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Gossip definition

+ In a recent workshop on the future of gossip
+ many attempts to formally define gossip

+ we failed!
+ either too broad

+ or too strict

+ Gossip best described with a prototypical gossip scheme

+ “I cannot define gossip, but I can recognize it when I see it”
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A generic gossip protocol - executed by process p

Init: initialize my local state l

: N
—( Active thread )

do once every o time units
1 g = getPeer(state)

Sp = prepareMsg(state, q)
_+ send (REQ, sp, p) to g

A "cycle" of
length o
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( Doced N
S Passive thread )
do forever

receive (%, s, g) from *
if (#=REQ ) then
Sp = prepareMsg(state, q)
send (REP, sp, p) to g
state = update(state, sq)




Epidemic cycle

+ During a cycle of length 0, every node has the possibility of contacting

one random node
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A generic gossip protocol

+ Generic scheme is... too generic!

+ Gossip “rules of thumb”
+ peer selection must be random, or at least guarantee enough peer diversity
+ only local information is available at all nodes
+ communication is round-based (periodic)
+ transmission and processing capacity per round is limited

+ all nodes run the same protocol
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A bit of history

<+

1987

+ Demers et al. introduced the first gossip protocol, for information
dissemination

<+

'90s

+ Gossip applied to solve communication problems

<+

'00s

+ Gossip revival: beyond dissemination

<+

2006
+ First workshop on the future of gossip, Leiden (NL)
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What is going on?

+ In the last decade, we have seen dramatic changes in the distributed system area

+ Shift in the scale of distributed systems
+ larger

+ geographically more dispersed

+ Traditional failure model do not hold any more
+ “let ps ... pn be a set of processes...”
+ f<3n+l, f<n/2 anyone?

+ dynamic membership: “churn”
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What is going on?

+ We need to re-think our solutions
+ Focus on behavior under continuous change
+ Focus on large-scale

+ Focus on convergence, maintenance

+ The laid-back approach of gossip is the right answer

+ gossip protocols are indifferent to changes in the group of communicating nodes,
single nodes are not important

+ nodes act based on local knowledge, they are only aware of a small (constant/
logarithmic size) portion of the global state

+ convergence is quick (often logarithmic in size)

10
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The plan

+ Introduce gossip v

+ Let’s start from the beginning

+ Information dissemination

+ Beyond dissemination

+ Peer sampling

+ Aggregation
+ Average computation

+ Size estimation
+ Topology management

+ Slicing
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Gossip Lego

+ Gossip solves a diverse collection of problems
+ Solutions can be combined to solve more complex problems

+ Toward Gossip Lego?
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Information Dissemination

+ Bibliography

+ Alan Demers et al. Epidemic algorithms for replicated database maintenance.
In Proc. of the 6th ACM Symposium on Principles of Distributed Computing
(PODC’87), 1-12, ACM Press.
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Setting the stage

+ XEROX Clearinghouse Servers
+ Database replicated at thousands of nodes
+ Heterogeneous, unreliable network
+ Independent updates to single elements of the DB are injected at multiple nodes

+ Updates must propagate to all other nodes or be supplanted by a later updates of that
same element

+ Replicas become consistent after no more new updates

+ Assuming a reasonable update rate, most information at any given replica 1s “current”

© Alberto Montresor
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Model of epidemics

+ Epidemics study the spread of a disease or infection in terms of populations of
infected/uninfected individuals and their rates of change

+ Following the epidemiology literature, we will name a node p as:
+ Susceptible if p has not yet received an update
+ Infective if p holds an update it is willing to share

+ Removed if p has the update but is no longer willing to share it

Infective Susceptible ‘
@ A,Q Removed
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Model of epidemics

+ How does it work?
+ Initially, a single individual is infective

+ Individuals get in touch with each other, spreading the update

+ Rumor spreading, or gossiping, is based on the same principles

+ Can we apply the same ideas to distributed systems?

*+ Our goal is to spread the “infection” (update) as fast as possible!

© Alberto Montresor
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System model

+ A database that is replicated at a set of » nodes S = { s1,..., Sn }

+ The copy of the database at node s can be represented by a time-varying partial

function:

+ svalue: K — V xT
+ K set of keys
+ V' set of values

+ T set of timestamps

+ In the following slides

+ We will omit the key and we will consider only a single key,value pair

© Alberto Montresor

17



System model

+ For simplicity we will assume a database that stores value and timestamp of a single

entry at each node s

+ s.value = (v, t)

+ To indicate a deletion at time 7

+ s.value = (deleted, ?)

+

The update operation is formalized as
+ s.value «— (v, now())

+ It 1s assumed by this work that now() is a function returning a globally unique
timestamp (no details)

+ So, a pair with a larger timestamp is considered “newer”

© Alberto Montresor
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The goal

When a database is replicated at many sites, maintaining consistency in the
presence of updates is a significant problem.

Eventual Consistency: If no updates take place for a long time, all
replicas will gradually become consistent (i.€., the same)

Vs €8 : rvalue=s.value

© Alberto Montresor
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Several algorithms for distributing updates

+

Best effort

+

Anti-entropy (simple epidemics)
+ Push
+ Pull

+ Push-pull

<+

Rumor mongering (complex epidemics)

+ Push
+ Pull
+ Push-pull

+ Eager epidemic dissemination

© Alberto Montresor
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Best effort (Direct mail)

+ How it works?
+ Notify all other nodes of an update soon after it occurs.

+ When receiving an update, check if it 1s “news”

+ Node s executes:

upon s.value < (v, now()) do
foreach r € S do
send <UPDATE, s.value> to r

upon receive <UPDATE, (v, t)> do
if s.value.time < t then
s.value — (v, t)

+ Not an epidemic algorithm: just the simplest
+ What happens if the sender fail “in between™?

+ What happens if messages are lost?

+ What is the load of the sender?

© Alberto Montresor
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A generic gossip protocol - executed by process p

: N
—( Active thread )

Init: initialize my local state l

do once every o time units
1 g = getPeer(state)

Sp = prepareMsg(state, q)

+ send (REQ, sp, p) to g

A "cycle" of
length o
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( Doced N
S Passive thread )
do forever

receive (%, s, g) from *
if (#=REQ ) then
Sp = prepareMsg(state, q)
send (REP, sp, p) to g
state = update(state, sq)
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Anti-entropy - Simple epidemics

+ With respect to a single update (identified by its timestamp), all nodes are either
+ susceptible (they don’t know the update), or
+ infective (they know the update)

+ Every node regularly chooses another node at random and exchanges database

contents, resolving differences
+ Method getPeer()

+ Select a random member from S-{p}

+ Method prepareMsg()
+ Simple version: return s.value

+ In most cases: prepare a digest of new updates

+ Method update()
+ Simple version: see next page

+ In most cases: ask for other data

© Alberto Montresor
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. ' Susceptible node
Implementation of update()

. Infective node
+ Push Rumor
if p.value.time > r.value.time then
Rumor

r.value < p.value

+ Pull

if p.value.time < r.value.time then

p.value «— rvalue

+ Push-pull

if p.value.time > r.value.time then Push ~ Rumor

r.value < p.value

else

p.value < r.value

24
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Anty-entropy: Convergence
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Anty-entropy: Convergence

+ To analyze convergence, we must consider what happens when only a few nodes
remain susceptible
+ Let p(i) be the probability of a node being (remaining) susceptible after the i-th
anti-entropy cycle.
+ Pull:

26
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Anty-entropy: Convergence

+ To analyze convergence, we must consider what happens when only a few nodes

remain susceptible

+ Let p(i) be the probability of a node being (remaining) susceptible after the i-th
anti-entropy cycle.
+ Pull:
* p(itl) =p(i)?
+ Push:

26
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Anty-entropy: Convergence

+ To analyze convergence, we must consider what happens when only a few nodes
remain susceptible
+ Let p(i) be the probability of a node being (remaining) susceptible after the i-th
anti-entropy cycle.
+ Pull:
*+ p(i+l) = p(i)?
+ Push:
* p(i+1) =p(i)(1 - 1/n) @
For small p(i), p(i+1) ~ p(i)/e
+ Push-pull:

+ both mechanisms are used, convergence is even more rapid

+ All converge to 0, but pull 1s more rapid than push, so in practice pull
(or push-pull) 1s used

26
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Push vs pull

1 e ——— e ————— R — T T =
1e-20 B .
1e-40 | -
1e-60 | .
1e-80 | -

_ Pull only ——
: Push only
1e-100 : ' ' '
(0] 5 10 15 20
Cycles
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Anti-entropy: Comments

+ Benefits:
+ Simple epidemics eventually “infect” all the population
+ For a push implementation, the expected time to infect
everyone is logz(n) + In(n)
+ Drawbacks:
+ Propagates updates much slower than best effort

+ Requires examining contents of database even when most data agrees, so it cannot
practically be used too often

+ Normally used as support for best effort, i.e. left running in the background

28
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Anti-entropy: Optimizations

+ To avoid expensive databases checks:
+ Maintain checksum, compare databases if checksums unequal
+ Maintain recent update lists for time 7, exchange lists first

+ Maintain inverted index of database by timestamp; exchange information in reverse
timestamp order, incrementally re-compute checksums

+ Note:

+ These optimizations apply to the update problem for large DB

+ We will see how the same principle (anti-entropy) may be used
for several other kind of applications

29
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Rumor mongering - complex epidemics

+ Susceptive-infective-removed (SIR)
+ Nodes initially susceptive
+ When a node receives a new update it becomes a “/0t rumor” and the node infective

+ A node that has a rumor periodically chooses randomly another node to spread the
rumor

+ Eventually, a node will “/ose interest” in spreading the rumor and becomes removed
+ Spread too many times

+ Everybody knows it

+ Optimizations

+ A sender can hold (and transmit) a list of infective updates rather than just one.
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Rumor mongering: loss of interest

+ Counter vs. coin (random)
+ Coin (random): lose interest with probability //k

+ Counter: lose interest after £ contacts

+ Feedback vs blind
+ Feedback: lose interest only if the recipient knows the rumor.

+ Blind: lose interest regardless of the recipient.

© Alberto Montresor
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Rumor mongering

+ How fast does the system converge to a state where all nodes are not infective?
(inactive state)

+ Eventually, everybody will lose interest

+ Once in this state, what is the fraction of nodes that know the rumor?

+ The rumor may stop before reaching all nodes

© Alberto Montresor
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Rumor mongering: analysis

+ Analysis from “real” epidemics theory

+ Feedback, coin

+ Let s, 1 and r denote the fraction of susceptible, infective, and removed nodes
respectively. Then:

s+i+r=1
ds/dt = —si
di/dt = +si — (1/k)(1 — s)i

+ Solving the equations:

¢ — o~ (kD) (1—s)

+ Thus, increasing k£ we can make sure that most nodes get the rumor, exponentially
better

34
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Quality measures

+ Residue:
+ The nodes that remain susceptible when the epidemic ends: value of s when i =0

+ Residue must be as small as possible

+ Traffic:
+ The average number of database updates sent between nodes

+ m = total update traffic / # of nodes

+ Delay - We can define two delays:
*+ tavg : average time it takes for the introduction of an update to reach a node.

*+ tlast : time it takes for the last node to get the update.

© Alberto Montresor
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Simulation results

Using feedback and
counter
Counter Residue Traffic Convergence
k i " avg Liast
| 0.176 1.74 11.0 16.8
2 0.037 3.30 12.1 16.9
3 0.011 4.53 12.5 17.4
4 0.0036 5.64 12.7 17.5
5 0.0012 6.68 12.8 17.7
Using blind and
random
Counter Residue Traffic Convergence
k i " Lavg Liast
1 0.960 0.04 19 38
2 0.205 1.59 17 33
3 0.060 2.82 15 32
4 0.021 3.91 14.1 32
5 0.008 4.95 13.8 32

© Alberto Montresor
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Push and pull

+ Push (what we have assumed so far)
+ If database becomes quiescent, this scheme stops trying to introduce updates.

+ If there are many independent updates, more likely to introduce unnecessary
messages.

+ Pull

+ If many independent updates, pull is more likely to find a source with a non-empty
rumor list

+ But if database quiescent, it spends time doing unnecessary update requests.

37
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Push and pull

+ Empirically, in the database system of the authors (frequent updates)

+ Pull has a better residue/traffic relationship than push

+ Performance of pull epidemic on 1000 nodes using

feedback & counters

© Alberto Montresor

Counter | Residue | Traffic Convergence
k S n Lavg Ligst
1 0.031 2.70 9.97 17.63
2 0.00058 4.49 10.07 15.39
3 0.000004 | 6.09 10.08 14.00
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Mixing with anti-entropy

+ Rumor mongering
+ spreads updates fast with low traffic
+ however, there is still a nonzero probability of nodes remaining susceptible after the
epidemic
+ Anti-entropy

+ can be run (infrequently) in the background to ensure all nodes eventually get the
update with probability 1.

+ Since a single rumor that is already known by most nodes dies out quickly

39
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Deletion and death certificates

+ Deletion

+ We cannot delete an entry just by removing it from a node - the absence of the entry is

not propagated.

+ If the entry has been updated recently, there may still be an update traversing the
network!

+ Death certificate

+ Solution: replace the deleted item with a death certificate (DC) that has a timestamp
and spreads like an ordinary update

© Alberto Montresor
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Deletion and death certificates

+ Problem:

+ we must, at some point, delete DCs or they may consume significant space

+ Strategy 1:

+ retain each DC until all nodes have received it

+ requires a protocol to determine which nodes have it and to handle node failures

+ Strategy 2:
+ hold DCs for some time (e.g. 30 days) and discard them

+ pragmatic approach, still have the “resurrection” problem; increasing the time
requires more space

© Alberto Montresor
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Spatial Distribution

+ In the previous exposition

+ The network has been considered 0p D22 g
. : T WA o '
uniform (i.e. all nodes equally 4 {5-\3;.';3;%""’ 5 S A 7 <f"
[ ‘“’\ J 4 N
reachable) f Ay g ((3'\_\,\' =23\

+ In reality

+ More expensive to send updates to

) § w—f}\ '\Y;-;
distant nodes Sy N
o (2 T
+ Especially if a critical link needs to \){‘ / Sy o
be traversed {%,r ! L

9
+ Traffic can clog these links Q/
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Peer sampling

+ Bibliography
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Peer sampling

+ The first problem to be solved:
+ Where getPeer() get nodes from?

+ We assumed complete knwoledge of the distributed system

+ But complete knowledge is costly
+ System i1s dynamic

+ Network can be extremely large

+ Solution: peer sampling
+ Provides random samples from the participant set

+ Keeps the participants together in a connected network

© Alberto Montresor
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Can you spot the difference?

+ Traditional gossip + Peer sampling
+ Each node has fu// view of the + Nodes have a partial view of the
network network (a set of “neighbors™)
+ Each node periodically “gossips” + Each node periodically “gossips”
with a random node, out of the with a random node, out of its
whole set partial view

45
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Overlay

+ An overlay network is a logical network overimposed on a physical network
+ Nodes

+ Logical links between nodes

+ Examples

+ Structured overlay network
+ DHTs, trees

+ Unstructured overlay network
+ Gnutella
+ Bittorrent

+ ctc.
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System model

+ A dynamic collection of distributed nodes that want to participate in a common
epidemic protocol

+ Node may join / leave } Ch
urn

+ Node may crash at any time

+ Communication:
+ To communicate with node g, node p must know its address

+ Messages can be lost — high levels of message omissions can be tolerated

© Alberto Montresor



Our Overlays

+ State of each node:

+ A partial view containing ¢
descriptors

+ (c = view size)

+ Descriptors of node p contains

+ The address needed to communicate
with p

+ Additional information that may be
needed by different implementations
of the peer sampling service

+ Additional information that may be
needed by upper layers

© Alberto Montresor
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A generic gossip protocol - executed by process p

Init: initialize my local state l

—( Active thread ) ( Passive thread)
do once every o time units do forever
1 g = getPeer(state) receive (7, s;) from *
sp = prepareMsg(state, q) if (/=REQ ) then
—+ send (REQ, sp) to g s, = prepareMsg(state, q)
send (REP, s,) to ¢
state = update(state, sq)

A "cycle" of
length o

49
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A generic algorithm

+ getPeer()

+ select one of the neighbor contained in the view

+ prepareMsg(view, q)

+ returns a subset of the descriptors contained in the local view

+ may add other descriptors (e.g. its own)

*+ update(view, msgq)

+ returns a subset of the descriptors contained in the union of the local view and the
received view

© Alberto Montresor
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Newscast

<+

Descriptor: address + timestamp

+

getPeer()

+ select one node at random

<+

prepareMsg(view, q)

+ returns the entire view + a local descriptor
with a fresh timestamp

+

update(view, msgq)

+ returns the C freshest identifiers (w.r.t. timestamp) from the union of local view
and message

© Alberto Montresor
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Newscast

© Alberto Montresor



Newscast

ID & Time

ID & Time
Address stamp

7

Address stamp

9
12 10

16 @) 14
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Newscast

ID & Time ID& Time
Address stamp
9 7
12 10

16 @) 14

1. Pick random peer from my view
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Newscast

ID & Time

Address stamp

9
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1. Pick random peer from my view

ID & Time
Address stamp
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Newscast

ID & Time

Address stamp

9
12D
16
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1. Pick random peer from my view
2. Send each other view + own fresh link

ID & Time
Address stamp

7

10
14




Newscast

ID & Time
Address stamp

ID & Time
Address stamp

7

10
14

9
12
16
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9
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1. Pick random peer from my view
2. Send each other view + own fresh link
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Newscast

ID & Time
Address stamp

ID & Time
Address stamp
7
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14

9
12
16
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1. Pick random peer from my view
2. Send each other view + own fresh link
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Newscast

ID & Time ID& Time
Address stamp Address stamp

C D 10
14

/ @ 9

10 @ 12

14 @ 16

@ | 20 @ 20

1. Pick random peer from my view
2. Send each other view + own fresh link
3. Keep c freshest links (remove own info, duplicates)
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Newscast

ID & Time

ID& Ti
Address stamp ime

Address stamp

I

16
20

90

1. Pick random peer from my view
2. Send each other view + own fresh link
3. Keep c freshest links (remove own info, duplicates)
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Newscast

ID & Time ID & Time
Address stamp ‘ Address stamp

14 14
@ 16 @ 16
@ 20 @ 0

1. Pick random peer from my view
2. Send each other view + own fresh link
3. Keep c freshest link (remove own info, duplicates)
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Newscast

+ Experiments
+ 100,000 nodes
+ C =20 neighbors per node

© Alberto Montresor

55



Evaluation framework

+ Average path length
+ The average of shortest path lengths over all pairs of nodes in the graph

+ In epidemic dissemination protocols

+ A measure of the time needed to diffuse information from a node to another

© Alberto Montresor
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Evaluation framework

+ Clustering coefficient

+ The clustering coefficient of a node p is defined as the # of edges between the
neighbors of p divided by the # of all possible edges between those neighbors

+ Intuitively, indicates the extent to which the neighbors of p know each other.

+ The clustering cofficient of the graph is the average of the clustering coefficients of
all nodes

+ Examples
+ for a complete graph it is 1

+ foratreeitis 0

+ In epidemic dissemination protocols

+ High clustering coefficient means several redundant messages are sent when an
epidemic protocol is used

© Alberto Montresor
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Average path length

+ Indication of the time and cost to flood the network
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Clustering coefficient

+ High clustering is bad for:
+ Flooding: It results in many redundant messages

+ Self-healing: Strongly connected cluster — weakly connected to the rest of the network
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In-Degree Distribution

+ AffCCtS: 18020 Y Y T Y
+ Robustness
(shows weakly
2000 -
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+ Load balancing
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Robustness

1809

100

1409

1

| I
1200

Sustains up to 68% node failures -

1209

200

Random sustains up to 80%

609 -

number of clusters

4008

0o -

p — e -
e 1 1 1 L 1

60 65 72 7S el 85 98 95 108
percentage of nodes removed

© Alberto Montresor



Self-healing behaviour
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Cyclon

+ Descriptor: address + timestamp

+ getPeer()
+ select the oldest descriptor in the view

+ remove 1t from the view

+ prepareMsg(view, q)

+ In active thread:

+ returns a subset of -/ random nodes, plus a fresh local identifier

+ In passive thread:

+ returns a subset of # random nodes

*+ update(view, msg,)
+ discard entries in msgy: p, nodes already know

+ add msg, , removing entries sent to g
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Cyclon

ID & Time

Address stamp
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ID & Time
Address stamp
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Cyclon

ID & Time ID& Time
Address stamp
@ 9 7

@l 12 10
@ 4 14

1. Pick oldest peer from my view
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Cyclon

ID & Time

ID & Time
Address stamp

Address stamp

@ 9 7
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1. Pick oldest peer from my view
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Cyclon

ID & Time

ID& Time
Address stamp Address stamp
@ 9
@12 10
— T —
@ 4D 14

1. Pick oldest peer from my view
2. Exchange some neighbors (the pointers)
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Cyclon

ID & Time

Address stamp

ID & Time
Address stamp

@ 9 7
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1. Pick oldest peer from my view
2. Exchange some neighbors (the pointers)
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Cyclon

ID & Time

ID & Time
Address stamp

Address stamp

@ 9 7
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1. Pick oldest peer from my view
2. Exchange some neighbors (the pointers)
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Cyclon
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Address stamp
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1. Pick oldest peer from my view
2. Exchange some neighbors (the pointers)
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Cyclon

ID & Time

ID & Time
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1. Pick oldest peer from my view
2. Exchange some neighbors (the pointers)
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Cyclon

ID & Time

ID & Time
Address stamp
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7
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1. Pick oldest peer from my view
2. Exchange some neighbors (the pointers)
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Cyclon
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Obvious advantages of Cyclon

+ Connectivity is guaranteed

+ Uses less bandwidth

+ Only small part of the view 1s sent

© Alberto Montresor
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Average path length

+ Indication of the time and cost to flood the network
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Clustering coefficient

+ High clustering is bad for:

+ Flooding: It results in many redundant messages

+ Self-healing: Strongly connected cluster — weakly connected to the rest of the network
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Clustering coefficient

+ High clustering is bad for:

+ Flooding: It results in many redundant messages

+ Self-healing: Strongly connected cluster — weakly connected to the rest of the network
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In-Degree Distribution

+ Affects:

+ Robustness
(shows weakly
connected nodes)

+ Load balancing

+ The way
epidemics spread

© Alberto Montresor
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Robustness
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Self-healing behaviour
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length

average path

Self-healing behaviour

10

Killed 50,000 nodes at cycle 19
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Non-symmetric overlays

+ Non-uniform period — Non symmetric topologies

+ A node’s in-degree 1s proportional to its gossiping frequency

+ Can be used to create topologies with “super-nodes”™
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Secure peer sampling

+ This approach is vulnerable to certain kinds of malicious attacks

+ Hub attack

+ Hub attack involves some set of colluding nodes always gossiping their own ID’s
only

+ This causes a rapid spread of only those nodes to all nodes - we say their views
become “polluted”

+

At this point all non-malicious nodes are cut-off from each other

+ The malicious nodes may then leave the network leaving it totally disconnected with
no way to recover

+

Hence the hub attack hijacks the speed of the Gossip approach to defeat the network

74
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Secure peer sampling
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Peer sampling - solution

+ Algorithm
+ Maintain multiple independent views in each node
+ During a gossip exchange measure similarity of exchanged views

+ With probability equal to proportion of identical nodes in two views reject the gossip
and blacklist the node

+ Otherwise, whitelist the node and accept the exchange
+ Apply an aging policy to to both white and black lists

+ When supplying a random peer to API select the current “best” view

© Alberto Montresor

76



Secure peer sampling

seleciRndPeer()
A

retum random
peer from cache

API

A
return best ranked cache

Cache 1 Cache 2 Cache 3 Cache 4 Cache 5

 S— : T |
abort gossip if update black- and replace
partner 1D white-kst based on blacklisted
blackhisted v QOSSP qualty v IDs in caches
Black List White List

© Alberto Montresor
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How to compose peer sampling

getPeer() getPeer()

getPeer() g getPeer() 9
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Aggregation

+ Bibliography

+ Mark Jelasity, Alberto Montresor, and Ozalp Babaoglu. Gossip-based aggregation in
large dynamic networks. ACM Trans. Comput. Syst., 23(1):219-252, August 2005.

+ Additional bibliography

+ Alberto Montresor, Mark Jelasity, and Ozalp Babaoglu. Decentralized ranking in
large-scale overlay networks. In Proc. of the 1st IEEE Selfman SASO Workshop,
pages 208-213, Isola di San Servolo, Venice, Italy, November 2008.
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Aggregation

+ Definition

+ The collective name of a set of functions that provide statistical information about a
System

+ Useful in large-scale distributed systems:

+ The average load of nodes in a computing grid
+ The sum of free space in a distributed storage

+ The total number of nodes in a P2P system

+ Wanted: solutions that are

+ completely decentralized, robust

© Alberto Montresor
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A generic gossip protocol - executed by process p

Init: initialize my local state l

—( Active thread ) ( Passive thread)
do once every o time units do forever
1 g = getPeer(state) receive (7, s;) from *
sp = prepareMsg(state, q) if (/=REQ ) then
—+ send (REQ, sp) to g s, = prepareMsg(state, q)
send (REP, s,) to ¢
state = update(state, sq)

A "cycle" of
length o
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Average Aggregation

+ Using the gossip schema presented above to compute the average

+ Local state maintained by nodes:

+ areal number representing the value to be averaged

+ Method getPeer()

+ invokes getPeer() on the underlying peer sampling layer

+ Method prepareMessage()

+ return state,

+ Function update(state,, stateq)

*+ return (statep~+statey)/2

© Alberto Montresor
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The idea

© Alberto Montresor
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Basic operation

(10+2)/
2=6

© Alberto Montresor
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Basic operation
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Basic operation

(16+4)/

© Alberto Montresor

2=10
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Some Comments

+ If the graph is connected, each node converges to the average of the original values

+ After each exchange:
+ Average does not change

+ Variance 1s reduced

+ Different from load balancing due to lack of constraints

© Alberto Montresor
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A run of the protocol
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Questions

<+

+ Which topology is optimal? Fully connected topol.:

exponential convergence

+ How fast is convergence on different + Random topology: practically
topologies? exponential.

+

Link failures: not critical

+ What are the effects + Crashes/msg omissions can destro
y
of node/link failures, message convergence
omissions?

+ but we have a solution for that

89
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Theoretical framework

+ From the “distributed” version to a centralized one

do N times

(p, q) = getPair()
// perform elementary aggregation step

alp] = alq] = (alp] + alq])/2

+ Notes:
+ Vector a[l ... N]
+ N number of nodes

+ The code corresponds to the execution of single cycle

90
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Some definitions

+ We measure the speed of convergence of empyrical variance at cycle i

pe= > ailh

+ Additional definitions
+ Elementary variance reduction step: 6i+1?/ i

+ Jariable ¢i: the number of times that node k£ has been selected from getPair()

© Alberto Montresor
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The base theorem

+ If
+ Each pair of values selected by each call to getPair() are uncorrelated;

+ the random variables ¢ are identically distributed;

+ let ¢ denote a random variable with this common distribution

+ after (p, g) is returned by getPair() the number of times p and g will be selected by
the remaining calls to getPair() has identical distribution

+ Then:

E(oi+1?)= E(2?) 0/

© Alberto Montresor



Results

+ Optimal case: E(2?) = E(27) = 1/4
+ getPair() implements perfect matching

+ no corresponding local protocol

+ Random case: E(2°)=1/e
+ getPair() implements random global sampling

+ A local corresponding protocol exists

+ Aggregation protocol: E(2-) = 1/(2Ve)
+ Scalability: results independent of N

+ Efficiency: convergence is very fast

© Alberto Montresor
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Scalability
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Convergence factor
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Other functions

+ Average: update(a,b) := (a+b)/2

| Means

<+

Geometric:  update(a,b) := (a-b)”

+ Min/max: update(a,b) := min/max(a,b)

+ Sum: Average - Count
>- How?
+ Product: Geometrictount Obtained
+ Variance: compute a2 — a’ from
means

96
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Counting

+ The counting protocol

+ Init: one node starts with 1, the others with 0

+ Expected average: 1/N

+ Problem: how to select that "one node'?
+ Concurrent instances of the counting protocol
+ Each instance is lead by a different node

+ Messages are tagged with a unique identifier

+

Nodes participate in all instances

<+

Each node acts as leader with probability p=c/NE

© Alberto Montresor
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Adaptivity

+ The generic protocol is not adaptive
+ Dynamism of the network

+ Variability of values

+ Periodical restarting mechanism

+ At each node:
+ The protocol is terminated
+ The current estimate is returned as the aggregation output
+ The current values are used to re-initialize the estimates

+ Aggregation starts again with fresh initial values

98
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Adaptivity

+ Termination
+ Run protocol for a predefined number of cycles A

+ A depends on
+ required accuracy of the output

+ the convergence factor that can be achieved

+ Restarting
+ Divide run in consecutive epochs of length A
+ Start a new instance of the protocol in each epoch

+ Concurrent epochs depending on the ratio A0 / A

© Alberto Montresor
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Dynamic Membership

+ When a node joins the network
+ Discovers a node n already in the network
+ Membership: initialization of the local neighbors

+ Receives from n:
+ Next epoch identifier
+ The time until the start of the next epoch

+ To guarantee convergence:
Joining node is not allowed to participate in the current epoch

100
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Dynamic Membership

+ Dealing with crashes, message omissions

+ In the active thread:
+ A timeout is set to detect the failure of the contacted node

+ If the timeout expires before the message is received — the exchange step is
skipped

+ What are the consequences?

+ In general: convergence will slow down

+ In some cases: estimate may converge to the wrong value

101

© Alberto Montresor



Synchronization

+ The protocol described so far:
+ Assumes synchronized epochs and cycles

+ Requires synchronized clocks / communication

+ This is not realistic:
+ Clocks may drift

+ Communication incurs unpredictable delays

+ Complete synchronization is not needed

+ It is sufficient that the time between the first/ last node starting to participate in an
epoch is bounded

102
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Cost analysis

+ If the overlay is sufficiently random:

+ exchanges = 1 + ¢, where ¢ has Poisson distribution with average 1

+ Cycle length 6 defines the time complexity of convergence:

+ Small o: fast convergence

+ Large o: small cost per unit time, may be needed to complete exchanges

+ A defines the accuracy of convergence:

+ E(0)? )/JE(00°) = pl, € the desired accuracy — A > log, €

103
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Topologies

+ Theoretical results are based on the assumption that the underlying overlay is
sufficiently random

+ What about other topologies?
+ Our aggregation scheme can be applied to generic connected topologies
+ Small-world, scale-free, newscast, random, complete

+ Convergence factor depends on randomness

104
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Topologies
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Topologies
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Simulation scenario

+ The underlying topology is based on Newscast

+ Realistic, Robust

+ The count protocol is used

+ More sensitive to failures

+ Some parameters:
+ Network size is 100.000
+ Partial view size in Newscast is 30
+ Epoch length is 30 cycles

+ Number of experiments is 50
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Effects of node failures

+ Effects depend on the value lost in a crash:

+ If lower than actual average: estimated average will increase, estimated size will
decrease

+ If higher than actual average: estimated average will decrease, estimated size will
increase

+ The latter case is worst:

+ In the initial cycles, some nodes hold relatively large values

+ Simulations:

+ Sudden death / dynamic churn of nodes

108
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Sudden death

45080000

400000

358vvY

SvvvvY

couuvuy

cuvvuy

Estimated Size

150000

1Bvve

SO0

© Alberto Montresor

| |
Experiments

Cycle

109



Nodes joining/crashing
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Communication failures

+ LinKk failures

+ The convergence is just slowed down — some of the exchanges do not happen

+ Partitioning:

+ If multiple concurrent protocols are started, the size of each partition will be evaluated
separately

+ Message omissions:

+ Message carry values: losing them may influence the final estimate

111
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Link failures
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Message omissions
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Multiple instances of aggregation

+ To improve accuracy in the case of failures:
+ Multiple concurrent instances of the protocol may be run

+ Median value taken as result

+ Simulations
+ Variable number of instances

+ With node failures
+ 1000 nodes substituted per cycle

+ With message omissions

+ 20% of messages lost

114
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Node failures
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Message omissions
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All together now!
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Planet-Lab

¢ Consortium
¢ >500 universities, research institutes, companies

¢+  >1000 nodes

118
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600 hosts, 10 nodes per hosts
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Topology management

+ Bibliography

+ M. Jelasity, A. Montresor, and O. Babaoglu. -Man: Gossip-based fast overlay
topology construction. Computer Networks, 53:2321-2339, 2009.

+ A. Montresor, M. Jelasity, and O. Babaoglu. Chord on demand. In Proc. of the 5th
International Conference on Peer-to-Peer Computing (P2P'05), pages 87-94,
Konstanz, Germany, August 2005. IEEE.

+ Additional bibliography

+ G.PJesi, A. Montresor, and O. Babaoglu. Proximity-aware superpeer overlay
topologies. In Proc. of SelfMan'06, volume 3996 of Lecture Notes in Computer
Science, pages 43-57, Dublin, Ireland, June 2006. Springer-Verlag.

+ A. Montresor. A robust protocol for building superpeer overlay topologies.
In Proceedings of the 4th International Conference on Peer-to-Peer Computing, pages
202-209, Zurich, Switzerland, August 2004. IEEE
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Topology bootstrap

+ Informal definition:

+ building a topology from the ground up as
quickly and efficiently as possible

+ Do not confuse with node bootstrap

+ Placing a single node in the right place in the topology

+ Much more complicated: start from scratch
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The T-Man Algorithm

+ T-man is a generic protocol for topology formation

+ Topologies are expressed through ranking functions:
“what are my preferred neighbors?”

+ Examples
+ Rings, tori, trees, DHTSs, etc.
+ Distributed sorting
+ Semantic proximity for file-sharing

+ Latency for proximity selection.....
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Ranking function

+ Node descriptors contain attributes of the nodes
+ A number in a sorting application

+ The id of anode in a DHT

+ A semantic description of the node

+ Example: Sorted “Virtual” Ring

+ Let the ranking function be defined based on the distance

d(a,b)=min(|a-b

, 2-|a-b|)

assuming that attributes are included in [0,2']

© Alberto Montresor
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Ranking function

+ Node descriptors contain attributes of the nodes
+ A number in a sorting application

+ The id of anode in a DHT

+ A semantic description of the node

+ The ranking function may be based on a distance over a space
+ Space: set of possible descriptor values
+ Distance: a metric d(x,y) over the space

+ The ranking function of node x is defined over the distance from node x

+ getPeer(), prepareMsg() are based on a ranking function defined over node
descriptors
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A generic gossip protocol - executed by process p

Init: initialize my local state l

—( Active thread ) ( Passive thread)
do once every o time units do forever
1 g = getPeer(state) receive (7, s;) from *
sp = prepareMsg(state, q) if (/=REQ ) then
—+ send (REQ, sp) to g s, = prepareMsg(state, q)
send (REP, s,) to ¢
state = update(state, sq)

A "cycle" of
length o
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Gossip customization for topology construction

<+

local state
+ partial view, initialized randomly based on Newscast

+ the view grows whenever a message is received

<+

getPeer():

+ randomly select a peer g from the » nodes in my view that are closest to p in terms of
distance

<+

prepareMsg():

+ send to g the » nodes 1n local view that are closest to ¢

+ g responds with the r nodes in its view that are closest to p

<+

update():

+ both p and g merge the received nodes to their view

126
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T-man: Topology Management
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T-man: Topology Management
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T-man: Topology Management

Exchange of
partial views
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T-man: Topology Management
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Distance functions

+ Example: Line or ring
+ Space: [0, 1]
+ Distance over the line: d(a,b) = | a-b |

+ Distance over thr ring: d(a,b) = min { | a-b

» 1-|a-b| }

+ Example: Grid or torus (Manhattan Distance)
+ Space: [0, 1] - [0, 1]

+ Distance: d(a,b) = | ax—bx | + | ay— by |

131

© Alberto Montresor



Example: Line
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Sorted Line / Ring

+ Directional ranking function over the ring defined as follows:
+ Distance function, line: d(a,b)=|a-b|

+ Distance function, ring: d(a,b)=min(|a-b

. 1-|a-b|)

+ Given a collection (view) of nodes and a node x, return
+ the /2 nodes “smaller” than x that are closest to x

+ the /2 nodes “larger” than x that are closest to x
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Sorted Line
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Sorted Ring
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Sorted Ring
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T-Man: The movie!

Nodes: 1000 Cycles 00.000 Nodes
Showing 1 successor,
1 predecessor
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Start / stop

+ In the previous animation
+ Nodes starts simultaneously

+ Convergence is measured globally

+ In reality

+ We must start the protocol at all nodes
+ Broadcasting, using the random topology obtained through
the peer sampling services
+ We must stop the protocol

+ Local condition: when a node does not observe any view
change for a predefined period, it stops

+ Idle: number of cycles without variations
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Start / stop
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T-Man: Scalability

30 I I I I I I I I I
Anti-Entropy (Push) —8—
Anti-Entropy (Push-Pull) ----m----
Flooding ¢

25 Synchronous start - -

Convergence Time (s)

210 11 H12 513,14 515 516 517 518
Network Size

© Alberto Montresor 140



(s9]0A2) awi ] uoneulwss |

T-Man: Message costs
0
0
0
0
0

20 25 30
Message Size

15

10

141

© Alberto Montresor



T-Man: Robustness to crashes

1 OO - 8 g g S QN ST TRRRR .1l o _. _| _: .
S e
T 995t AN
- i 'y
@ |
LL i
Q2
c Py ]
-
B
2
IC—U 98.5 |+ . i 1
size=213 —&— ’
size=2,  ~
98 | Slze_lz ----- GI | | L
0 0.002 0.004 0.006 0.008 0.01

Node failures per node per second
142

© Alberto Montresor



T-Man: Robustness to message losses

Target Links Found (%)
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T-Chord

+ How it works?
+ Node descriptor contains node ID in a [0..2Y] space
+ Nodes are sorted over the ring defined by IDs
+ Final output is the Chord ring

+ As by-product, many other nodes are discovered

+ Example:

+ =32, size=2!4, msg size=20

-
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T-Chord

Latency (ms)
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Robustness to failures
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Robustness to failures
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Conclusions

¢ This mechanism to build Chord is tightly tailored on the particular structure of
Chord

¢+ A more generic approach:

¢+ Define a ranking function where nodes have a preference for successors and
predecessors AND fingers

+  Approx. same results, only slightly more complex to explain

¢+ Can be used for Pastry, for example:

¢ Define a ranking function where nodes have a preference for successors and
predecessors AND nodes in the prefix-based routing table
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Size estimation

+ Bibliography

+ A. Montresor and A. Ghodsi. Towards robust peer counting. In Proc. of the 9th Int.
Conference on Peer-to-Peer (P2P'09), pages 143-146, Seattle, WA, September 2009
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Network size estimation at runtime

+ Why
+ f(n) routing pointers

+ to bound the hop count

+ to provide churn resilience
+ build group of size f(n)

+ Slicing
+ f(n) messages

+ to reduce overhead in gossip protocols

+ How
+ Combine and improve existing protocols

+ Compared to existing systems:

+ More precise, more robust, slightly more overhead

+ Simple idea — short paper
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A brief explanation

+ Assign random numbers in [0, df

+ Locally; here, d=127

+ Build a ring topology
+  Gossip topology construction (T-Man)

+ Compute the distance to the

successor

+ Locally

+ Compute the average distance a

+  Gossip aggregation

+  Compute size

+ d/a=n

© Alberto Montresor
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Scalability

© Alberto Montresor
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Accuracy — w.r.t. parameter Precision
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Robustness

Failure probability per second per node (%)
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Absolute slicing

+ Bibliography

+ A. Montresor and R. Zandonati. Absolute slicing in peer-to-peer systems. In Proc. of
the 5th International Workshop on Hot Topics in Peer-to-Peer Systems (HotP2P'08),
Miami, FL, USA, April 2008.
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Introduction

+ System model
+ An huge collection of networked nodes (resource pool)

+ Potentially owned/controlled by a single organization that deploys massive services
on them

+ Examples

+ ISPs that place smart modems / set-top boxes
at their customers' homes

+ BT, France Telecom

+ Note: similar to current P2P systems, but with some peculiar differences
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Introduction: possible scenarios

+ Multiple-services architecture

+ Nodes must be able to host a large number of services, potentially executed by third-
party entities

+ On-demand services

+ A subset of the nodes can be leased temporally and
quickly organized into an overlay network

+ Adaptive resource management

+ Resource assignments of long-lived services could be adapted based on QoS
requirements and changes in the environment
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Overview

+ What we need to realize those scenarios?
+ Maintain a dynamic membership of the network (peer sampling)
+ Dynamically allocate subset of nodes to applications (s/icing)
+ Start overlays from scratch (bootstrap)
+ Deploy applications on overlays (broadcast)

+ Monitor applications (aggregation)

+ This while dealing with massive dynamism
+ Catastrophic failures

+ Variations in QoS requirements (flash crowds)

© Alberto Montresor
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Architecture: a decentralized OS

Applications

Other middleware services (DHTSs, indexing, publish-subscribe, etc.)

Slicing
Service

Topology
Bootstrap

Monitoring
Service

Broadcast

Peer sampling service
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The problem

<+

Distributed Slicing

+ Given a distributed collection of nodes, we want to allocate a subset (“slice”) of them
to a specific application, by selecting those that satisfy a given condition over group
or node attributes

*+ Ordered Slicing (Fernandez et al., 2007)

+ Return top £% nodes based on some attribute ranking

<+

Absolute slicing

+ Return £ nodes and maintain such allocation in spite of churn

<+

Cumulative slicing

+ Return nodes whose attribute total sum correspond to a
target value
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Problem definition

+ We considere a dynamic collection /V of nodes

<+

Each node n; €N is provided with an attribute function

tfiiAd—>V

<+

Slice S(c,s): a dynamic subset of /V such that

+ c1s a first-order-logic condition defined over attribute names and values, identifying
the potential member of the slice

+ s 1s the desired slice size

+ Slice quality:

|S(e,s)| — s
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Problem definition

© Alberto Montresor

Slice nodes
(total slice size ~ s)

Potential nodes
(each node satisfying ¢)

Total nodes
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Issues

+ What we mean with “return a slice”?
+ We cannot provide each node with a complete view of large scale subset

+ Slice composition may continuously change due to churn

+ How we compute the slice size?

+ without a central service that does the counting?

+ How do we inform nodes about the current slice definition?

+ Multiple slices, over different conditions, with potentially changing slice sizes
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Gossip to the rescue

+ Turns out that all services listed so far can be implemented using a gossip approach

+ Peer sampling: continuously provides uniform random samples over a dynamic large
collection of nodes

+ random samples can be used to build other gossip protocols

+ side-effect: strongly connected random graph

+ Aggregation: compute aggregate information (average, sum, total size, etc.) over large
collection of nodes

+ we are interested in size estimation

+ Broadcast: disseminate information

+ Gossip beyond dissemination

+ Information is not simply exchanged, but also manipulated
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Architecture of the absolute slicing protocol

Application
Proq:ocol

[ Aggregation }

—

[ Peer Sampling }

[ Broadcast }
/

[ Peer Sampling }
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The slicing algorithm

+ Total group

+ All nodes participate in the peer sampling protocol to maintain the total group

+ Potential group

+ Nodes that satisfy the condition ¢ join the potential group peer sampling

+ Means: inject their identifier into message exchanged at
the 2" peer sampling layer

+ Aggregation

+ Estimate the size of the potential group size(P)
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The slicing algorithm

+ Slice group
+ Nodes that “believe to belong” to the slice join the slice peer sampling

+ Means: inject their identifier into messages exchanged at the 3™ peer sampling
layer
+ Aggregation

+ Estimate the size of the slice size(S)

+ Nodes “believe to belong” or not to the slice
+ join the slice with prob. (s-size(S)) / (size(P)-size(S))
+ leave the slice with prob. (size(S)-s) / size(S)
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Experimental results: actual slice size
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Experimental results: churn 10 nodes/s
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Experimental results: variable churn
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Experimental results: message losses
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Slicing - conclusion

+ Absolute slicing protocol
+ Extremely robust (high level of churn, message losses)
+ Low cost (several layers, but each requiring few bytes per sec)

+ Large precision

+ The message

+ Gossip can solve many problems in a robust way

+ Customizable to many needs

+ What's next?

+ Cumulative slicing:

+ very similar, but it's a knapsack problem
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Function optimization

+ Bibliography

+ M. Biazzini, A. Montresor, and M. Brunato. Towards a decentralized architecture for
optimization. In Proc. of the 22nd IEEE International Parallel and Distributed
Processing Symposium (IPDPS'08), Miami, FL, USA, April 2008.

+ Additional bibliography

+ B. Banhelyi, M. Biazzini, A. Montresor, and M. Jelasity. Peer-to-peer optimization in
large unreliable networks with branch-and-bound and particle swarms. In
Applications of Evolutionary Computing, Lecture Notes in Computer Science, pages
87-92. Springer, Jul 2009.

+ M. Biazzini, B. Banhelyi, A. Montresor, and M. Jelasity. Distributed hyper-heuristics
for real parameter optimization. In Proceedings of the 11th Genetic and Evolutionary
Computation Conference (GECCQO'09), pages 1339-1346, Montreal, Québec,
Canada, July 2009.
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Particle swarm optimization

+ Input:
+ A multi-dimensional function

+ A multi-dimensional space to be inspected

+ Output:

+ The point where the minimum is located, together with its value

+ Approximation problem
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Particle swarm optimization

+ A solver is a swarm of particles spread in the domain of the objective function
+ Particles evaluate the objective function in a point p, looking for the minimum

+ Each particle knows the best points
+ found by itself (bp)

+ found by someone in the swarm (by)

<+

Each particle updates its position p as follows:
+ v=v+c; *rand() * (by - p) + c2 *rand() * (bs - p)

*p=ptv
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Particle swarm optimization

+ Modular architecture for distributed optimization:

+

The topology service (NEWSCAST)

+ creates and maintains an overlay topology

<+

The function optimization service (D-PSO)

+ evaluates the function over a set of points

+ Local/remote history driven choices

+ The coordination service (gossip algorithm)

+ determines the selection of points to be evaluated

+ spread information about the global optimum

© Alberto Montresor
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Particle swarm optimization

+ Communication failures are harmless

+ Losses of messages just slow down the spreading of (correct) information

+ Churning is inoffensive

+ Nodes can join and leave arbitrarily and this does not affect the consistency of the
overall computation

177

© Alberto Montresor



Scalability
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Gossip Lego, reloaded

+ The baseplate

+ Peer sampling

+ The bricks
+ Slicing (group management)
+ Topology bootstrap
+ Aggregation (monitoring)

+ Load balancing (based on aggregation)

+ Applications
+ Function optimization
+ P2P video streaming

+ Social networking

© Alberto Montresor
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Conclusions

+ We only started to discover the power of gossip

+ Many other problems can be solved

+ The right tool for

+ large-scale

+ dynamic systems

+ Caveat emptor: security

+ We only started to consider the problems related to security in open systems
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Shameless advertisement

+ PeerSim - A peer-to-peer simulator
+ Written in Java
+ Specialized for epidemic protocols
+ Configurations based on textual file

+ Light and fast core

+ Some statistics
+ 15.000+ downloads

+ 150+ papers written with PeerSim

© Alberto Montresor

PeerSim: A Peer-to-Peer Simulator

[Introduction] [People] [Download] [Documentation] [Publications] [Peersim Extras]
Additional Code

Introduction top

Peer-to-peer systems can be of a very large scale such as millions of nodes, which
typically join and leave continously. These properties are very challenging to deal with.
Evaluating a new protocol in a real environment, especially in its early stages of
development, is not feasible.

PeerSim has been developed with extreme scalability and support for dynamicity in mind.
We use it in our everyday research and chose to release it to the public under the GPL
open source license. It is written in Java and it is composed of two simulation engines, a
simplified (cycle-based) one and and event driven one. The engines are supported by
many simple, extendable, and pluggable components, with a flexible configuration
mechanism.

The cycle-based engine, to allow for scalability, uses some simplifying assumptions, such
as ignoring the details of the transport layer in the communication protocol stack. The
event-based engine is less efficient but more realistic. Among other things, it supports
transport layer simulation as well. In addition, cycle-based protocols can be run by the
event-based engine too.

PeerSim started under EU projects BISON and DELIS DELIS. The PeerSim development
in Trento (Alberto Montresor, Gian Paolo Jesi) is now partially supported by the
Napa-Wine project.

People top

The main developers of PeerSim are:

Mark Jelasity, Alberto Montresor.

Gian Paolo Jesi, Spyros Voulgaris
Other contributors and testers (in alphabetical order):
« Stefano Arteconi
« David Hales
« Andrea Marcozzi

« Fabio Picconi

181



Thanks

<+

My co-authors:
+ Mark, Ozalp, Gian Paolo, Marco, Roberto, Ali, Maarten, Mauro, Balazs

<+

For some slides:

+ Spyros

<+

Those who invited me:

+ Marinho, Luciano and Lisandro

<+

And finally:

+ You for listening!
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