbacks:
✦ Propagates updates much slower than best effort
✦ Requires examining contents of database even when most data agrees, so it cannot

practically be used too often

✦ Normally used as support for best effort, i.e. left running in the background

© Alberto Montresor 29

Anti-entropy: Optimizations

✦ To avoid expensive databases checks:
✦ Maintain checksum, compare databases if checksums unequal
✦ Maintain recent update lists for time T, exchange lists first

✦ Maintain inverted index of database by timestamp; exchange information in reverse
timestamp order, incrementally re-compute checksums

✦ Note:
✦ These optimizations apply to the update problem for large DB

✦ We will see how the same principle (anti-entropy) may be used
for several other kind of applications

© Alberto Montresor 30

Rumor mongering - complex epidemics

✦ Susceptive-infective-removed (SIR)
✦ Nodes initially susceptive
✦ When a node receives a new update it becomes a “hot rumor” and the node infective

✦ A node that has a rumor periodically chooses randomly another node to spread the
rumor

✦ Eventually, a node will “lose interest” in spreading the rumor and becomes removed
✦ Spread too many times
✦ Everybody knows it

✦ Optimizations
✦ A sender can hold (and transmit) a list of infective updates rather than just one.

© Alberto Montresor

Rumor mongering

31

© Alberto Montresor

Rumor mongering

31

© Alberto Montresor

Rumor mongering

31

© Alberto Montresor

Rumor mongering

31

© Alberto Montresor 32

Rumor mongering: loss of interest

✦ Counter vs. coin (random)
✦ Coin (random): lose interest with probability 1/k
✦ Counter: lose interest after k contacts

✦ Feedback vs blind
✦ Feedback: lose interest only if the recipient knows the rumor.
✦ Blind: lose interest regardless of the recipient.

© Alberto Montresor 33

Rumor mongering

✦ How fast does the system converge to a state where all nodes are not infective?
(inactive state)
✦ Eventually, everybody will lose interest

✦ Once in this state, what is the fraction of nodes that know the rumor?
✦ The rumor may stop before reaching all nodes

© Alberto Montresor 34

Rumor mongering: analysis

✦ Analysis from “real” epidemics theory

✦ Feedback, coin
✦ Let s, i and r denote the fraction of susceptible, infective, and removed nodes

respectively. Then:

✦ Solving the equations:

✦ Thus, increasing k we can make sure that most nodes get the rumor, exponentially
better

s + i + r = 1
ds/dt = −si

di/dt = +si− (1/k)(1− s)i

s = e−(k+1)(1−s)

© Alberto Montresor 35

Quality measures

✦ Residue:
✦ The nodes that remain susceptible when the epidemic ends: value of s when i = 0
✦ Residue must be as small as possible

✦ Traffic:
✦ The average number of database updates sent between nodes
✦ m = total update traffic / # of nodes

✦ Delay - We can define two delays:
✦ tavg : average time it takes for the introduction of an update to reach a node.
✦ tlast : time it takes for the last node to get the update.

© Alberto Montresor 36

Simulation results

17.412.54.530.0113

17.512.75.640.00364

17.712.86.680.00125

16.912.13.300.0372

16.811.01.740.1761

tlasttavg

ConvergenceTraffic
m

Residue
s

Counter
k

32152.820.0603

3214.13.910.0214

3213.84.950.0085

33171.590.2052

38190.040.9601

tlasttavg

ConvergenceTraffic
m

Residue
s

Counter
k

Using feedback and
counter

Using blind and
random

© Alberto Montresor 37

Push and pull

✦ Push (what we have assumed so far)
✦ If database becomes quiescent, this scheme stops trying to introduce updates.
✦ If there are many independent updates, more likely to introduce unnecessary

messages.

✦ Pull
✦ If many independent updates, pull is more likely to find a source with a non-empty

rumor list
✦ But if database quiescent, it spends time doing unnecessary update requests.

© Alberto Montresor 38

Push and pull

✦ Empirically, in the database system of the authors (frequent updates)
✦ Pull has a better residue/traffic relationship than push

✦ Performance of pull epidemic on 1000 nodes using
feedback & counters

14.0010.086.090.0000043
15.3910.074.490.000582
17.639.972.700.0311

tlasttavg

ConvergenceTraffic
m

Residue
s

Counter
k

© Alberto Montresor 39

Mixing with anti-entropy

✦ Rumor mongering
✦ spreads updates fast with low traffic
✦ however, there is still a nonzero probability of nodes remaining susceptible after the

epidemic

✦ Anti-entropy
✦ can be run (infrequently) in the background to ensure all nodes eventually get the

update with probability 1.
✦ Since a single rumor that is already known by most nodes dies out quickly

© Alberto Montresor 40

Deletion and death certificates

✦ Deletion
✦ We cannot delete an entry just by removing it from a node - the absence of the entry is

not propagated.
✦ If the entry has been updated recently, there may still be an update traversing the

network!

✦ Death certificate
✦ Solution: replace the deleted item with a death certificate (DC) that has a timestamp

and spreads like an ordinary update

© Alberto Montresor 41

Deletion and death certificates

✦ Problem:
✦ we must, at some point, delete DCs or they may consume significant space

✦ Strategy 1:
✦ retain each DC until all nodes have received it

✦ requires a protocol to determine which nodes have it and to handle node failures

✦ Strategy 2:
✦ hold DCs for some time (e.g. 30 days) and discard them

✦ pragmatic approach, still have the “resurrection” problem; increasing the time
requires more space

© Alberto Montresor 42

Spatial Distribution

✦ In the previous exposition
✦ The network has been considered

uniform (i.e. all nodes equally
reachable)

✦ In reality
✦ More expensive to send updates to

distant nodes

✦ Especially if a critical link needs to
be traversed

✦ Traffic can clog these links

© Alberto Montresor

Peer sampling

✦ Bibliography
✦ S. Voulgaris, D. Gavidia, and M. Van Steen. Cyclon: Inexpensive membership

management for unstructured p2p overlays. Journal of Network and Systems
Management, 13(2):197–217, 2005

✦ M. Jelasity and M. van Steen. Large-scale newscast computing on the Internet.
Technical Report IR-503 (October), Vrije Universiteit Amsterdam, Department of
Computer Science, Amsterdam, The Netherlands.

✦ M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M. van Steen. Gossip-
based peer sampling. ACM Transactions on Computer Systems, 25(3):8, August
2007

✦ G. P. Jesi, A. Montresor, and M. van Steen. Secure peer sampling. Computer
Networks, 2010. To appear.

43

© Alberto Montresor 44

Peer sampling

✦ The first problem to be solved:
✦ Where getPeer() get nodes from?
✦ We assumed complete knwoledge of the distributed system

✦ But complete knowledge is costly
✦ System is dynamic
✦ Network can be extremely large

✦ Solution: peer sampling
✦ Provides random samples from the participant set
✦ Keeps the participants together in a connected network

© Alberto Montresor

Can you spot the difference?

✦ Traditional gossip
✦ Each node has full view of the

network
✦ Each node periodically “gossips”

with a random node, out of the
whole set

✦ Peer sampling
✦ Nodes have a partial view of the

network (a set of “neighbors”)
✦ Each node periodically “gossips”

with a random node, out of its
partial view

45

© Alberto Montresor

Overlay

✦ An overlay network is a logical network overimposed on a physical network
✦ Nodes
✦ Logical links between nodes

✦ Examples
✦ Structured overlay network

✦ DHTs, trees
✦ Unstructured overlay network

✦ Gnutella
✦ Bittorrent
✦ etc.

© Alberto Montresor

System model

✦ A dynamic collection of distributed nodes that want to participate in a common
epidemic protocol
✦ Node may join / leave
✦ Node may crash at any time

✦ Communication:
✦ To communicate with node q, node p must know its address
✦ Messages can be lost – high levels of message omissions can be tolerated

Churn

© Alberto Montresor

Our Overlays

✦ State of each node:
✦ A partial view containing c

descriptors
✦ (c = view size)

✦ Descriptors of node p contains
✦ The address needed to communicate

with p
✦ Additional information that may be

needed by different implementations
of the peer sampling service

✦ Additional information that may be
needed by upper layers

48

A

F

C

D E

B

C, 9

E, 10

 A, 7

Vie

© Alberto Montresor 49

A generic gossip protocol - executed by process p

do once every δ time units
 q = getPeer(state)
 sp = prepareMsg(state, q)
 send (REQ, sp) to q

do forever
 receive (t, sq) from *
 if (t = REQ) then
 sp = prepareMsg(state, q)
 send (REP, sp) to q
 state = update(state, sq)

A "cycle" of
length δ

Init: initialize my local state

Active thread Passive thread

© Alberto Montresor

A generic algorithm

✦ getPeer()
✦ select one of the neighbor contained in the view

✦ prepareMsg(view, q)
✦ returns a subset of the descriptors contained in the local view

✦ may add other descriptors (e.g. its own)

✦ update(view, msgq)
✦ returns a subset of the descriptors contained in the union of the local view and the

received view

50

© Alberto Montresor

Newscast

✦ Descriptor: address + timestamp

✦ getPeer()
✦ select one node at random

✦ prepareMsg(view, q)
✦ returns the entire view + a local descriptor

with a fresh timestamp

✦ update(view, msgq)
✦ returns the C freshest identifiers (w.r.t. timestamp) from the union of local view

and message

51

© Alberto Montresor

Newscast

© Alberto Montresor

ID &
Address

Time
stamp

9
12
16

ID &
Address

Time
stamp

7
10
14

Newscast

© Alberto Montresor

ID &
Address

Time
stamp

9
12
16

ID &
Address

Time
stamp

7
10
14

1. Pick random peer from my view

Newscast

© Alberto Montresor

ID &
Address

Time
stamp

9
12
16

ID &
Address

Time
stamp

7
10
14

1. Pick random peer from my view

Newscast

© Alberto Montresor

ID &
Address

Time
stamp

9
12
16

ID &
Address

Time
stamp

7
10
14

1. Pick random peer from my view
2. Send each other view + own fresh link

Newscast

© Alberto Montresor

ID &
Address

Time
stamp

9
12
16

ID &
Address

Time
stamp

7
10
14

9
12
16

20

1. Pick random peer from my view
2. Send each other view + own fresh link

Newscast

© Alberto Montresor

ID &
Address

Time
stamp

9
12
16

ID &
Address

Time
stamp

7
10
14

9
12
16

20

1. Pick random peer from my view
2. Send each other view + own fresh link

20

7
10
14

Newscast

© Alberto Montresor

ID &
Address

Time
stamp

9
12
16

ID &
Address

Time
stamp

7
10
14

9
12
16

20

1. Pick random peer from my view
2. Send each other view + own fresh link

3. Keep c freshest links (remove own info, duplicates)

20

7
10
14

Newscast

© Alberto Montresor

ID &
Address

Time
stamp

9
12
16

ID &
Address

Time
stamp

7
10
14

9
12
16

20

1. Pick random peer from my view
2. Send each other view + own fresh link

3. Keep c freshest links (remove own info, duplicates)

20

7
10
14

Newscast

© Alberto Montresor

ID &
Address

Time
stamp

14
16
20

ID &
Address

Time
stamp

14
16
20

1. Pick random peer from my view
2. Send each other view + own fresh link

3. Keep c freshest link (remove own info, duplicates)

Newscast

© Alberto Montresor

Newscast

✦ Experiments
✦ 100,000 nodes
✦ C = 20 neighbors per node

55

© Alberto Montresor

Evaluation framework

✦ Average path length
✦ The average of shortest path lengths over all pairs of nodes in the graph

✦ In epidemic dissemination protocols
✦ A measure of the time needed to diffuse information from a node to another

56

© Alberto Montresor

Evaluation framework

✦ Clustering coefficient
✦ The clustering coefficient of a node p is defined as the # of edges between the

neighbors of p divided by the # of all possible edges between those neighbors
✦ Intuitively, indicates the extent to which the neighbors of p know each other.

✦ The clustering cofficient of the graph is the average of the clustering coefficients of
all nodes

✦ Examples
✦ for a complete graph it is 1
✦ for a tree it is 0

✦ In epidemic dissemination protocols
✦ High clustering coefficient means several redundant messages are sent when an

epidemic protocol is used

57

© Alberto Montresor

Average path length

✦ Indication of the time and cost to flood the network

58

© Alberto Montresor

Clustering coefficient

✦ High clustering is bad for:
✦ Flooding: It results in many redundant messages
✦ Self-healing: Strongly connected cluster → weakly connected to the rest of the network

59

}Newscast forms a
 SMALL WORLD

- High clustering
- Low diameter

© Alberto Montresor

In-Degree Distribution

✦ Affects:
✦ Robustness

(shows weakly
connected nodes)

✦ Load balancing

✦ The way
epidemics spread

© Alberto Montresor

Robustness

Sustains up to 68% node failures

Random sustains up to 80%

© Alberto Montresor

Self-healing behaviour

© Alberto Montresor

Cyclon

✦ Descriptor: address + timestamp

✦ getPeer()
✦ select the oldest descriptor in the view
✦ remove it from the view

✦ prepareMsg(view, q)
✦ In active thread:

✦ returns a subset of t-1 random nodes, plus a fresh local identifier
✦ In passive thread:

✦ returns a subset of t random nodes

✦ update(view, msgq)
✦ discard entries in msgq: p, nodes already know
✦ add msgq , removing entries sent to q

© Alberto Montresor

ID &
Address

Time
stamp

9

4
12

ID &
Address

Time
stamp

14

7
10

Cyclon

© Alberto Montresor

ID &
Address

Time
stamp

9

4
12

ID &
Address

Time
stamp

14

7
10

1. Pick oldest peer from my view

Cyclon

© Alberto Montresor

ID &
Address

Time
stamp

9

4
12

ID &
Address

Time
stamp

14

7
10

1. Pick oldest peer from my view

Cyclon

© Alberto Montresor

ID &
Address

Time
stamp

9

4
12

ID &
Address

Time
stamp

14

7
10

1. Pick oldest peer from my view
2. Exchange some neighbors (the pointers)

Cyclon

© Alberto Montresor

ID &
Address

Time
stamp

9

4
12

ID &
Address

Time
stamp

14

7
10

1. Pick oldest peer from my view
2. Exchange some neighbors (the pointers)

Cyclon

© Alberto Montresor

ID &
Address

Time
stamp

9

4
12

ID &
Address

Time
stamp

14

7
10

1. Pick oldest peer from my view
2. Exchange some neighbors (the pointers)

Cyclon

© Alberto Montresor

ID &
Address

Time
stamp

9

12

ID &
Address

Time
stamp

14

7
10

1. Pick oldest peer from my view
2. Exchange some neighbors (the pointers)

Cyclon

20

© Alberto Montresor

ID &
Address

Time
stamp

9

12

ID &
Address

Time
stamp

14
7 10

1. Pick oldest peer from my view
2. Exchange some neighbors (the pointers)

Cyclon

20

© Alberto Montresor

ID &
Address

Time
stamp

9

12

ID &
Address

Time
stamp

14
7
10

1. Pick oldest peer from my view
2. Exchange some neighbors (the pointers)

Cyclon

20

© Alberto Montresor

ID &
Address

Time
stamp

9

12

ID &
Address

Time
stamp

14
7
10

1. Pick oldest peer from my view
2. Exchange some neighbors (the pointers)

Cyclon

20

Guaranteed
connectivity

© Alberto Montresor

Obvious advantages of Cyclon

✦ Connectivity is guaranteed

✦ Uses less bandwidth
✦ Only small part of the view is sent

65

© Alberto Montresor

Average path length

✦ Indication of the time and cost to flood the network

66

© Alberto Montresor

Clustering coefficient

✦ High clustering is bad for:
✦ Flooding: It results in many redundant messages
✦ Self-healing: Strongly connected cluster → weakly connected to the rest of the network

67

© Alberto Montresor

Clustering coefficient

✦ High clustering is bad for:
✦ Flooding: It results in many redundant messages
✦ Self-healing: Strongly connected cluster → weakly connected to the rest of the network

68

}Cyclon approx. a
RANDOM GRAPH

- Low clustering
- Low diameter

© Alberto Montresor

In-Degree Distribution

✦ Affects:
✦ Robustness

(shows weakly
connected nodes)

✦ Load balancing

✦ The way
epidemics spread

© Alberto Montresor

Robustness

Sustains up to 80% node failures

© Alberto Montresor

Self-healing behaviour

© Alberto Montresor

Self-healing behaviour

Killed 50,000 nodes at cycle 19

© Alberto Montresor

Non-symmetric overlays

✦ Non-uniform period → Non symmetric topologies
✦ A node’s in-degree is proportional to its gossiping frequency
✦ Can be used to create topologies with “super-nodes”

73

© Alberto Montresor

Secure peer sampling

✦ This approach is vulnerable to certain kinds of malicious attacks

✦ Hub attack
✦ Hub attack involves some set of colluding nodes always gossiping their own ID’s

only
✦ This causes a rapid spread of only those nodes to all nodes - we say their views

become “polluted”

✦ At this point all non-malicious nodes are cut-off from each other
✦ The malicious nodes may then leave the network leaving it totally disconnected with

no way to recover

✦ Hence the hub attack hijacks the speed of the Gossip approach to defeat the network

74

© Alberto Montresor

Secure peer sampling

© Alberto Montresor

Peer sampling - solution

✦ Algorithm
✦ Maintain multiple independent views in each node
✦ During a gossip exchange measure similarity of exchanged views

✦ With probability equal to proportion of identical nodes in two views reject the gossip
and blacklist the node

✦ Otherwise, whitelist the node and accept the exchange
✦ Apply an aging policy to to both white and black lists

✦ When supplying a random peer to API select the current “best” view

76

© Alberto Montresor

Secure peer sampling

 1000 nodes

 20 malicious nodes

© Alberto Montresor 78

How to compose peer sampling

getPeer()

getPeer()

Aggregation
prepareMsg()

update()

Peer sampling
prepareMsg()

update() getPeer()

getPeer()

Information
dissemination

prepareMsg()
update()

Peer sampling
prepareMsg()

update()

© Alberto Montresor

Aggregation

✦ Bibliography
✦ Márk Jelasity, Alberto Montresor, and Ozalp Babaoglu. Gossip-based aggregation in

large dynamic networks. ACM Trans. Comput. Syst., 23(1):219-252, August 2005.

✦ Additional bibliography
✦ Alberto Montresor, Márk Jelasity, and Ozalp Babaoglu. Decentralized ranking in

large-scale overlay networks. In Proc. of the 1st IEEE Selfman SASO Workshop,
pages 208-213, Isola di San Servolo, Venice, Italy, November 2008.

79

© Alberto Montresor 80

Aggregation

✦ Definition
✦ The collective name of a set of functions that provide statistical information about a

system

✦ Useful in large-scale distributed systems:
✦ The average load of nodes in a computing grid

✦ The sum of free space in a distributed storage
✦ The total number of nodes in a P2P system

✦ Wanted: solutions that are
✦ completely decentralized, robust

© Alberto Montresor 81

A generic gossip protocol - executed by process p

do once every δ time units
 q = getPeer(state)
 sp = prepareMsg(state, q)
 send (REQ, sp) to q

do forever
 receive (t, sq) from *
 if (t = REQ) then
 sp = prepareMsg(state, q)
 send (REP, sp) to q
 state = update(state, sq)

A "cycle" of
length δ

Init: initialize my local state

Active thread Passive thread

© Alberto Montresor 82

Average Aggregation

✦ Using the gossip schema presented above to compute the average
✦ Local state maintained by nodes:

✦ a real number representing the value to be averaged
✦ Method getPeer()

✦ invokes getPeer() on the underlying peer sampling layer

✦ Method prepareMessage()
✦ return statep

✦ Function update(statep, stateq)
✦ return (statep+stateq)/2

© Alberto Montresor 83

The idea

16

10

4

36
2

8

© Alberto Montresor 84

Basic operation

16

6

4

36
6

8(10+2)/
2=6

© Alberto Montresor 85

Basic operation

16

6

4

36
6

8

© Alberto Montresor 86

Basic operation

10

6

10

36
6

8(16+4)/
2=10

© Alberto Montresor 87

Some Comments

✦ If the graph is connected, each node converges to the average of the original values

✦ After each exchange:
✦ Average does not change
✦ Variance is reduced

✦ Different from load balancing due to lack of constraints

© Alberto Montresor 88

A run of the protocol

© Alberto Montresor 89

Questions

✦ Which topology is optimal?

✦ How fast is convergence on different
topologies?

✦ What are the effects
of node/link failures, message
omissions?

✦ Fully connected topol.:
exponential convergence

✦ Random topology: practically
exponential.

✦ Link failures: not critical

✦ Crashes/msg omissions can destroy
convergence

✦ but we have a solution for that

© Alberto Montresor

Theoretical framework

✦ From the “distributed” version to a centralized one

 do N times
 (p, q) = getPair()
 // perform elementary aggregation step
 a[p] = a[q] = (a[p] + a[q])/2

✦ Notes:
✦ Vector a[1 ... N]

✦ N number of nodes
✦ The code corresponds to the execution of single cycle

90

© Alberto Montresor 91

Some definitions

✦ We measure the speed of convergence of empyrical variance at cycle i

✦ Additional definitions
✦ Elementary variance reduction step: σi+12/ σi2

✦ Variable φk: the number of times that node k has been selected from getPair()

µi =
1
n

n�

k=1

ai[k]

σ2
i =

1
n

n�

k=1

(µi − ai[k])2

© Alberto Montresor 92

The base theorem

✦ If
✦ Each pair of values selected by each call to getPair() are uncorrelated;
✦ the random variables φk are identically distributed;

✦ let φ denote a random variable with this common distribution

✦ after (p, q) is returned by getPair() the number of times p and q will be selected by
the remaining calls to getPair() has identical distribution

✦ Then:

E(σi+12)= E(2-φ) σi2

© Alberto Montresor 93

Results

✦ Optimal case: E(2-φ) = E(2-2) = 1/4
✦ getPair() implements perfect matching
✦ no corresponding local protocol

✦ Random case: E(2-φ) = 1/e
✦ getPair() implements random global sampling
✦ A local corresponding protocol exists

✦ Aggregation protocol: E(2-φ) = 1/(2√e)
✦ Scalability: results independent of N
✦ Efficiency: convergence is very fast

© Alberto Montresor 94

Scalability

© Alberto Montresor 95

Convergence factor

© Alberto Montresor 96

Other functions

✦ Average: update(a,b) := (a+b)/2

✦ Geometric: update(a,b) := (a⋅b)1/2

✦ Min/max: update(a,b) := min/max(a,b)

✦ Sum: Average ⋅ Count

✦ Product: GeometricCount

✦ Variance: compute

How?

Means

Obtained
from
means

a2 − a2

© Alberto Montresor 97

Counting

✦ The counting protocol
✦ Init: one node starts with 1, the others with 0
✦ Expected average: 1/N

✦ Problem: how to select that "one node"?
✦ Concurrent instances of the counting protocol
✦ Each instance is lead by a different node

✦ Messages are tagged with a unique identifier
✦ Nodes participate in all instances
✦ Each node acts as leader with probability p=c/NE

© Alberto Montresor 98

Adaptivity

✦ The generic protocol is not adaptive
✦ Dynamism of the network
✦ Variability of values

✦ Periodical restarting mechanism
✦ At each node:

✦ The protocol is terminated
✦ The current estimate is returned as the aggregation output
✦ The current values are used to re-initialize the estimates
✦ Aggregation starts again with fresh initial values

© Alberto Montresor 99

Adaptivity

✦ Termination
✦ Run protocol for a predefined number of cycles λ
✦ λ depends on

✦ required accuracy of the output
✦ the convergence factor that can be achieved

✦ Restarting
✦ Divide run in consecutive epochs of length Δ
✦ Start a new instance of the protocol in each epoch
✦ Concurrent epochs depending on the ratio λδ / Δ

© Alberto Montresor 100

Dynamic Membership

✦ When a node joins the network
✦ Discovers a node n already in the network
✦ Membership: initialization of the local neighbors

✦ Receives from n:
✦ Next epoch identifier
✦ The time until the start of the next epoch

✦ To guarantee convergence:
Joining node is not allowed to participate in the current epoch

© Alberto Montresor 101

Dynamic Membership

✦ Dealing with crashes, message omissions
✦ In the active thread:

✦ A timeout is set to detect the failure of the contacted node
✦ If the timeout expires before the message is received → the exchange step is

skipped

✦ What are the consequences?
✦ In general: convergence will slow down

✦ In some cases: estimate may converge to the wrong value

© Alberto Montresor 102

Synchronization

✦ The protocol described so far:
✦ Assumes synchronized epochs and cycles
✦ Requires synchronized clocks / communication

✦ This is not realistic:
✦ Clocks may drift
✦ Communication incurs unpredictable delays

✦ Complete synchronization is not needed
✦ It is sufficient that the time between the first/ last node starting to participate in an

epoch is bounded

© Alberto Montresor 103

Cost analysis

✦ If the overlay is sufficiently random:
✦ exchanges = 1 + φ, where φ has Poisson distribution with average 1

✦ Cycle length δ defines the time complexity of convergence:
✦ Small δ: fast convergence

✦ Large δ: small cost per unit time, may be needed to complete exchanges

✦ λ defines the accuracy of convergence:
✦ E(σλ2)/E(σ02) = ρλ, ε the desired accuracy → λ ≥ logρ ε

© Alberto Montresor 104

Topologies

✦ Theoretical results are based on the assumption that the underlying overlay is
sufficiently random

✦ What about other topologies?
✦ Our aggregation scheme can be applied to generic connected topologies
✦ Small-world, scale-free, newscast, random, complete

✦ Convergence factor depends on randomness

© Alberto Montresor 105

Topologies

© Alberto Montresor 106

Topologies

© Alberto Montresor 107

Simulation scenario

✦ The underlying topology is based on Newscast
✦ Realistic, Robust

✦ The count protocol is used
✦ More sensitive to failures

✦ Some parameters:
✦ Network size is 100.000
✦ Partial view size in Newscast is 30

✦ Epoch length is 30 cycles
✦ Number of experiments is 50

© Alberto Montresor 108

Effects of node failures

✦ Effects depend on the value lost in a crash:
✦ If lower than actual average: estimated average will increase, estimated size will

decrease
✦ If higher than actual average: estimated average will decrease, estimated size will

increase

✦ The latter case is worst:
✦ In the initial cycles, some nodes hold relatively large values

✦ Simulations:
✦ Sudden death / dynamic churn of nodes

© Alberto Montresor 109

Sudden death

© Alberto Montresor 110

Nodes joining/crashing

© Alberto Montresor 111

Communication failures

✦ Link failures
✦ The convergence is just slowed down – some of the exchanges do not happen

✦ Partitioning:
✦ If multiple concurrent protocols are started, the size of each partition will be evaluated

separately

✦ Message omissions:
✦ Message carry values: losing them may influence the final estimate

© Alberto Montresor 112

Link failures

© Alberto Montresor 113

Message omissions

© Alberto Montresor 114

Multiple instances of aggregation

✦ To improve accuracy in the case of failures:
✦ Multiple concurrent instances of the protocol may be run
✦ Median value taken as result

✦ Simulations
✦ Variable number of instances
✦ With node failures

✦ 1000 nodes substituted per cycle

✦ With message omissions
✦ 20% of messages lost

© Alberto Montresor 115

Node failures

© Alberto Montresor 116

Message omissions

© Alberto Montresor 117

All together now!

© Alberto Montresor 118

Planet-Lab

 Consortium
 >500 universities, research institutes, companies

 >1000 nodes

© Alberto Montresor 119

600 hosts, 10 nodes per hosts

© Alberto Montresor

Topology management

✦ Bibliography
✦ M. Jelasity, A. Montresor, and O. Babaoglu. T-Man: Gossip-based fast overlay

topology construction. Computer Networks, 53:2321-2339, 2009.
✦ A. Montresor, M. Jelasity, and O. Babaoglu. Chord on demand. In Proc. of the 5th

International Conference on Peer-to-Peer Computing (P2P'05), pages 87-94,
Konstanz, Germany, August 2005. IEEE.

✦ Additional bibliography
✦ G.P.Jesi, A. Montresor, and O. Babaoglu. Proximity-aware superpeer overlay

topologies. In Proc. of SelfMan'06, volume 3996 of Lecture Notes in Computer
Science, pages 43-57, Dublin, Ireland, June 2006. Springer-Verlag.

✦ A. Montresor. A robust protocol for building superpeer overlay topologies.
In Proceedings of the 4th International Conference on Peer-to-Peer Computing, pages
202-209, Zurich, Switzerland, August 2004. IEEE

120

© Alberto Montresor 121

Topology bootstrap

✦ Informal definition:
✦ building a topology from the ground up as

quickly and efficiently as possible

✦ Do not confuse with node bootstrap
✦ Placing a single node in the right place in the topology

✦ Much more complicated: start from scratch

© Alberto Montresor 122

The T-Man Algorithm

✦ T-man is a generic protocol for topology formation
✦ Topologies are expressed through ranking functions:

“what are my preferred neighbors?”

✦ Examples
✦ Rings, tori, trees, DHTs, etc.

✦ Distributed sorting
✦ Semantic proximity for file-sharing

✦ Latency for proximity selection.....Author's personal copy

In Table 1 we summarize the parameters of the proto-
col. Note that K (target view size) is not a parameter of
the protocol but is part of the target graph characteriza-
tion. As such, it controls the size of the target graph, and
consequently, affects the running time of the protocol.
For example, if we increase K while keeping the ranking
method fixed, then the protocol will take longer to con-
verge since it has to find a larger number of links. In fact,
K could be omitted if the target graph was defined in some
other, more complex manner.

5. Key properties of the protocol

In this section we study the behavior of our protocol as
a function of its parameters, in particular, m (message
size), w (peer sampling parameter) and the ranking method
RANK. Based on our findings, we will extend the basic
version of the peer selection algorithm with a simple
‘‘tabu-list” technique as described below. Furthermore,
we analyze the storage complexity of the protocol and
conclude that on the average, nodes need OðlogNÞ storage
space where N is the network size.

To be able to conduct controlled experiments with
T-MAN on different ranking methods, we first select a graph
instead of a ranking method, and subsequently ‘‘reverse-
engineer” an appropriate ranking method from this graph
by defining the ranking to be the ordering consistent with
the minimal path length from the base node in the selected
graph. We will call this selected graph the ranking graph, to
emphasize its direct relationship with the ranking method.

Note that the target graph is defined by parameter K, so
the target graph is identical to the ranking graph only if the
ranking graph is K-regular. However, for convenience, in
this section we will not rely on K because we either focus
on the dynamics of convergence (as opposed to conver-
gence time), which is independent of K, or we study the
discovery of neighbors in the ranking graph directly.

In order to focus on the effects of parameters, in this
section we assume a greatly simplified system model
where the protocol is initiated at the same time at all
nodes, where there are no failures, and where messages
are delivered instantly. While these assumptions are
clearly unrealistic, in Section 6 we show through event-
based simulations that the protocol is extremely robust
to failures, asynchrony and message delays even in more
realistic settings.

5.1. Analogy with the anti-entropy epidemic protocol

In Section 3 we used an (unspecified) dissemination ap-
proach to define the overlay construction problem. Here
we would like to elaborate on this idea further. Indeed,
the anti-entropy epidemic protocol, one implementation
of such a dissemination approach, can be seen as a special
case of T-MAN, where the message size m is unlimited (i.e.,
m P N such that every possible node descriptor can be
sent in a single message) and peer selection is uniform ran-
dom from the entire network. In this case, independent of
the ranking method, all node descriptors that are present
in the initial views will be disseminated to all nodes. Fur-
thermore, it is known that full convergence is reached in
less than logarithmic time in expectation [25].

For this reason, the anti-entropy epidemic protocol is
important also as a base case protocol when evaluating
the performance of T-MAN, where the goal is to achieve
similar convergence speed to anti-entropy, but with the
constraint that communication is limited to exchanging a
constant amount of information in each round. Due to
the communication constraint, performance will no longer
be independent of the ranking method.

5.2. Parameter setting for symmetric target graphs

We define a symmetric target graph to be one where all
nodes are interchangeable. In other words, all nodes have
identical roles from a topological point of view. Such graphs
are very common in the literature of overlay networks. The
behavior of T-MAN is more easily understood on symmetric
graphs, because focusing on a typical (average) node gives a
good characterization of the entire system.

We will focus on two ranking graphs, both undirected:
the ring and a k-out random graph, where k random out-
links are assigned to all nodes and subsequently the direc-
tionality of the links is dropped. We choose these two
graphs to study two extreme cases for the network diame-
ter. The diameter (longest minimal path) of the ring is OðNÞ

after 2 cycles after 3 cycles after 4 cycles after 7 cycles

Fig. 3. Illustration of constructing a torus over 50# 50 ¼ 2500 nodes, starting from a uniform random graph with initial views containing 20 random
entries and the parameter values m ¼ 20;w ¼ 10, K ¼ 4.

Table 1
Parameters of the T-MAN protocol.

RANK() Ranking method: determines the preference of nodes
as neighbors of a base node

D Cycle length: sets the speed of convergence but also the
communication cost

w Peer sampling parameter: peers are selected from the w most
preferred known neighbors

m Message size: maximum number of node descriptors that can be
sent in a single message

M. Jelasity et al. / Computer Networks 53 (2009) 2321–2339 2325

© Alberto Montresor 123

Ranking function

✦ Node descriptors contain attributes of the nodes
✦ A number in a sorting application
✦ The id of a node in a DHT

✦ A semantic description of the node

✦ Example: Sorted “Virtual” Ring
✦ Let the ranking function be defined based on the distance

 d(a,b)=min(|a-b|, 2t-|a-b|)

assuming that attributes are included in [0,2t[

© Alberto Montresor 124

Ranking function

✦ Node descriptors contain attributes of the nodes
✦ A number in a sorting application
✦ The id of a node in a DHT

✦ A semantic description of the node

✦ The ranking function may be based on a distance over a space
✦ Space: set of possible descriptor values

✦ Distance: a metric d(x,y) over the space
✦ The ranking function of node x is defined over the distance from node x

✦ getPeer(), prepareMsg() are based on a ranking function defined over node
descriptors

© Alberto Montresor 125

A generic gossip protocol - executed by process p

do once every δ time units
 q = getPeer(state)
 sp = prepareMsg(state, q)
 send (REQ, sp) to q

do forever
 receive (t, sq) from *
 if (t = REQ) then
 sp = prepareMsg(state, q)
 send (REP, sp) to q
 state = update(state, sq)

A "cycle" of
length δ

Init: initialize my local state

Active thread Passive thread

© Alberto Montresor 126

Gossip customization for topology construction

✦ local state
✦ partial view, initialized randomly based on Newscast
✦ the view grows whenever a message is received

✦ getPeer():
✦ randomly select a peer q from the r nodes in my view that are closest to p in terms of

distance

✦ prepareMsg():
✦ send to q the r nodes in local view that are closest to q

✦ q responds with the r nodes in its view that are closest to p

✦ update():
✦ both p and q merge the received nodes to their view

© Alberto Montresor 127

T-man: Topology Management

20

90

700

993

175

130

499

© Alberto Montresor 128

T-man: Topology Management

175

getPeer

20

90

130

700

499

993

10

15

170

800

187

900

130

© Alberto Montresor 129

T-man: Topology Management

175 130

Exchange of
partial views

20

90

130

700

200

993

10

15

170

800

187

900

130

90

200

170

187

© Alberto Montresor 130

T-man: Topology Management

Both sides apply
update

thereby
redefining
topology

175 130
20

90

130

700

200

993

10

15

170

800

187

900

130

90

200

170

187

© Alberto Montresor 131

Distance functions

✦ Example: Line or ring
✦ Space: [0, 1[
✦ Distance over the line: d(a,b) = | a-b |

✦ Distance over thr ring: d(a,b) = min { | a-b | , 1-|a-b| }

✦ Example: Grid or torus (Manhattan Distance)
✦ Space: [0, 1[· [0, 1[

✦ Distance: d(a,b) = | ax – bx | + | ay – by |

© Alberto Montresor 132

Example: Line

© Alberto Montresor 133

Sorted Line / Ring

✦ Directional ranking function over the ring defined as follows:
✦ Distance function, line: d(a,b)=|a-b|
✦ Distance function, ring: d(a,b)=min(|a-b|, 1-|a-b|)

✦ Given a collection (view) of nodes and a node x, return
✦ the r/2 nodes “smaller” than x that are closest to x
✦ the r/2 nodes “larger” than x that are closest to x

© Alberto Montresor 134

Sorted Line

© Alberto Montresor 135

Sorted Ring

p

q

0 2m-1

2m-10

© Alberto Montresor 136

Sorted Ring

p

q

0 2m-1

2m-10

© Alberto Montresor 137

T-Man: The movie!

Cycles NodesNodes: 1000
Showing 1 successor,
 1 predecessor

© Alberto Montresor

Start / stop

✦ In the previous animation
✦ Nodes starts simultaneously
✦ Convergence is measured globally

✦ In reality
✦ We must start the protocol at all nodes

✦ Broadcasting, using the random topology obtained through
the peer sampling services

✦ We must stop the protocol
✦ Local condition: when a node does not observe any view

change for a predefined period, it stops
✦ Idle: number of cycles without variations

138

© Alberto Montresor

Start / stop

139

Author's personal copy

as shown in Fig. 12. In the worst of our experiments, we ob-
served that nomore than 0.1% of the target links weremiss-
ing at termination. This may be sufficient for most
applications, especially considering that the target graphs
will never be constructed perfectly in a dynamic scenario,
wherenodes are addedand removedcontinously.Neverthe-
less, from now on, we discard the parameter combinations
that do not always converge.

Apart from longer executions, an additional conse-
quence of choosing large values of didle is a higher commu-
nication cost. However, since not all nodes are active
during the execution, the overall number of messages sent
per node on average is less than one quarter of the number
of cycles until global termination. To understand this bet-
ter, Fig. 13 shows how many nodes are active during the
construction of SORTED RING and TREE, respectively. The curves
show both an exponential increase in the number of active
nodes when starting, and an exponential decrease when
stopping. The period of time in which all nodes are active
is relatively short.

These considerations suggest the use of higher values
for didle, at the cost of a larger termination time and a larger
number of exchanged messages. The chosen value of didle
(4 s) represents a good tradeoff between the desire of
obtaining a perfect target graph and the consequently lar-
ger cost in time and communication.

6.7. Parameter tuning

6.7.1. Cycle length
If a faster execution is desired, one can always decrease

the cycle length. However, after some point, decreasing cy-
cle length does not pay off because message delay becomes
longer than the cycle length and eventually the networkwill
be congested byT-MANmessages. Fig. 14 shows thebehavior

 99.9
 99.91

 99.92

 99.93

 99.94

 99.95

 99.96

 99.97

 99.98

 99.99
 100

 2 4 6 8 10 12

Ta
rg

et
 L

in
ks

 F
ou

nd
 (%

)

δidle (s)

size=210

size=213

size=216

Fig. 12. Quality of the target TREE graph at termination time as a function
of didle.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

ac
tiv

e
no

de
s

(%
)

Time (s)

size=210

size=213

size=216

(a) SORTED RING

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

ac
tiv

e
no

de
s

(%
)

Time (s)

size=210

size=213

size=216

(b) TREE

Fig. 13. Proportion of active nodes during execution.

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 0.5 1 1.5 2 2.5 3 3.5 4

Te
rm

in
at

io
n

Ti
m

e
(c

yc
le

s)

Cycle Length (s)
(a) SORTED RING

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 0.5 1 1.5 2 2.5 3 3.5 4

Te
rm

in
at

io
n

Ti
m

e
(c

yc
le

s)

Cycle Length (s)
(b) TREE

Fig. 14. Termination time as a function of cycle length.

M. Jelasity et al. / Computer Networks 53 (2009) 2321–2339 2333

© Alberto Montresor 140

T-Man: Scalability

Author's personal copy

Communication cost. The number of messages exchanged.
Note that all messages ever
exchanged are of the same size.

The unit of time will be cycles or seconds, depending
on which is more convenient (note that cycle length de-
faults to 1 s). We also note that convergence time is not
defined if the protocol terminates before converging. In
this case, we use the number of identified target links
as a measure.

6.5. Evaluating the starting mechanism

Fig. 10 shows the convergence time for SORTED RING and
TREE, using the starting protocols described in Section
6.1.2. The cycle length of the anti-entropy versions was
the same as that of T-MAN, and the flooding protocol used
20 random neighbors at all nodes. The case of synchronous
start is also shown for comparison. Note that these figures
do not represent a direct measure of the performance of
well-known starting protocols; rather, convergence time
plotted here represents the overall time needed to both
start the protocol and reach convergence, with T-MAN and
the broadcast protocol running concurrently.

In the case of flooding, ‘‘wake up” messages quickly
reach all nodes and activate the protocol; almost no delay

is observed compared to the synchronous case. Anti-entro-
py mechanisms result in a few seconds of delay. In the
experiments that follow, we adopt the anti-entropy,
push–pull approach, as it represents a good tradeoff be-
tween communication costs and delay. Note however that
(unlike the push approach) the push–pull approach as-
sumes that at least the starting service was started at all
nodes already.

6.6. Evaluating the termination mechanism

We experimented with various settings for didle ranging
from 2 s to 12 s. Fig. 11 shows both convergence time (bot-
tom three curves) and termination time (top three curves)
for different values of didle, for SORTED RING and TREE, respec-
tively. In both cases, termination time increases linearly
with didle. This is because, assuming the protocol has con-
verged, each additional cycle to wait simply adds to the
termination time.

For small values convergence was not always reached,
especially for TREE. For SORTED RING, all runs converged except
the case when didle ¼ 2 and N ¼ 216, when 76% of the runs
converged. For TREE, all runs converged with didle > 5 and
no runs converged for ðdidle ¼ 2;N ¼ 213Þ; ðdidle ¼ 2;N ¼
216Þ, and ðdidle ¼ 3;N ¼ 216Þ. Even in these cases, the quality
of the target graph at termination time was almost perfect,

 5

 10

 15

 20

 25

 30

210 211 212 213 214 215 216 217 218

C
on

ve
rg

en
ce

 T
im

e
(s

)

Network Size

Anti-Entropy (Push)
Anti-Entropy (Push-Pull)

Flooding
Synchronous start

(a) SORTED RING

 5

 10

 15

 20

 25

 30

210 211 212 213 214 215 216 217 218

C
on

ve
rg

en
ce

 T
im

e
(s

)

Network Size

Anti-Entropy (Push)
Anti-Entropy (Push-Pull)

Flooding
Synchronous start

(b) TREE

Fig. 10. Convergence time as a function of size, using different starting
protocols.

 10

 20

 30

 40

 50

 2 3 4 5 6 7 8

Ti
m

e
(s

)

δ idle (s)

size = 216

size = 213

size = 210

(a) SORTED RING

 10

 20

 30

 40

 50

 2 3 4 5 6 7 8

Ti
m

e
(s

)

δ idle (s)

size = 216

size = 213

size = 210

(b) TREE

Fig. 11. Convergence time (bottom curves) and termination time (top
curves) as a function of didle.

2332 M. Jelasity et al. / Computer Networks 53 (2009) 2321–2339

© Alberto Montresor 141

T-Man: Message costs

Author's personal copy

of T-MAN with a cycle length varying between 0.2 s and 4 s.
Thefigure shows thenumberof cycles required to terminate
the protocol. Small cycle lengths require a larger number of
cycles, while after a given threshold (around 1 s), the num-
ber of cycles required to complete a protocol is almost con-
stant. The reason for this behavior is that with short cycles,
multiple cyclesmaybe executedbefore amessage exchange
is concluded, thus wasting bandwidth in sending and
receiving old information multiple times.

6.7.2. Message size
In Section 5, we have examined the effect of themessage

size parameter (m) in detail. Here we are interested in the
effect of message size on termination time. Fig. 15 shows
that by increasing the size of messages exchanged by SORTED
RING termination time slightly increases after around
m ¼ 20. The reason is that a node becomes suspended only
after the local view remains unchanged for a fixed number
of cycles, but increasing the message size has the effect of
increasing the number of cycles in which view changes
might occur, thus delaying termination. The results for TREE

havemore variance,whichmight have to dowith the unbal-
anced nature of the topology, as discussed in Section 5.3.

6.8. Failures

The results discussed so far were obtained in static net-
works, without considering any form of failure. Here, we

consider two sources of failure: message losses and node
crashes. Since in this paper we consider only the overlay
construction problem, and not maintenance, we do not
explicitly consider scenarios involving node churn. Instead,
we model churn through nodes leaving, and do not allow-
ing joining nodes to participate in an ongoing construction.
Furthermore, since we do not have a leave protocol, leaving
nodes are identical to crashing nodes from our point of
view.

6.8.1. Message loss
While a simple solution could be to adopt a reliable,

connection-oriented transport protocol like TCP, it is more
attractive to rely on a lightweight but perhaps unreliable
transport. In this case, we need to demonstrate that
T-MAN can cope well with message loss. Fig. 16 shows that
T-MAN is highly resilient to message loss and so a data-
gram-oriented protocol like UDP is a perfectly suitable
choice, as message losses only slow down the protocol
slightly. Many message exchanges are either never started
or never completed, thus requiring more cycles to termi-
nate the protocol execution. The quality does not suffer
much either. In both SORTED RING and TREE, around 1% of
the target links may be missing, as shown by Fig. 17. Note
that the mean message loss ratio for geographic networks
like the Internet is around 2% [30], an order of magnitude
smaller than the maximum message loss ratio tested in
our experiments.

 10

 20

 30

 40

 50

 60

 5 10 15 20 25 30

Te
rm

in
at

io
n

Ti
m

e
(c

yc
le

s)

Message Size
(a) SORTED RING

 10

 20

 30

 40

 50

 60

 5 10 15 20 25 30

Te
rm

in
at

io
n

Ti
m

e
(c

yc
le

s)

Message Size
(b) TREE

Fig. 15. Termination time as a function of message size.

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20

Te
rm

in
at

io
n

tim
e

(s
)

Message loss (%)

size = 210

size = 213

size = 216

(a) SORTED RING

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20

Te
rm

in
at

io
n

tim
e

(s
)

Message loss (%)

size = 210

size = 213

size = 216

(b) TREE

Fig. 16. Termination time as a function of message loss rate.

2334 M. Jelasity et al. / Computer Networks 53 (2009) 2321–2339

© Alberto Montresor 142

T-Man: Robustness to crashes

Author's personal copy

6.8.2. Node crashes
Fig. 18 shows the behavior of T-MAN with a variable fail-

ure rate, measured as the total number of nodes leaving
the network per second per node. We experimented with
values ranging from 0 to 10!2, which is two orders of
magnitude larger than the value of 10!4 suggested as the
typical behavior of some P2P networks [31]. The results
show that both SORTED RING and TREE are robust in normal
scenarios, with TREE being considerably more reliable in
the range of extreme failure rates. This is due to the unbal-
anced nature of the topology as discussed in Section 5.3.

7. Bootstrapping CHORD

After analyzing the behavior of T-MAN on relatively ba-
sic examples, in this section we present a more complex
application: rapidly bootstrapping CHORD-like networks
[8]. We call this protocol T-CHORD.

7.1. A brief introduction to CHORD

CHORD is an example of a key-based overlay routing
protocol. In such protocols, subsets of the key space are
assigned to nodes, and each node has a routing table that
it uses to route messages addressed by a specific key

towards the node that is responsible for that key.
These routing protocols are used as a component in the
implementation of the distributed hash table abstraction,
where (key, object) pairs are stored over a decentralized
collection of nodes and retrieved through the routing
protocol.

We provide a simplified description of CHORD, necessary
to understand T-CHORD. Nodes are assigned random t-bit
IDs; keys are taken from the same space. The ID length t
must be large enough to make the probability of two nodes
or two keys having the same ID negligible. Nodes are or-
dered in an sorted ring as described in Section 6.3.1. The
way this ring is constructed naturally inspires a follows
relation over the entire ID (and key) space: we say that a
follows b if ða! bþ 2tÞj2t < 2t!1; otherwise, a precedes b.
We also define a notion of distance, again, inspired
by the sorted ring, as follows: dða; bÞ ¼ minðja! bj;2t!
ja! bjÞ. The successor of an arbitrary number i (that is,
not necessarily existing node ID) is the node with the
smallest ID that follows i, as defined above. We denote
the successor of i by succ1ðiÞ. The concepts of predecessor,
jth successor, and jth predecessor are defined similarly.
Key k is under the responsibility of node succ1ðkÞ.

Each node maintains a routing table that has two parts:
leaves and fingers. Leaves define an r-regular lattice, where

 98.6

 98.8

 99

 99.2

 99.4

 99.6

 99.8

 100

 0 5 10 15 20

Ta
rg

et
 L

in
ks

 F
ou

nd
 (%

)

Message loss (%)

size = 210

size = 213

size = 216

(a) SORTED RING

 98.6

 98.8

 99

 99.2

 99.4

 99.6

 99.8

 100

 0 5 10 15 20

Ta
rg

et
 L

in
ks

 F
ou

nd
 (%

)

Message loss (%)

size = 210

size = 213

size = 216

(b) TREE

Fig. 17. Target links found by the termination time as a function of
message loss rate.

 98

 98.5

 99

 99.5

 100

 0 0.002 0.004 0.006 0.008 0.01

Ta
rg

et
 L

in
ks

 F
ou

nd
 (%

)

Node failures per node per second

size=216

size=213

size=210

(a) SORTED RING

 98

 98.5

 99

 99.5

 100

 0 0.002 0.004 0.006 0.008 0.01

Ta
rg

et
 L

in
ks

 F
ou

nd
 (%

)

Node failures per node per second

size=216

size=213

size=210

(b) TREE

Fig. 18. Target links found by the termination time as a function of failure
rate.

M. Jelasity et al. / Computer Networks 53 (2009) 2321–2339 2335

© Alberto Montresor 143

T-Man: Robustness to message losses

Author's personal copy

6.8.2. Node crashes
Fig. 18 shows the behavior of T-MAN with a variable fail-

ure rate, measured as the total number of nodes leaving
the network per second per node. We experimented with
values ranging from 0 to 10!2, which is two orders of
magnitude larger than the value of 10!4 suggested as the
typical behavior of some P2P networks [31]. The results
show that both SORTED RING and TREE are robust in normal
scenarios, with TREE being considerably more reliable in
the range of extreme failure rates. This is due to the unbal-
anced nature of the topology as discussed in Section 5.3.

7. Bootstrapping CHORD

After analyzing the behavior of T-MAN on relatively ba-
sic examples, in this section we present a more complex
application: rapidly bootstrapping CHORD-like networks
[8]. We call this protocol T-CHORD.

7.1. A brief introduction to CHORD

CHORD is an example of a key-based overlay routing
protocol. In such protocols, subsets of the key space are
assigned to nodes, and each node has a routing table that
it uses to route messages addressed by a specific key

towards the node that is responsible for that key.
These routing protocols are used as a component in the
implementation of the distributed hash table abstraction,
where (key, object) pairs are stored over a decentralized
collection of nodes and retrieved through the routing
protocol.

We provide a simplified description of CHORD, necessary
to understand T-CHORD. Nodes are assigned random t-bit
IDs; keys are taken from the same space. The ID length t
must be large enough to make the probability of two nodes
or two keys having the same ID negligible. Nodes are or-
dered in an sorted ring as described in Section 6.3.1. The
way this ring is constructed naturally inspires a follows
relation over the entire ID (and key) space: we say that a
follows b if ða! bþ 2tÞj2t < 2t!1; otherwise, a precedes b.
We also define a notion of distance, again, inspired
by the sorted ring, as follows: dða; bÞ ¼ minðja! bj;2t!
ja! bjÞ. The successor of an arbitrary number i (that is,
not necessarily existing node ID) is the node with the
smallest ID that follows i, as defined above. We denote
the successor of i by succ1ðiÞ. The concepts of predecessor,
jth successor, and jth predecessor are defined similarly.
Key k is under the responsibility of node succ1ðkÞ.

Each node maintains a routing table that has two parts:
leaves and fingers. Leaves define an r-regular lattice, where

 98.6

 98.8

 99

 99.2

 99.4

 99.6

 99.8

 100

 0 5 10 15 20

Ta
rg

et
 L

in
ks

 F
ou

nd
 (%

)

Message loss (%)

size = 210

size = 213

size = 216

(a) SORTED RING

 98.6

 98.8

 99

 99.2

 99.4

 99.6

 99.8

 100

 0 5 10 15 20

Ta
rg

et
 L

in
ks

 F
ou

nd
 (%

)

Message loss (%)

size = 210

size = 213

size = 216

(b) TREE

Fig. 17. Target links found by the termination time as a function of
message loss rate.

 98

 98.5

 99

 99.5

 100

 0 0.002 0.004 0.006 0.008 0.01

Ta
rg

et
 L

in
ks

 F
ou

nd
 (%

)

Node failures per node per second

size=216

size=213

size=210

(a) SORTED RING

 98

 98.5

 99

 99.5

 100

 0 0.002 0.004 0.006 0.008 0.01

Ta
rg

et
 L

in
ks

 F
ou

nd
 (%

)

Node failures per node per second

size=216

size=213

size=210

(b) TREE

Fig. 18. Target links found by the termination time as a function of failure
rate.

M. Jelasity et al. / Computer Networks 53 (2009) 2321–2339 2335

© Alberto Montresor

T-Chord

✦ How it works?
✦ Node descriptor contains node ID in a [0..2t[space
✦ Nodes are sorted over the ring defined by IDs

✦ Final output is the Chord ring
✦ As by-product, many other nodes are discovered

✦ Example:
✦ t=32, size=214, msg size=20

144

© Alberto Montresor

T-Chord

145

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

210 211 212 213 214 215 216 217 218

H
op

 C
ou

nt

Size

Chord
T-Chord

T-Chord-Prox

Figure 3. Hop count as a function of network
size

 200

 300

 400

 500

 600

 700

 800

210 211 212 213 214 215 216 217 218

La
te

nc
y

(m
s)

Size

Chord
T-Chord

T-Chord-Prox

Figure 4. Message delay as a function of net-
work size

T-MAN cycles that have been run. Initially, all messages are
lost: local views contain only random nodes, so the rout-
ing algorithm is unable to deliver messages. The loss rate
rapidly decreases, however, reaching 0 after only 14 cy-
cles. At that point, the leaf ring is completely formed in
all our experiments. Note that the curves for T-CHORD and
T-CHORD-PROX overlap almost completely.

Regarding hop counts, the results confirm that the qual-
ity of the routing tables stabilizes after few cycles, for both
versions of T-CHORD. Latency (not shown for space rea-
sons) follows a similar behavior. The increasing tendency
of the hop count curves is explained by the fact that in the
beginning, in spite of the low quality overlay, a few mes-
sages reach their destination “by chance” in a few hops,
while most of the messages are lost.

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

210 211 212 213 214 215 216 217 218

C
yc

le
s

Size

1-regular lattice
5-regular lattice

Figure 5. Convergence time as a function of
network size

5.3. Scalability

The experiments discussed so far were run in a network
with a fixed size (216 nodes). To assess the scalability of
T-CHORD, Figure 3 plots the average hop count against net-
work size varying in the range [210, 218]. Results for the
ideal Chord topology are also shown. All algorithms scale
logarithmically with size. Quite interestingly, T-CHORD per-
forms slightly better than Chord. This is explained by the
fact that the distance of the longest fingers tend to be larger
in our case (due to not strictly satisfying the Chord specifi-
cation), which speeds up reaching the destination node if it
resides in the most distant half of the ring.

Figure 4 plots the average message delay in the same
settings. As expected, T-CHORD-PROX outperforms both T-
CHORD and Chord, due to its latency-optimized set of fin-
gers. To obtain such performance, T-CHORD-PROX pays a
price in terms of latency probes. In this experimental set-
ting, with parameter p set to 5, we have observed a total
number of probes per node scaling logarithmically from 45
(for N = 210) to 77 (for N = 218). This is expected, as the
number of finger entries that are not empty is O(log N) [3].
These values are comparable with those reported for other
proximity-based protocols like Pastry [1], and can be tuned
by varying the p parameter.

Finally, Figure 5 plots the number of cycles needed to
obtain the 1-regular lattice (the ring), sufficient to guaran-
tee the consistent routing of messages (absence of message
losses) [3], and the l-regular lattice used to provide addi-
tional fault-tolerance. In both cases, the convergence is ob-
tained in a logarithmic number of cycles.

5.4. Parameters

To evaluate the impact of the T-MAN message size (m)
on the routing performance of our algorithm, we performed

© Alberto Montresor 146

Robustness to failures

© Alberto Montresor 147

Robustness to failures

© Alberto Montresor 148

Conclusions

 This mechanism to build Chord is tightly tailored on the particular structure of
Chord

 A more generic approach:
 Define a ranking function where nodes have a preference for successors and

predecessors AND fingers

 Approx. same results, only slightly more complex to explain

 Can be used for Pastry, for example:
 Define a ranking function where nodes have a preference for successors and

predecessors AND nodes in the prefix-based routing table

© Alberto Montresor

Size estimation

✦ Bibliography
✦ A. Montresor and A. Ghodsi. Towards robust peer counting. In Proc. of the 9th Int.

Conference on Peer-to-Peer (P2P'09), pages 143-146, Seattle, WA, September 2009

149

© Alberto Montresor 150

Network size estimation at runtime

✦ Why
✦ f(n) routing pointers

✦ to bound the hop count
✦ to provide churn resilience

✦ build group of size f(n)
✦ Slicing

✦ f(n) messages
✦ to reduce overhead in gossip protocols

✦ How
✦ Combine and improve existing protocols
✦ Compared to existing systems:

✦ More precise, more robust, slightly more overhead

✦ Simple idea → short paper

© Alberto Montresor 151

A brief explanation

70

80

97

112

127 7 14

23

39
42

46

15 8 7
9

16

3
4

24
10

17

15 11.63
128/11.63=12

✦ Assign random numbers in [0, d[
✦ Locally; here, d=127

✦ Build a ring topology
✦ Gossip topology construction (T-Man)

✦ Compute the distance to the
successor

✦ Locally

✦ Compute the average distance a
✦ Gossip aggregation

✦ Compute size

✦ d / a = n

© Alberto Montresor 152

Scalability

0.0

1.0

2.0

3.0

4.0

5.0

210 211 212 213 214 215 216 217 218

O
ve

rh
ea

d
pe

r n
od

e
(k

B)

Size

T-Size
Average

 30
 35
 40
 45
 50
 55
 60
 65
 70
 75

Co
nv

er
ge

nc
e

Ti
m

e
(s

)

T-Size
Average

Fig. 5. Scalability

IV. DISCUSSION AND CONCLUSIONS
Epidemic protocols for peer counting have been proposed

by Jelasity et al. in 2005 [11]; the idea was to use AVERAGE,
initializing all nodes to 0, apart from one node set to 1 (the
initiator). The network size n could be easily derived from the
computed average 1/n. The problem of this approach was its
sensitivity to failures; in the first phases of the computation,
the failure of the initiator or its neighbors nodes could easily
double the estimate. Furthermore, the initial estimate at the
nodes were exceedingly inaccurate. T-SIZE is more robust to
failures and the initial estimates have the same expected error.
This is because no node is more important than another.
While T-SIZE is an important improvement over state-of-the-

art, we believe that it could further be improved by making
it continuous – i.e. able to continuously provide the estimate
without periodic restarting. This is the subject of future work.

REFERENCES
[1] J. Li, J. Stribling, R. Morris, and M. F. Kaashoek, “Bandwidth-efficient

management of DHT routing tables,” in Proceedings of the 2nd Sym-
posium on Networked Systems Design and Implementation (NSDI’05).
Boston, MA: USENIX, May 2005.

[2] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: a scalable peer-to-peer lookup
protocol for internet applications,” IEEE/ACM Trans. on Networking
(TON), vol. 11, no. 1, pp. 17–32, 2003.

[3] P. B. Godfrey and I. Stoica, “Heterogeneity and Load Balance in
Distributed Hash Tables,” in Proceedings of the 24th Joint Conf. of the
IEEE Computer and Communications Societies (INFOCOM’05), Miami,
FL, Mar. 2005, pp. 596–606.

[4] A. Rao, K. Lakshminarayanan, S. Surana, R. M. Karp, and I. Stoica,
“Load Balancing in Structured P2P Systems,” in Proceedings of the 2nd
International Workshop on Peer-to-Peer Systems (IPTPS’03), ser. LNCS,
vol. 2735, Berkeley, CA, 2003, pp. 68–79.

[5] A. J. Demers et al., “Epidemic algorithms for replicated database
maintenance,” in Proceedings of the 6th ACM Symposium on Principles
of Distributed Computing Systems (PODC’87), 1987, pp. 1–12.

[6] A. Fernandez, V. Gramoli, E. Jimenez, A.-M. Kermarrec, and M. Raynal,
“Distributed slicing in dynamic systems,” in Proceedings of the 27th In-
ternational Conference on Distributed Computing Systems (ICDCS’07).
Toronto, Ontario, Canada: IEEE Computer Society, 2007.

10-4
10-3
10-2
10-1
100
101
102
103

 0 0.2 0.4 0.6 0.8 1

Er
ro

r (
%

)

Failure probability per second per node (%)

T-Size
Average

Fig. 6. Accuracy under churn.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

Er
ro

r (
%

)

Message losses (%)

T-Size
Average

Fig. 7. Accuracy under message losses.

[7] A. Montresor and R. Zandonati, “Absolute slicing in peer-to-peer sys-
tems,” in Proceedings of the 5th International Workshop on Hot Topics
in Peer-to-Peer Systems (HotP2P’08), Miami, FL, Apr. 2008.

[8] E. L. Merrer, A.-M. Kermarrec, and L. Massoulié, “Peer to peer
size estimation in large and dynamic networks: A comparative study,”
in Proceedings of the 15th IEEE International Symposium on High
Performance Distributed Computing (HPDC’06), 2006, pp. 7–17.

[9] D. Kostoulas, D. Psaltoulis, I. Gupta, K. Birman, and A. J. Demers, “De-
centralized schemes for size estimation in large and dynamic groups,”
in Proceedings of the 4th IEEE International Symposium on Network
Computing and Applications (NCA’05), 2005, pp. 41–48.

[10] L. Massoulié, E. L. Merrer, A.-M. Kermarrec, and A. J. Ganesh, “Peer
counting and sampling in overlay networks: random walk methods,” in
Proceedings of the 25th ACM Symposium on Principles of Distributed
Computing (PODC’06), 2006, pp. 123–132.

[11] M. Jelasity, A. Montresor, and O. Babaoglu, “Gossip-based aggregation
in large dynamic networks,” ACM Trans. Comput. Syst., vol. 23, no. 1,
pp. 219–252, Aug. 2005.

[12] D. Malkhi, M. Naor, and D. Ratajczak, “Viceroy: A scalable and
dynamic emulation of the butterfly,” in Proceedings of the 21st ACM
Symposium on Principles of Distributed Computing (PODC’02). New
York, NY: ACM Press, 2002.

[13] A. R. Bharambe, M. Agrawal, and S. Seshan, “Mercury: Supporting
Scalable Multi-Attribute Range Queries,” in Proceedings of the ACM
SIGCOMM 2004 Symposium on Communication, Architecture, and
Protocols. Portland, OR: ACM Press, March 2004, pp. 353–366.

[14] K. Horowitz and D. Malkhi, “Estimating network size from local
information,” Inform. Process. Lett., vol. 88, pp. 237–243, 2003.

[15] M. Jelasity, A. Montresor, and O. Babaoglu, “T-Man: Gossip-based fast
overlay topology construction,” Comput. Netw., 2009, to appear.

[16] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M. van
Steen, “Gossip-based peer sampling,” ACM Trans. Comput. Syst.,
vol. 25, no. 3, p. 8, 2007.

[17] M. Jelasity, A. Montresor, G. P. Jesi, and S. Voulgaris, “The Peersim
simulator,” http://peersim.sf.net.

[18] K. P. Gummadi, S. Saroiu, and S. D. Gribble, “King: Estimating latency
between arbitrary internet end hosts,” in Proceedings of the Internet
Measurement Workshop (SIGCOMM IMW), 2002.

© Alberto Montresor 153

Accuracy – w.r.t. parameter Precision

10-6
10-5
10-4
10-3
10-2
10-1
100

10-810-710-610-510-410-3
40
50
60
70
80
90
100
110
120

Er
ro

r (
%

)

Co
nv

er
ge

nc
e

Ti
m

e
(s

)

Precision

Error of max estimate
Error of min estimates

Convergence time

Fig. 2. Evaluation of parameter precision .

10-5

10-4

10-3

10-2

10-1

 1 2 3 4 5 6 7 8 9
40
50
60
70
80
90
100
110
120

Er
ro

r (
%

)

Co
nv

er
ge

nc
e

Ti
m

e
(s

)

Inactive

Error of max estimate
Error of min estimate

Convergence time

Fig. 3. Evaluation of parameter inactive.

of 12 bytes (64 bits for the random identifier and 32 bits for
the IP address); thus, the total size of each T-MAN message is
20+12∗msgsize bytes. Each message in AVERAGE is composed
of just one 64 bit value, so the total size is 20+8 = 28 bytes.

B. Failure-free experiments
The first set of experiments is meant to evaluate how the er-

ror can be reduced by varying precision and inactive , in order
to fix them for the subsequent simulations. In Fig. 2, precision
varies between 10−3 and 10−8, while in Fig. 3, inactive varies
between 2 and 8. As expected, the error level (shown as a
percentage on the size of the network in the figures) decreases
in correspondence of larger values of inactive and small
values of precision; unfortunately, the convergence time grows
linearly, so we fixed precision = 10−5 and inactive = 3 as
a trade-off between our metrics. Note that with these values,
the error is around 0.01%.
In the second set of experiments, we want to test how

overhead and convergence time are related to each other.
Fig. 4 has been obtained by varying two parameters, msgsize
between 2 and 20, and δc between 0.1s and 1.0s. By plotting
the convergence time on the x-axis and the overhead per node
on the y-axis, we have been able to highlight the trade-off
between these two metrics - the faster you want to go, the
larger overhead you have to pay. To match dots with their
parameter setting, the same set of experiments is plotted twice
with different gray-scale coding. On the top figure, the coding
shown on the right bar corresponds to the cycle length; the
smaller the cycle-length, the faster the speed (as expected).
But note that the smallest simulated cycle length (0.1s) is

 2
 4
 6
 8
 10
 12
 14
 16
 18
 20Parameter: message size

 20 25 30 35 40 45 50 55 60 65
Convergence Time (s)

 3

 4

 5

 6

 7

 8

 9

 10

O
ve

rh
ea

d
pe

r n
od

e
(k

B)

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1Parameter: cycle length

 3

 4

 5

 6

 7

 8

 9

 10

O
ve

rh
ea

d
pe

r n
od

e
(k

B)

Fig. 4. Trade-off between overhead and convergence time

not shown, because none of the experiments have been able
to converge in less than 200 cycles (the time limit of our
simulations); furthermore, even 0.2s is not a good choice,
given that the associated dark dots are scattered between 35
and 45 seconds. On the bottom figure, the coding corresponds
to the message size; small message sizes tend to reduce the
total overhead, but not the very small ones. In the rest of our
experiments, we selected two fairly conservative values, i.e.
δc = 1s and msgsize = 10.
The log-log plot of Fig. 5 shows the scalability of T-SIZE

and compare it with AVERAGE. T-SIZE scales logarithmically
for sizes included in [210, 218], and the convergence time scales
better with T-SIZE rather than AVERAGE; the price to be payed
is a larger (but still reasonable) overhead.

C. Robustness
We are particularly interested in evaluating these metrics

in an environment subject to churn and message loss; our
protocol has proven to be extremely robust in these cases.
Fig. 6 show the behavior of the system under a disruptive
scenario where up to 1% of the nodes leave/crash at each
second. This corresponds to an expected lifetime of 99s –
an insane level of churn, much larger than measured churn
levels which are around 0.01%. Still, our protocol manages to
keep the error below 7%, with most of the dots below 2%.
Compared with AVERAGE, we note a strong error reduction.
Fig. 7 shows the behavior of the protocol in case of

message losses. The protocol is sensitive to high levels of
losses; this is because the loss of the reply message in an
aggregation exchange causes an asymmetric update of the local
values: one is changed, the other not. Nevertheless, for limited
amounts of message loss (less than 5%), the protocol remains
adequately accurate and its behavior is better than AVERAGE,
which performs fairly bad even with small levels of message
losses.

© Alberto Montresor 154

Robustness

0.0

1.0

2.0

3.0

4.0

5.0

210 211 212 213 214 215 216 217 218

O
ve

rh
ea

d
pe

r n
od

e
(k

B)

Size

T-Size
Average

 30
 35
 40
 45
 50
 55
 60
 65
 70
 75

Co
nv

er
ge

nc
e

Ti
m

e
(s

)

T-Size
Average

Fig. 5. Scalability

IV. DISCUSSION AND CONCLUSIONS
Epidemic protocols for peer counting have been proposed

by Jelasity et al. in 2005 [11]; the idea was to use AVERAGE,
initializing all nodes to 0, apart from one node set to 1 (the
initiator). The network size n could be easily derived from the
computed average 1/n. The problem of this approach was its
sensitivity to failures; in the first phases of the computation,
the failure of the initiator or its neighbors nodes could easily
double the estimate. Furthermore, the initial estimate at the
nodes were exceedingly inaccurate. T-SIZE is more robust to
failures and the initial estimates have the same expected error.
This is because no node is more important than another.
While T-SIZE is an important improvement over state-of-the-

art, we believe that it could further be improved by making
it continuous – i.e. able to continuously provide the estimate
without periodic restarting. This is the subject of future work.

REFERENCES
[1] J. Li, J. Stribling, R. Morris, and M. F. Kaashoek, “Bandwidth-efficient

management of DHT routing tables,” in Proceedings of the 2nd Sym-
posium on Networked Systems Design and Implementation (NSDI’05).
Boston, MA: USENIX, May 2005.

[2] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: a scalable peer-to-peer lookup
protocol for internet applications,” IEEE/ACM Trans. on Networking
(TON), vol. 11, no. 1, pp. 17–32, 2003.

[3] P. B. Godfrey and I. Stoica, “Heterogeneity and Load Balance in
Distributed Hash Tables,” in Proceedings of the 24th Joint Conf. of the
IEEE Computer and Communications Societies (INFOCOM’05), Miami,
FL, Mar. 2005, pp. 596–606.

[4] A. Rao, K. Lakshminarayanan, S. Surana, R. M. Karp, and I. Stoica,
“Load Balancing in Structured P2P Systems,” in Proceedings of the 2nd
International Workshop on Peer-to-Peer Systems (IPTPS’03), ser. LNCS,
vol. 2735, Berkeley, CA, 2003, pp. 68–79.

[5] A. J. Demers et al., “Epidemic algorithms for replicated database
maintenance,” in Proceedings of the 6th ACM Symposium on Principles
of Distributed Computing Systems (PODC’87), 1987, pp. 1–12.

[6] A. Fernandez, V. Gramoli, E. Jimenez, A.-M. Kermarrec, and M. Raynal,
“Distributed slicing in dynamic systems,” in Proceedings of the 27th In-
ternational Conference on Distributed Computing Systems (ICDCS’07).
Toronto, Ontario, Canada: IEEE Computer Society, 2007.

10-4
10-3
10-2
10-1
100
101
102
103

 0 0.2 0.4 0.6 0.8 1

Er
ro

r (
%

)

Failure probability per second per node (%)

T-Size
Average

Fig. 6. Accuracy under churn.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

Er
ro

r (
%

)

Message losses (%)

T-Size
Average

Fig. 7. Accuracy under message losses.

[7] A. Montresor and R. Zandonati, “Absolute slicing in peer-to-peer sys-
tems,” in Proceedings of the 5th International Workshop on Hot Topics
in Peer-to-Peer Systems (HotP2P’08), Miami, FL, Apr. 2008.

[8] E. L. Merrer, A.-M. Kermarrec, and L. Massoulié, “Peer to peer
size estimation in large and dynamic networks: A comparative study,”
in Proceedings of the 15th IEEE International Symposium on High
Performance Distributed Computing (HPDC’06), 2006, pp. 7–17.

[9] D. Kostoulas, D. Psaltoulis, I. Gupta, K. Birman, and A. J. Demers, “De-
centralized schemes for size estimation in large and dynamic groups,”
in Proceedings of the 4th IEEE International Symposium on Network
Computing and Applications (NCA’05), 2005, pp. 41–48.

[10] L. Massoulié, E. L. Merrer, A.-M. Kermarrec, and A. J. Ganesh, “Peer
counting and sampling in overlay networks: random walk methods,” in
Proceedings of the 25th ACM Symposium on Principles of Distributed
Computing (PODC’06), 2006, pp. 123–132.

[11] M. Jelasity, A. Montresor, and O. Babaoglu, “Gossip-based aggregation
in large dynamic networks,” ACM Trans. Comput. Syst., vol. 23, no. 1,
pp. 219–252, Aug. 2005.

[12] D. Malkhi, M. Naor, and D. Ratajczak, “Viceroy: A scalable and
dynamic emulation of the butterfly,” in Proceedings of the 21st ACM
Symposium on Principles of Distributed Computing (PODC’02). New
York, NY: ACM Press, 2002.

[13] A. R. Bharambe, M. Agrawal, and S. Seshan, “Mercury: Supporting
Scalable Multi-Attribute Range Queries,” in Proceedings of the ACM
SIGCOMM 2004 Symposium on Communication, Architecture, and
Protocols. Portland, OR: ACM Press, March 2004, pp. 353–366.

[14] K. Horowitz and D. Malkhi, “Estimating network size from local
information,” Inform. Process. Lett., vol. 88, pp. 237–243, 2003.

[15] M. Jelasity, A. Montresor, and O. Babaoglu, “T-Man: Gossip-based fast
overlay topology construction,” Comput. Netw., 2009, to appear.

[16] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M. van
Steen, “Gossip-based peer sampling,” ACM Trans. Comput. Syst.,
vol. 25, no. 3, p. 8, 2007.

[17] M. Jelasity, A. Montresor, G. P. Jesi, and S. Voulgaris, “The Peersim
simulator,” http://peersim.sf.net.

[18] K. P. Gummadi, S. Saroiu, and S. D. Gribble, “King: Estimating latency
between arbitrary internet end hosts,” in Proceedings of the Internet
Measurement Workshop (SIGCOMM IMW), 2002.

© Alberto Montresor

Absolute slicing

✦ Bibliography
✦ A. Montresor and R. Zandonati. Absolute slicing in peer-to-peer systems. In Proc. of

the 5th International Workshop on Hot Topics in Peer-to-Peer Systems (HotP2P'08),
Miami, FL, USA, April 2008.

155

© Alberto Montresor 156

Introduction

✦ System model
✦ An huge collection of networked nodes (resource pool)
✦ Potentially owned/controlled by a single organization that deploys massive services

on them

✦ Examples
✦ ISPs that place smart modems / set-top boxes

at their customers' homes
✦ BT, France Telecom

✦ Note: similar to current P2P systems, but with some peculiar differences

© Alberto Montresor 157

Introduction: possible scenarios

✦ Multiple-services architecture
✦ Nodes must be able to host a large number of services, potentially executed by third-

party entities

✦ On-demand services
✦ A subset of the nodes can be leased temporally and

quickly organized into an overlay network

✦ Adaptive resource management
✦ Resource assignments of long-lived services could be adapted based on QoS

requirements and changes in the environment

© Alberto Montresor 158

Overview

✦ What we need to realize those scenarios?
✦ Maintain a dynamic membership of the network (peer sampling)
✦ Dynamically allocate subset of nodes to applications (slicing)

✦ Start overlays from scratch (bootstrap)
✦ Deploy applications on overlays (broadcast)
✦ Monitor applications (aggregation)

✦ This while dealing with massive dynamism
✦ Catastrophic failures
✦ Variations in QoS requirements (flash crowds)

© Alberto Montresor 159

Architecture: a decentralized OS

Peer sampling service

Slicing
Service

Topology
Bootstrap

Monitoring
Service Broadcast

Other middleware services (DHTs, indexing, publish-subscribe, etc.)

Applications

© Alberto Montresor 160

The problem

✦ Distributed Slicing
✦ Given a distributed collection of nodes, we want to allocate a subset (“slice”) of them

to a specific application, by selecting those that satisfy a given condition over group
or node attributes

✦ Ordered Slicing (Fernandez et al., 2007)
✦ Return top k% nodes based on some attribute ranking

✦ Absolute slicing
✦ Return k nodes and maintain such allocation in spite of churn

✦ Cumulative slicing
✦ Return nodes whose attribute total sum correspond to a

target value

© Alberto Montresor 161

Problem definition

✦ We considere a dynamic collection N of nodes

✦ Each node ni ∈N is provided with an attribute function
✦ fi: A → V

✦ Slice S(c,s): a dynamic subset of N such that
✦ c is a first-order-logic condition defined over attribute names and values, identifying

the potential member of the slice

✦ s is the desired slice size

✦ Slice quality:

|S(c, s)|− s

s

© Alberto Montresor 162

Problem definition

N Total nodes

P Potential nodes
 (each node satisfying c)

S Slice nodes
 (total slice size ~ s)

© Alberto Montresor 163

Issues

✦ What we mean with “return a slice”?
✦ We cannot provide each node with a complete view of large scale subset
✦ Slice composition may continuously change due to churn

✦ How we compute the slice size?
✦ without a central service that does the counting?

✦ How do we inform nodes about the current slice definition?
✦ Multiple slices, over different conditions, with potentially changing slice sizes

© Alberto Montresor 164

Gossip to the rescue

✦ Turns out that all services listed so far can be implemented using a gossip approach
✦ Peer sampling: continuously provides uniform random samples over a dynamic large

collection of nodes
✦ random samples can be used to build other gossip protocols
✦ side-effect: strongly connected random graph

✦ Aggregation: compute aggregate information (average, sum, total size, etc.) over large
collection of nodes

✦ we are interested in size estimation
✦ Broadcast: disseminate information

✦ Gossip beyond dissemination
✦ Information is not simply exchanged, but also manipulated

© Alberto Montresor 165

Architecture of the absolute slicing protocol

Peer Sampling

Peer Sampling

Peer Sampling

Aggregation

Aggregation

N

P

S

Broadcast

Application
Protocol

© Alberto Montresor 166

The slicing algorithm

✦ Total group
✦ All nodes participate in the peer sampling protocol to maintain the total group

✦ Potential group
✦ Nodes that satisfy the condition c join the potential group peer sampling

✦ Means: inject their identifier into message exchanged at
the 2nd peer sampling layer

✦ Aggregation
✦ Estimate the size of the potential group size(P)

© Alberto Montresor 167

The slicing algorithm

✦ Slice group
✦ Nodes that “believe to belong” to the slice join the slice peer sampling

✦ Means: inject their identifier into messages exchanged at the 3rd peer sampling
layer

✦ Aggregation
✦ Estimate the size of the slice size(S)

✦ Nodes “believe to belong” or not to the slice
✦ join the slice with prob. (s-size(S)) / (size(P)-size(S))
✦ leave the slice with prob. (size(S)-s) / size(S)

© Alberto Montresor 168

Experimental results: actual slice size

© Alberto Montresor 169

Experimental results: churn 10-4 nodes/s

© Alberto Montresor 170

Experimental results: variable churn

© Alberto Montresor 171

Experimental results: message losses

© Alberto Montresor 172

Slicing - conclusion

✦ Absolute slicing protocol
✦ Extremely robust (high level of churn, message losses)
✦ Low cost (several layers, but each requiring few bytes per sec)

✦ Large precision

✦ The message
✦ Gossip can solve many problems in a robust way

✦ Customizable to many needs

✦ What's next?
✦ Cumulative slicing:

✦ very similar, but it's a knapsack problem

© Alberto Montresor

Function optimization

✦ Bibliography
✦ M. Biazzini, A. Montresor, and M. Brunato. Towards a decentralized architecture for

optimization. In Proc. of the 22nd IEEE International Parallel and Distributed
Processing Symposium (IPDPS'08), Miami, FL, USA, April 2008.

✦ Additional bibliography
✦ B. Bánhelyi, M. Biazzini, A. Montresor, and M. Jelasity. Peer-to-peer optimization in

large unreliable networks with branch-and-bound and particle swarms. In
Applications of Evolutionary Computing, Lecture Notes in Computer Science, pages
87-92. Springer, Jul 2009.

✦ M. Biazzini, B. Bánhelyi, A. Montresor, and M. Jelasity. Distributed hyper-heuristics
for real parameter optimization. In Proceedings of the 11th Genetic and Evolutionary
Computation Conference (GECCO'09), pages 1339-1346, Montreal, Québec,
Canada, July 2009.

173

© Alberto Montresor 174

Particle swarm optimization

✦ Input:
✦ A multi-dimensional function
✦ A multi-dimensional space to be inspected

✦ Output:
✦ The point where the minimum is located, together with its value

✦ Approximation problem

© Alberto Montresor 175

Particle swarm optimization

✦ A solver is a swarm of particles spread in the domain of the objective function

✦ Particles evaluate the objective function in a point p, looking for the minimum

✦ Each particle knows the best points
✦ found by itself (bp)
✦ found by someone in the swarm (bg)

✦ Each particle updates its position p as follows:
✦ v = v + c1 * rand() * (bp - p) + c2 * rand() * (bg - p)
✦ p = p + v

© Alberto Montresor 176

Particle swarm optimization

✦ Modular architecture for distributed optimization:

✦ The topology service (NEWSCAST)
✦ creates and maintains an overlay topology

✦ The function optimization service (D-PSO)
✦ evaluates the function over a set of points

✦ Local/remote history driven choices

✦ The coordination service (gossip algorithm)
✦ determines the selection of points to be evaluated

✦ spread information about the global optimum

© Alberto Montresor 177

Particle swarm optimization

✦ Communication failures are harmless
✦ Losses of messages just slow down the spreading of (correct) information

✦ Churning is inoffensive
✦ Nodes can join and leave arbitrarily and this does not affect the consistency of the

overall computation

© Alberto Montresor 178

Scalability

© Alberto Montresor 179

Gossip Lego, reloaded

✦ The baseplate
✦ Peer sampling

✦ The bricks
✦ Slicing (group management)

✦ Topology bootstrap
✦ Aggregation (monitoring)

✦ Load balancing (based on aggregation)

✦ Applications
✦ Function optimization

✦ P2P video streaming
✦ Social networking

© Alberto Montresor 180

Conclusions

✦ We only started to discover the power of gossip
✦ Many other problems can be solved

✦ The right tool for
✦ large-scale

✦ dynamic systems

✦ Caveat emptor: security
✦ We only started to consider the problems related to security in open systems

© Alberto Montresor

Shameless advertisement

✦ PeerSim - A peer-to-peer simulator
✦ Written in Java
✦ Specialized for epidemic protocols

✦ Configurations based on textual file
✦ Light and fast core

✦ Some statistics
✦ 15.000+ downloads
✦ 150+ papers written with PeerSim

181

PeerSim: A Peer-to-Peer Simulator
[Introduction] [People] [Download] [Documentation] [Publications] [Peersim Extras]

[Additional Code]

Introduction top

Peer-to-peer systems can be of a very large scale such as millions of nodes, which
typically join and leave continously. These properties are very challenging to deal with.
Evaluating a new protocol in a real environment, especially in its early stages of
development, is not feasible.

PeerSim has been developed with extreme scalability and support for dynamicity in mind.
We use it in our everyday research and chose to release it to the public under the GPL
open source license. It is written in Java and it is composed of two simulation engines, a
simplified (cycle-based) one and and event driven one. The engines are supported by
many simple, extendable, and pluggable components, with a flexible configuration
mechanism.

The cycle-based engine, to allow for scalability, uses some simplifying assumptions, such
as ignoring the details of the transport layer in the communication protocol stack. The
event-based engine is less efficient but more realistic. Among other things, it supports
transport layer simulation as well. In addition, cycle-based protocols can be run by the
event-based engine too.

PeerSim started under EU projects BISON and DELIS DELIS. The PeerSim development
in Trento (Alberto Montresor, Gian Paolo Jesi) is now partially supported by the
Napa-Wine project.

People top

The main developers of PeerSim are:

Márk Jelasity, Alberto Montresor,

Gian Paolo Jesi, Spyros Voulgaris

Other contributors and testers (in alphabetical order):

Stefano Arteconi

David Hales

Andrea Marcozzi

Fabio Picconi

© Alberto Montresor

Thanks

✦ My co-authors:
✦ Mark, Ozalp, Gian Paolo, Marco, Roberto, Ali, Maarten, Mauro, Balazs

✦ For some slides:
✦ Spyros

✦ Those who invited me:
✦ Marinho, Luciano and Lisandro

✦ And finally:
✦ You for listening!

182

