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ABSTRACT
For a learning task, data can usually be collected from dif-
ferent sources or be represented from multiple views. For
example, laboratory results from different medical examina-
tions are available for disease diagnosis, and each of them
can only reflect the health state of a person from a particular
aspect/view. Therefore, different views provide complemen-
tary information for learning tasks. An effective integration
of the multi-view information is expected to facilitate the
learning performance. In this paper, we propose a general
predictor, named multi-view machines (MVMs), that can
effectively include all the possible interactions between fea-
tures from multiple views. A joint factorization is embed-
ded for the full-order interaction parameters which allows
parameter estimation under sparsity. Moreover, MVMs can
work in conjunction with different loss functions for a vari-
ety of machine learning tasks. A stochastic gradient descent
method is presented to learn the MVM model. We fur-
ther illustrate the advantages of MVMs through comparison
with other methods for multi-view classification, including
support vector machines (SVMs), support tensor machines
(STMs) and factorization machines (FMs).

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining

General Terms
Algorithm, Experimentation, Performance

Keywords
Data Mining, Multi-view Learning, Factorization

1. INTRODUCTION
In the era of big data, information is available not only

in great volume but also in multiple representations/views
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from a variety of sources or feature subsets. Generally, dif-
ferent views provide complementary information for learning
tasks. Thus, multi-view learning can facilitate the learning
process and is prevalent in a wide range of application do-
mains. For example, to fulfil an accurate disease diagnosis,
one should consider laboratory results from different medi-
cal examinations, including clinical, imaging, immunologic,
serologic and cognitive measures. For the business on the
web, it is critical to estimate the probability that the dis-
play of an ad to a specific user when s/he searches for a
query will lead to a click. This process involves three enti-
ties: users, ads, and queries. An effective integration of the
features describing these different entities is directly related
to a precise targeting of the advertising system.

One of the key challenges of multi-view learning is to
model the interactions between different views, wherein com-
plementary information is contained. Conventionally, multi-
ple kernel learning algorithms combine kernels that naturally
correspond to different views to improve the learning perfor-
mance [5]. Basically, the coefficients are learned based on the
usefulness/informativeness of the associated views, and thus
the correlations are considered at the view-level. These ap-
proaches, however, fail to explicitly explore the correlations
between features. In contrast to modeling on views, an-
other direction for modeling multi-view data is to directly
consider the abundant correlations between features from
different views.

In this paper, we propose a novel model for multi-view
learning, called multi-view machines (MVMs). The main
advantages of MVMs are outlined as follows:

• MVMs include all the possible interactions between
features from multiple views, ranging from the first-
order interactions (i.e., contributions of single features)
to the highest order interactions (i.e., contributions of
combinations of features from each view).

• MVMs jointly factorize the interaction parameters in
different orders to allow parameter estimation under
sparsity.

• MVMs are a general predictor that can work with dif-
ferent loss functions (e.g., square error, hinge loss, logit
loss) for a variety of machine learning tasks.

2. MULTI-VIEW CLASSIFICATION
We first state the problem of multi-view classification and

introduce the notation. Table 1 lists some basic symbols
that will be used throughout the paper.
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Table 1: Symbols.

Symbol Definition and Description

s each lowercase letter represents a scale
v each boldface lowercase letter represents a vector
M each boldface capital letter represents a matrix
T each calligraphic letter represents a tensor, set or space
〈·, ·〉 denotes inner product
◦ denotes tensor product or outer product
×k denotes mode-k product
|·| denotes absolute value
‖·‖F denotes (Frobenius) norm of vector, matrix or tensor

Suppose each instance has representations in m different

views, i.e., xT =
(
x(1)T , ...,x(m)T

)
, where x(v) ∈ RIv , Iv

is the dimensionality of the v-th view. Let d =
∑m
v=1 Iv,

so x ∈ Rd. Considering the problem of click through rate
(CTR) prediction for advertising display, for example, an in-
stance corresponds to an impression which involves a user,

an ad, and a query. Therefore, if xT =
(
x(1)T ,x(2)T ,x(3)T

)
is an impression, x(1) contains information of the user pro-
file, x(2) is associated with the ad information, and x(3) is
the description from the query aspect. The result of an im-
pression is click or non-click.

Given a training set with n labeled instances represented
from m views: D = {(xi, yi) | i = 1, ..., n}, in which xTi =(
x

(1)
i

T
, ...,x

(m)
i

T
)

and yi ∈ {−1, 1} is the class label of the

i-th instance. For CTR prediction problem, y = 1 denotes
click and y = −1 denotes non-click in an impression. The
task of multi-view classification is to learn a function f :
RI1 × · · · × RIm → {−1, 1} that correctly predicts the label
of a test instance.

In addition, we introduce the concept of tensors which
are higher order arrays that generalize the notions of vec-
tors (first-order tensors) and matrices (second-order ten-
sors), whose elements are indexed by more than two indexes.
We state the definition of tensor product and mode-k prod-
uct which will be used to formulate our proposed model.

Definition 2.1 (Tensor Product or Outer Product).
The tensor product X ◦ Y of a tensor X ∈ RI1×···×Im and

another tensor Y ∈ RI
′
1×···×I

′
m′ is defined by

(X ◦ Y)i1,...,im,i′1,...,i′m′
= xi1,...,imyi′1,...,i′m′

(1)

for all index values.

Definition 2.2 (Mode-k Product). The mode-k prod-
uct X ×k M of a tensor X ∈ RI1×···×Im and a matrix

M ∈ RI
′
k×Ik is defined by

(X ×k M)i1,...,ik−1,j,ik+1,...,im =

Ik∑
ik=1

xi1,...,immj,ik (2)

for all index values.

3. MULTI-VIEW MACHINE MODEL

3.1 Model Formulation
The key challenge of multi-view classification is to model

the interactions between features from different views, wherein

≈ +  !+ +

a:,1
(1)

a:,1
(2)

a:,1
(3)

a:,2
(1)

a:,2
(2)

a:,2
(3)

a:,k
(1)

a:,k
(2)

a:,k
(3)

W

Figure 1: CP factorization. The third-order (m = 3)
tensor W is approximated by k rank-one tensors.
The f-th factor tensor is the tensor product of three

vectors, i.e., a
(1)
:,f ◦ a

(2)
:,f ◦ a

(3)
:,f .

complementary information is contained. Here, we consider
nesting all interactions up to mth-order between m views:

ŷ = β0︸︷︷︸
bias

+

m∑
v=1

Iv∑
iv=1

β
(v)
iv
x
(v)
iv︸ ︷︷ ︸

first-order interactions

+

I1∑
i1=1

I2∑
i2=1

β
(1,2)
i1,i2

x
(1)
ii
x
(2)
i2

+ · · · +
Im−1∑

im−1=1

Im∑
im=1

β
(m−1,m)
im−1,im

x
(m−1)
im−1

x
(m)
im︸ ︷︷ ︸

second-order interactions

+ · · · +
I1∑

i1=1

· · ·
Im∑

im=1

βi1,...,im

(
m∏

v=1

x
(v)
iv

)
︸ ︷︷ ︸

mth-order interactions

(3)

Let us add an extra feature with constant value 1 to the
feature vector x(v), i.e., z(v)T = (x(v)T , 1) ∈ RIv+1, ∀v =
1, ...,m. Then, Eq. (3) can be effectively rewritten as:

ŷ =

I1+1∑
i1=1

· · ·
Im+1∑
im=1

wi1,...,im

(
m∏
v=1

z
(v)
iv

)
(4)

where wI1+1,...,Im+1 = β0 and wi1,...,im = βi1,...,im , ∀iv ≤
Iv. For wi1,...,im with some indexes satisfying iv = Iv + 1,
it encodes lower order interaction between views whose iv ≤
Iv. Hereinafter, let w

(p)
ip

denote wi1,...,im where only ip ≤ Ip
and iv = Iv + 1, v 6= p, and let w

(p,q)
ip,iq

denote wi1,...,im where

ip ≤ Ip, iq ≤ Iq and iv = Iv + 1, v /∈ {p, q} for other m − 2
views, etc.

The number of parameters in Eq. (4) is
∏m
v=1(Iv + 1),

which can make the model prone to overfitting and inef-
fective on sparse data. Therefore, we assume that the ef-
fect of interactions has a low rank and the mth-order tensor
W = {wi1,...,im} ∈ R(I1+1)×···×(Im+1) can be factorized into
k factors:

W = C×1 A(1) ×2 · · · ×m A(m) (5)

where A(v) ∈ R(Iv+1)×k, and C ∈ Rk×···×k is the iden-
tity tensor, i.e., ci1,...,im = δ(i1 = · · · = im). Basically,
it is a CANDECOMP/PARAFAC (CP) factorization [4] as
shown in Figure 1, with element-wise notation wi1,...,im =∑k
f=1

∏m
v=1 a

(v)
iv,f

. The number of model parameters is re-

duced to k
∑m
v=1(Iv + 1) = k(m+ d). It transforms Eq. (4)

into:

ŷ =

I1+1∑
i1=1

· · ·
Im+1∑
im=1

(
m∏
v=1

z
(v)
iv

) k∑
f=1

m∏
v=1

a
(v)
iv,f

 (6)

We name this model as multi-view machines (MVMs). As
shown in Figure 2, the full-order interactions between mul-
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Figure 2: Multi-view machines. All the interactions of different orders between multiple views are modeled
in a single tensor and share the same set of latent factors.

tiple views are modeled in a single tensor, and they are fac-
torized collectively. The model parameters that have to be
estimated are:

A(v) ∈ R(Iv+1)×k, v = 1, ...,m (7)

where the iv-th row a
(v)
iv

T
= (a

(v)
iv,1

, ..., a
(v)
iv,k

) within A(v)

describes the iv-th feature in the v-the view with k factors.

Let the last row a
(v)
Iv+1

T
denote the bias factor from the v-th

view, since it is always combined with z
(v)
Iv+1 = 1 in Eq. (6).

Hence,

wI1+1,...,Im+1 =

k∑
f=1

m∏
v=1

a
(v)
Iv+1,f (8)

is the global bias, denoted as w0 hereinafter.
Moreover, MVMs are flexible in the order of interactions

of interests. That is to say, when there are too many views
available for a learning task and interactions between some
of them may obviously be physically meaningless, or some-
times the very high order interactions may be intuitively
uninterpretable, it is not desirable to include these poten-
tially redundant interactions in the model. In such scenarios,
one can (1) partition (overlapping) groups of views, (2) con-
struct multiple MVMs on these view groups where the full-
order interactions within each group are included, and (3)
implement a coupled matrix/tensor factorization [3]. This
implementation excludes those cross-group interactions. Al-
though MVMs are feasible in any order of interactions, that
is outside the scope of this paper; our focus is on investi-
gating how to effectively explore the full-order interactions
within a given set of views.

3.2 Time Complexity
Next, we show how to make MVMs applicable from a com-

putational point of view. The straightforward time complex-
ity of Eq. (6) is O(k

∏m
v=1(Iv+1)). However, we observe that

there is no model parameter which directly depends on the
interactions between variables (e.g., a parameter with an in-
dex (i1, ..., im)), due to the factorization of the interactions.
Therefore, the time complexity can be largely reduced.

Lemma 3.1. The model equation of MVMs can be com-
puted in linear time O(k(m+ d)).

Proof. The interactions in Eq. (6) can be reformulated
as:

I1+1∑
i1=1

· · ·
Im+1∑
im=1

(
m∏
v=1

z
(v)
iv

) k∑
f=1

m∏
v=1

a
(v)
iv,f


=

k∑
f=1

I1+1∑
i1=1

· · ·
Im+1∑
im=1

(
m∏
v=1

z
(v)
iv
a

(v)
iv,f

)

=

k∑
f=1

(
I1+1∑
i1=1

z
(1)
i1
a

(1)
i1,f

)
· · ·

(
Im+1∑
im=1

z
(m)
im

a
(m)
im,f

)
(9)

This equation has only linear complexity in both k and Iv.
Thus, its time complexity is O(k(m + d)), which is in the
same order of the number of parameters in the model.

4. LEARNING MULTI-VIEW MACHINES
To learn the parameters in MVMs, we consider the fol-



lowing regularization framework:

argmin
Θ

∑
(x,y)∈D

L(ŷ(x|Θ), y) + λΩ(Θ) (10)

where Θ represents all the model parameters, L(·) is the loss
function, Ω(·) is the regularization term, and λ is the trade-
off between the empirical loss and the risk of overfitting.

Importantly, MVMs can be used to perform a variety of
machine learning tasks, depending on the choices of the loss
function. For example, to conduct regression, the square
error is a popular choice:

LS(ŷ(x|Θ), y) = (ŷ(x|Θ)− y)2 (11)

and for classification problems, we can use the logit loss:

LL(ŷ(x|Θ), y) = log(1 + exp(−y · ŷ(x|Θ))) (12)

or the hinge loss:

LH(ŷ(x|Θ), y) = max(0, 1− y · ŷ(x|Θ)) (13)

The regularization term is chosen based on our prior knowl-
edge about the model parameters. Typically, we can apply
L2-norm:

ΩL2(Θ) = ‖Θ‖22 =
∑

i
θ2
i (14)

or L1-norm:

ΩL1(Θ) = ‖Θ‖1 =
∑

i
|θi| ≈

∑
i

√
θ2
i + ε2 (15)

where ε is a very small number to make the L1-norm term
differentiable.

The model parameters Θ = {A(v)| v = 1, ...,m} can be
learned efficiently by alternating least square (ALS), stochas-
tic gradient descent (SGD), L-BFGS, etc., for a variety of
loss functions, including square error, hinge loss, logit loss,
etc. From Eq. (9), the gradient of the MVM model is:

∂ŷ(x|Θ)

∂θ
=z

(v)
iv

(
I1+1∑
i1=1

z
(1)
i1
a

(1)
i1,f

)
· · ·

Iv−1+1∑
iv−1=1

z
(v−1)
iv−1

a
(v−1)
iv−1,f


Iv+1+1∑
iv+1=1

z
(v+1)
iv+1

a
(v+1)
iv+1,f

 · · ·(Im+1∑
im=1

z
(m)
im

a
(m)
im,f

)
(16)

where θ = a
(v)
iv,f

, and z
(v)
iv

= 1 if iv = Iv + 1, otherwise

z
(v)
iv

= x
(v)
iv

. It validates that MVMs possess the multilinear-
ity property, because the gradient along θ is independent of
the value of θ itself.

Note that in Eq. (16), the sum
∑Iv+1
iv=1 z

(v)
iv
a

(v)
iv,f

can be pre-
computed and reused for updating the f -th factor of all the
features. Hence, each gradient can be computed in O(m).
In an iteration, including the precomputation time, all the
k(m + d) parameters can be updated in O(mk(m + d)). It
can be even reduced under sparsity, where most of the ele-
ments in x (or z) are 0 and thus, the sums have only to be
computed over the non-zero elements.

It is straightforward to embed Eq. (16) into the gradient
of the loss functions e.g., Eqs. (11)-(13), for direct optimiza-
tion, as follows:

∂LS(ŷ(x|Θ), y)

∂θ
= 2(ŷ(x|Θ)− y) · ∂ŷ(x|Θ)

∂θ
(17)

∂LL(ŷ(x|Θ), y)

∂θ
=
−y exp(−y · ŷ(x|Θ))

1 + exp(−y · ŷ(x|Θ))
· ∂ŷ(x|Θ)

∂θ
(18)

∂LH(ŷ(x|Θ), y)

∂θ
=

{
−y · ∂ŷ(x|Θ)

∂θ
if y · ŷ(x|Θ) < 1

0 otherwise
(19)

Moreover, the gradient of the regularization term Ω(Θ)
can be derived:

∂ΩL2(Θ)

∂θ
= 2θ (20)

∂ΩL1(Θ)

∂θ
=

θ√
θ2 + ε2

(21)

The SGD optimization method for MVMs is summarized
in Algorithm 1, where the model parameters are first initial-
ized from a zero-mean normal distribution with standard
deviation σ, and the gradients in line 8 can be computed
according to Eqs. (11)-(13) and Eqs. (20)-(21). Moreover,
rather than specifying a learning rate η beforehand, we can
use a line search to determine it in the optimization process.
The regularization parameter λ can be searched on a held-
out validation set. Considering the number of factors k, the
performance can usually be improved with larger k, at the
cost of more parameters which can make the learning much
harder in terms of both runtime and memory [10].

Algorithm 1 Stochastic Gradient Descent for MVMs

Input: Training data D = {(xi, yi) | i = 1, ..., n}, number
of factors k, regularization parameter λ, learning rate η,
standard deviation σ

Output: Model parameters Θ = {A(v) ∈ R(Iv+1)×k| v =
1, ...,m}

1: Initialize A(v) ∼ N (0, σ)
2: repeat
3: for (x, y) ∈ D do
4: for v := 1 to m do
5: for iv := 1 to Iv + 1 do
6: if z

(v)
iv
6= 0 then

7: for f := 1 to k do

8: θ ← θ − η( ∂L(ŷ(x|Θ),y)
∂θ

+ λ ∂Ω(Θ)
∂θ

) where

θ = a
(v)
iv

9: end for
10: end if
11: end for
12: end for
13: end for
14: until convergence

5. RELATED WORK
In this section, we discuss and compare our proposed

MVM model with other methods (and extensions) for multi-
view classification, including support vector machines (SVMs),
support tensor machines (STMs) and factorization machines
(FMs).

5.1 SVM Model
Vapnik introduced support vector machines (SVMs) [9]

based on the maximum-margin hyperplane. Essentially, SVMs
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Figure 3: Related work (and extensions) on modeling the interactions between multiple views. In general,
the linear SVM model is limited to the first-order interactions; the STM model explores only the highest
order interactions; in spite of including all the interactions in different orders, the FM model is not sufficiently
factorized compared to our proposed MVM model.

integrate the hinge loss and the L2-norm regularization. The
decision function with a linear kernel is1:

ŷ = w0 +

d∑
i=1

wixi (22)

In the multi-view setting, x is simply a concatenation of

features from different views, i.e., xT =
(
x(1)T , ...,x(m)T

)
,

as shown in Figure 3. Thus, Eq. (22) is equivalent to:

ŷ = w0 +

m∑
v=1

Iv∑
iv=1

w
(v)
iv
x

(v)
iv

(23)

Obviously, no interactions between views are explored in
Eq. (23). By restricting iv = Iv + 1 for any m− 1 indexes of
wi1,...,im in Eq. (4), i.e., removing factorization and higher
order interactions from MVMs, we obtain the linear SVMs:

ŷ = wI1+1,...,Im+1 +

I1∑
i1=1

wi1,I2+1,...,Im+1z
(1)
i1

+ · · ·+
Im∑
im=1

wI1+1,...,Im−1+1,imz
(m)
im

= w0 +

I1∑
i1=1

w
(1)
i1
x

(1)
i1

+ · · ·+
Im∑
im=1

w
(m)
im

x
(m)
im

(24)

1The sign function is omitted, because the analysis and con-
clusions can easily extend to other generalized linear models,
e.g., logistic regression.

Throught the employment of a nonlinear kernel, SVMs
can implicitly project data from the feature space into a
more complex high-dimensional space, which allows SVMs
to model higher order interactions between features. How-
ever, as discussed in [6], all interaction parameters of non-
linear SVMs are completely independent. In contrast, the
interaction parameters of MVMs are collectively factorized
and thus dependencies exist when interactions share the
same feature.

For nonlinear SVMs, there must be enough instances x ∈
D where x

(p)
ip
6= 0 and x

(q)
iq
6= 0 to reliably estimate the

second-order interaction parameter w
(p,q)
ip,iq

. The instances

with either x
(p)
ip

= 0 or x
(q)
iq

= 0 cannot be used for estimat-

ing w
(p,q)
ip,iq

. That is to say, on a sparse dataset where there

are too few or even no cases for some higher order interac-
tions, nonlinear SVMs are likely to degenerate into linear
SVMs.

The factorization of interactions in Eq. (5) benefits MVMs
for parameter estimation under sparsity, since the latent fac-

tor a
(p)
ip

can be learned from any instances whose x
(p)
ip
6= 0,

which allows the second-order interaction w
(p,q)
ip,iq

can be ap-

proximated from instances whose x
(p)
ip
6= 0 or x

(q)
iq
6= 0 rather

than instances whose x
(p)
ip
6= 0 and x

(q)
iq
6= 0. Therefore, the

interaction parameters in MVMs can be effectively learned
without direct observations of such interactions in a training
set of sparse data.

5.2 STM Model



Cao et al. investigated multi-view classification by model-
ing interactions between views as a tensor, i.e., X = x(1) ◦
· · · ◦ x(m) ∈ RI1×···×Im [2] and solved the problem in the
framework of support tensor machines (STMs) [8]. Basically,
as shown in Figure 3, only the highest order interactions are
explored:

ŷ =

I1∑
i1=1

· · ·
Im∑
im=1

wi1,...,im

(
m∏
v=1

x
(v)
iv

)
(25)

where wi1,...,im =
∏m
v=1 w

(v)
iv

, i.e., a rank-one decomposition

of the tensor W ∈ RI1×···×Im [2].
However, estimating a lower order interaction (e.g., a pair-

wise one) reliably is easier than estimating a higher order
one, and lower order interactions can usually explain the
data sufficiently [7, 1]. Thus, it is critical to include the
lower order interactions in MVMs. Moreover, instead of
a rank-one decomposition, we apply a higher rank decom-
position of W ∈ R(I1+1)×···×(Im+1) to capture more latent
factors and thereby achieving a better approximation to the
original interaction parameters.

5.3 FM Model
Rendle introduced factorization machines (FMs) [6] that

combine the advantages of SVMs with factorization models.
The model equation for a second-order FM is as follows:

ŷ = w0 +

d∑
i=1

wixi +

d∑
i=1

d∑
j=i+1

〈vi,vj〉xixj (26)

where d =
∑m
v=1 Iv and 〈vi,vj〉 =

∑k
f=1 vi,fvj,f .

However, the pairwise interactions between all the fea-
tures are included in FMs without consideration of the view
segmentation. In the multi-view setting, there can be re-
dundant correlations between features within the same view
which are thereby unworthy of consideration. The coupled
group lasso model proposed in [10] is essentially an appli-
cation of the second-order FMs to multi-view classification.
To achieve this purpose, we can simply modify Eq. (26) as:

ŷ = w0 +

m∑
v=1

Iv∑
iv=1

w
(v)
iv
x

(v)
iv

+

I1∑
i1=1

I2∑
i2=1

〈
v

(1)
i1
,v

(2)
i2

〉
x

(1)
i1
x

(2)
i2

+ · · ·+
Im−1∑
im−1=1

Im∑
im=1

〈
v

(m−1)
im−1

,v
(m)
im

〉
x

(m−1)
im−1

x
(m)
im

(27)

The pairwise interaction parameter w
(p,q)
ip,iq

=
〈
v

(p)
ip
,v

(q)
iq

〉
in Eq. (27) indicates that w

(p,q)
ip,iq

can be learned from in-

stances whose x
(p)
ip
6= 0 and some x

(v)
iv
6= 0 (sharing vp), or

x
(q)
iq
6= 0 and some x

(v)
iv
6= 0 (sharing vq), which makes FMs

more robust under sparsity than SVMs where only instances

with x
(p)
ip
6= 0 and x

(q)
iq
6= 0 can be used to learn w

(p,q)
ip,iq

.

The main difference between FMs and MVMs is that the
interaction parameters in different orders are completely in-

dependent in FMs, e.g., the first-order interaction w
(v)
iv

and

the second-order interaction v
(v)
iv

in Eq. (27). On the con-
trary, in MVMs, all the orders of interactions share the

same set of latent factors, e.g., a
(v)
iv

in Eq. (6). For exam-

ple, the combination of a
(v)
iv

and the bias factors from other

m − 1 views, i.e., a
(1)
I1+1, ...,a

(v−1)
Iv−1+1,a

(v+1)
Iv+1+1, ...,a

(m)
Im+1, ap-

proximates the first-order interaction w
(v)
iv

. Similarly, we

can obtain the second-order interaction w
(p,q)
ip,iq

by combining

a
(p)
ip

, a
(q)
iq

and other m− 2 bias factors.

Such difference is more significant for higher order FMs,
as shown in Figure 3. Assuming the same number of factors
in different orders of interactions, the number of parame-
ters to be estimated in a mth-order FM is 1 + (1 + (m −
1)k)

∑m
v=1 Iv = (k(m − 1) + 1)d + 1 which can be much

larger than k(m+ d) in MVMs, when there are many views
(i.e., a large m). Therefore, compared to MVMs, FMs are
not fully factorized.

6. CONCLUSION
In this paper, we have proposed a multi-view machine

(MVM) model and presented an efficient inference method
based on stochastic gradient descent. In general, MVMs can
be applied to a variety of supervised machine learning tasks,
including classification and regression, and are particularly
designed for data that is composed of features from mul-
tiple views, between which the interactions are effectively
explored. In contrast to other models that explore only the
partial interactions or factorize the interactions in different
orders separately, MVMs jointly factorize the full-order in-
teractions and thereby benefiting the parameter estimation
under sparsity.
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