
Learning to Execute

Wojciech Zaremba WOJ.ZAREMBA@GMAIL.COM
Google & New York University
Ilya Sutskever ILYASU@GOOGLE.COM
Google

Abstract
Recurrent Neural Networks (RNNs) with Long-
Short Term Memory units (LSTM) are widely
used because they are expressive and are easy
to train. Our interest lies in empirically evalu-
ating the expressiveness and the learnability of
LSTMs by training them to evaluate short com-
puter programs, a problem that has traditionally
been viewed as too complex for neural networks.
We consider a simple class of programs that can
be evaluated with a single left-to-right pass us-
ing constant memory. Our main result is that
LSTMs can learn to map the character-level rep-
resentations of such programs to their correct
outputs. Notably, it was necessary to use curricu-
lum learning, and while conventional curriculum
learning proved ineffective, we developed an new
variant of curriculum learning that improved our
networks’ performance in all experimental con-
ditions.

1. Introduction
Execution of computer programs requires dealing with
multiple nontrivial concepts. To execute a program, a sys-
tem has to understand numerical operations, the branching
of if-statements, the assignments of variables, the compo-
sitionality of operations, and many more.

We show that Recurrent Neural Networks (RNN) with
Long-Short Term Memory (LSTM) units can accurately
evaluate short simple programs. The LSTM reads the pro-
gram character-by-character and computes the program’s
output. We considered a constrained set of computer pro-
grams that can be evaluated in linear time and constant
memory because the LSTM reads the program only once
and its memory is small (Section 3). Indeed, the runtime of

the LSTM is linear in the size of the program, so it cannot
simulate programs that have a greater minimal runtime.

It is difficult to train LSTMs to execute computer programs,
so we used curriculum learning to simplify the learning
problem. We design a curriculum procedure which outper-
forms both conventional training that uses no curriculum
learning (baseline) as well as naive curriculum learning
(Bengio et al., 2009) (Section 4). We provide a plausible
explanation for the effectiveness of our procedure relative
to naive curriculum learning (Section 7).

Finally, in addition to curriculum learning strategies, we
examine two simple input transformations that further sim-
plify the learning problem. We show that, in many cases,
reversing the input sequence (Sutskever et al., 2014) and
replicating the input sequence improves the LSTM’s per-
formance on a memorization task (Section 3.1).

2. Related work
There has been related research that used Tree Neural Net-
work (sometimes known as Recursive Neural Networks)
to evaluate symbolic mathematical expressions and logi-
cal formulas (Zaremba et al., 2014a; Bowman et al., 2014;
Bowman, 2013), which is close in spirit to our work. How-
ever, Tree Neural Networks require parse trees, and in
aforementioned work they process operations on the level
of words, so each operation is encoded with its index. Com-
puter programs are also more complex than mathematical
or logical expressions due to branching, looping, and vari-
able assignment.

From a methodological perspective, we formulate the pro-
gram evaluation task as a language modeling problem
on a sequence (Mikolov, 2012; Sutskever, 2013; Pascanu
et al., 2013). Other interesting applications of recurrent
neural networks includes speech recognition (Robinson
et al., 1996; Graves et al., 2013), machine translation (Cho
et al., 2014; Sutskever et al., 2014), handwriting recogni-
tion (Pham et al., 2013; Zaremba et al., 2014b), and many
more.

ar
X

iv
:1

41
0.

46
15

v1
 [

cs
.N

E
]

 1
7

O
ct

 2
01

4

Learning to Execute

(Maddison & Tarlow, 2014) learned a language model on
parse trees, and (Mou et al., 2014) predicted whether two
programs are equivalent or not. Both of these approaches
require parse trees, while we learn from a program charac-
ter level sequence.

Predicting program output requires that the model deals
with long term dependencies that arise from variable as-
signment. Thus we chose to use Recurrent Neural Net-
works with Long Short Term Memory units (Hochreiter &
Schmidhuber, 1997), although there are many other RNN
variants that perform well on tasks with long term depen-
dencies (Cho et al., 2014; Jaeger et al., 2007; Koutnı́k et al.,
2014; Martens, 2010; Bengio et al., 2013).

Initially, we found it difficult to train LSTMs to accurately
evaluate programs. The compositional nature of computer
programs suggests that the LSTM would learn faster if we
first taught it the individual operators separately and then
taught the LSTM how to combine them. This approach can
be implemented with curriculum learning (Bengio et al.,
2009; Kumar et al., 2010; Lee & Grauman, 2011), which
prescribes gradually increasing the “difficulty level” of the
examples presented to the LSTM, and is partially motivated
by fact that humans and animals learn much faster when
their instruction provides them with hard but manageable
exercises. Unfortunately, we found the naive curriculum
learning strategy of Bengio et al. (2009) to be generally
ineffective and occasionally harmful. One of our key con-
tributions is the formulation of a new curriculum learning
strategy that substantially improves the speed and the qual-
ity of training in every experimental setting that we consid-
ered.

3. Subclass of programs
We train RNNs on class of simple programs that can be
evaluated in O(n) time and constant memory. This re-
striction is dictated by the computational structure of the
RNN itself, at it can only do a single pass over the pro-
gram using a very limited memory. Our programs use the
Python syntax and are based on a small number of oper-
ations and their composition (nesting). We consider the
following operations: addition, subtraction, multiplication,
variable assignment, if-statement, and for-loops, although
we forbid double loops. Every program ends with a single
“print” statement that outputs a number. Several example
programs are shown in Figure 1.

We select our programs from a family of distributions pa-
rameterized by length and nesting. The length parameter is
the number of digits in numbers that appear in the programs
(so the numbers are chosen uniformly from [1, 10length]).
For example, the programs are generated with length = 4
(and nesting = 3) in Figure 1.

Input:
j=8584
for x in range(8):

j+=920
b=(1500+j)
print((b+7567))

Target: 25011.

Input:
i=8827
c=(i-5347)
print((c+8704) if 2641<8500 else

5308)

Target: 1218.

Figure 1. Example programs on which we train the LSTM. The
output of each program is a single number. A “dot” symbol indi-
cates the end of a number and has to be predicted as well.

We are more restrictive with multiplication and the ranges
of for-loop, as these are much more difficult to handle.
We constrain one of the operands of multiplication and the
range of for-loops to be chosen uniformly from the much
smaller range [1, 4 · length]. This choice is dictated by the
limitations of our architecture. Our models are able to per-
form linear-time computation while generic integer mul-
tiplication requires superlinear time. Similar restrictions
apply to for-loops, since nested for-loops can implement
integer multiplication.

The nesting parameter is the number of times we are al-
lowed to combine the operations with each other. Higher
value of nesting results in programs with a deeper parse
tree. Nesting makes the task much harder for our LSTMs,
because they do not have a natural way of dealing with
compositionality, in contrast to Tree Neural Networks. It
is surprising that they are able to deal with nested expres-
sions at all.

It is important to emphasize that the LSTM reads the input
one character at a time and produces the output character
by character. The characters are initially meaningless from
the model’s perspective; for instance, the model does not
know that “+” means addition or that 6 is followed by 7.
Indeed, scrambling the input characters (e.g., replacing “a”
with “q”, “b” with “w”, etc.,) would have no effect on the
model’s ability to solve this problem. We demonstrate the
difficulty of the task by presenting an input-output example
with scrambled characters in Figure 2.

Learning to Execute

Input:
vqppkn
sqdvfljmnc
y2vxdddsepnimcbvubkomhrpliibtwztbljipcc

Target: hkhpg

Figure 2. An example program with scrambled characters. It
helps illustrate the difficulty faced by our neural network.

3.1. Memorization Task

In addition to program evaluation, we also investigate the
task of memorizing a random sequence of numbers. Given
an example input 123456789, the LSTM reads it one char-
acter at a time, stores it in memory, and then outputs
123456789 one character at a time. We present and ex-
plore two simple performance enhancing techniques: input
reversing (from Sutskever et al. (2014)) and input doubling.

The idea of input reversing is to reverse the order of the
input (987654321) while keeping the desired output un-
changed (123456789). It seems to be a neutral operation as
the average distance between each input and its correspond-
ing target did not become shorter. However, input reversing
introduces many short term dependencies that make it eas-
ier for the LSTM to start making correct predictions. This
strategy was first introduced for LSTMs for machine trans-
lation by Sutskever et al. (2014).

The second performance enhancing technique is input dou-
bling, where we present the input sequence twice (so the
example input becomes 123456789; 123456789), while the
output is unchanged (123456789). This method is mean-
ingless from a probabilistic perspective as RNNs approx-
imate the conditional distribution p(y|x), yet here we at-
tempt to learn p(y|x, x). Still, it gives noticeable per-
formance improvements. By processing the input several
times before producing an output, the LSTM is given the
opportunity to correct the mistakes it made in the earlier
passes.

4. Curriculum Learning
Our program generation scheme is parametrized by length
and nesting. These two parameters allow us control the
complexity of the program. When length and nesting are
large enough, the learning problem nearly intractable. This
indicates that in order to learn to evaluate programs of a
given length = a and nesting = b, it may help to first learn
to evaluate programs with length � a and nesting � b.
We compare the following curriculum learning strategies:

No curriculum learning (baseline) The baseline approach
does not use curriculum learning. This means that we

generate all the training samples with length = a and
nesting = b. This strategy is most “sound” from statis-
tical perspective, as it is generally recommended to make
the training distribution identical to test distribution.

Naive curriculum strategy (naive)

We begin with length = 1 and nesting = 1. Once learning
stops making progress, we increase length by 1. We repeat
this process until its length reaches a, in which case we
increase nesting by one and reset length to 1.

We can also choose to first increase nesting and then length.
However, it does not make a noticeable difference in per-
formance. We skip this option in the rest of paper, and
increase length first in all our experiments. This strategy is
has been examined in previous work on curriculum learn-
ing (Bengio et al., 2009). However, we show that often it
gives even worse performance than baseline.

Mixed strategy (mix)

To generate a random sample, we first pick a random length
from [1, a] and a random nesting from [1, b] independently
for every sample. The Mixed strategy uses a balanced mix-
ture of easy and difficult examples, so at any time during
training, a sizable fraction of the training samples will have
the appropriate difficulty for the LSTM.

Combining the mixed strategy with naive curriculum
strategy (combined)

This strategy combines the mix strategy with the naive
strategy. In this approach, every training case is obtained
either by the naive strategy or by the mix strategy. As a
result, the combined strategy always exposes the network
at least to some difficult examples, which is the key way in
which it differs from the naive curriculum strategy. We no-
ticed that it reliably outperformed the other strategies in our
experiments. We explain why our new curriculum learning
strategies outperform the naive curriculum strategy in Sec-
tion 7.

We evaluate these four strategies on the program evaluation
task (Section 6.1) and on the memorization task (Section
6.2).

5. RNN with LSTM cells
In this section we briefly describe the deep LSTM (Sec-
tion 5.1). All vectors are n-dimensional unless explicitly
stated otherwise. Let hl

t ∈ Rn be a hidden state in layer
l in timestep t. Let Tn,m : Rn → Rm be a biased lin-
ear mapping (x → Wx + b for some W and b). We
let � be element-wise multiplication and let h0

t be the in-
put at timestep k. We use the activations at the top layer
L (namely hL

t) to predict yt where L is the depth of our
LSTM.

Learning to Execute

���ctCell

f×
���f Forget gate
6

� 	

���
hl
t−1
AAK
hl−1
t

���iInput
gate

AU

hl
t−1

���

hl−1
t

���o Output
gate

AU

hl
t−1

���

hl−1
t

���g
Input

modulation
gate

f× --

J
J
Ĵ f×- -?

hl
t

hl
t−1

hl−1
t

��:
XXz

Figure 3. A graphical representation of the LSTM memory cells
used in this paper (they differ in minor ways from Graves (2013)).

5.1. Long-short term memory units

The structure of the LSTM allows it to learn on prob-
lems with long term dependencies relatively easily. The
“long term” memory is stored in a vector of memory cells
clt ∈ Rn. Although many LSTM architectures differ in
their connectivity structure and activation functions, all
LSTM architectures have memory cells that are suitable for
storing information for long periods of time. We used an
LSTM described by the following equations (from Graves
et al. (2013)):

LSTM : hl−1
t , hl

t−1, c
l
t−1 → hl

t, c
l
t

i
f
o
g

 =

sigm
sigm
sigm
tanh

T2n,4n

(
hl−1
t

hl
t−1

)

clt = f � clt−1 + i� g

hl
t = o� tanh(clt)

In these equations, the nonlinear functions sigm and tanh
are applied elementwise. Figure 3 shows the LSTM equa-
tions (the figure is taken from Zaremba et al. (2014b)).

6. Experiments
In this section, we report the results of our curriculum
learning strategies on the program evaluation and mem-
orization tasks. In both experiments, we used the same
LSTM architecture.

Our LSTM has two layers and is unrolled for 50 steps in
both experiments. It has 400 units per layer and its param-
eters are initialized uniformly in [−0.08, 0.08]. We initial-
ize the hidden states to zero. We then use the final hidden
states of the current minibatch as the initial hidden state
of the subsequent minibatch. The size of minibatch is 100.
We clip the norm of the gradients (normalized by minibatch

size) at 5 (Mikolov et al., 2010). We keep the learning rate
equal to 0.5 until we reach the target length and nesting (we
only vary the length, i.e., the number of digits, in the mem-
orization task). After reaching the target accuracy we de-
crease the learning rate by 0.8. We keep the learning rate on
the same level until there is no improvement on the training
set. We decrease it again, when there is no improvement
on training set. We begin training with length = 1 and
nesting = 1 (or length=1 for the memorization task).

To prevent training samples from being repeated in the test
set, we enforced that the training, validation, and test sets
are disjoint.

6.1. Program Evaluation Results

We train our LSTMs using the four strategies described in
Section 4:

• No curriculum learning (baseline),

• Naive curriculum strategy (naive)

• Mixed strategy (mix), and

• Combined strategy (combined).

Figure 4 shows the absolute performance of the baseline
strategy (training using target test data distribution), and of
the best performing strategy, combined. Moreover, Figure
5 shows the performance of all strategies relative to base-
line. Finally, we provide several example predictions on
test data in Figure 6.

Figure 4. Absolute prediction accuracy of the baseline strategy
and of the combined strategy (see Section 4) on the program eval-
uation task. Deeper nesting and larger length make the task more
difficult. Overall, the combined strategy outperformed the base-
line strategy in every setting.

6.2. Memorization Results

Recall that the task is to copy a sequence of input values.
Namely, given an input such as 123456789, the goal is to
produce the output 123456789. The model accesses one
input character at the time and has to produce the output

Learning to Execute

Figure 5. Relative prediction accuracy of the different strategies
with respect to the baseline strategy. The Naive curriculum strat-
egy was found to sometime perform worse than baseline. A pos-
sible explanation is provided in Section 7. The combined strategy
outperforms all other strategies in every configuration.

only after holding the entire input in its memory. This task
gives us insights into the LSTM’s ability to memorize and
remember information. We have evaluated our model on
sequences of lengths ranging from 5 to 65. We use the
four curriculum strategies of Section 4. In addition, we
investigate two strategies to modify the input which boost
performance:

• inverting input (Sutskever et al., 2014)

• doubling input

Both strategies are described in Section 3.1. Figure 7 shows
the absolute performance of the baseline strategy and of
the combined strategy. It is clear that the combined strat-
egy outperforms every other strategy. Each graph contains
4 settings, which correspond to the possible combinations
of input inversion and input doubling. The result clearly
shows that the simultaneously doubling and reversing the
input achieves the best results.

7. Hidden State Allocation Hypothesis
Our experimental results suggest that a proper curriculum
learning strategy is critical for achieving good performance
on very hard problems where conventional stochastic gra-
dient descent (SGD) performs poorly. The results on both

Input:
f=(8794 if 8887<9713 else (3*8334))
print((f+574))

Target: 9368.
Model prediction: 9368.

Input:
j=8584
for x in range(8):

j+=920
b=(1500+j)
print((b+7567))

Target: 25011.
Model prediction: 23011.

Input:
c=445
d=(c-4223)
for x in range(1):

d+=5272
print((8942 if d<3749 else 2951))

Target: 8942.
Model prediction: 8942.

Input:
a=1027
for x in range(2):

a+=(402 if 6358>8211 else 2158)
print(a)

Target: 5343.
Model prediction: 5293.

Figure 6. Sample predictions generated by our model trained with
the combined strategy. Here length is 4 and nesting is 3. The
model makes interesting mistakes. For instance, it occasionally
makes off-by-one errors yet it has no built-in notion of integer-
order.

Learning to Execute

Figure 7. Prediction accuracy on the memorization task for the
four curriculum strategies. The input length ranges from 5 to
65 digits. Every strategy is evaluated with the following 4 in-
put modification schemes: no modification; input inversion; input
doubling; and input doubling and inversion. Training time was
limited to 20 epochs.

of our problems (Sections 6.2 and 6.1) show that the com-
bined strategy is better than all other curriculum strategies,
including both naive curriculum learning, and training on
the target distribution. We have a plausible explanation for
why this is the case.

It seems natural to train models with examples of increas-
ing difficulty. This way the models have a chance to learn
the proper intermediate concepts and input-output map-
ping, and then utilize them for the more difficult problem
instances. Learning the target task might be just too diffi-
cult with SGD from a random parameter initialization. This
explanation has been proposed in previous work on cur-
riculum learning (Bengio et al., 2009). However, based on
empirical results, the naive strategy of curriculum learning
can sometimes be worse than learning using just with the
target distribution.

In our tasks, the neural network has to perform a lot of
memorization. The easier examples usually require less
memorization than the hard examples. For instance, in or-
der to add two 5-digit numbers, one has to remember at
least 5 digits before producing any output. The best way
to accurately memorize 5 numbers could be to spread them
over the entire hidden state / memory cell (i.e., use a dis-
tributed representation). Indeed, the network has no incen-
tive to utilize only a fraction of its state. It is always best
to make use of its entire memory capacity. This implies
that the harder examples would require a restructuring of
its memory patterns. It would need to contract its repre-
sentations of 5 digit numbers in order to free space for the
6-th number. This process of memory pattern restructur-
ing might be difficult to achieve, so it could be the reason
for the relatively poor performance of the naive curriculum
learning strategy (relative to baseline).

The combined strategy avoids the abrupt problem of re-
structuring memory patterns. combined is a mixture of
naive curriculum learning strategy and of balanced mixture
of examples of all difficulties. The examples produced by
the naive curriculum strategy help to learn the intermedi-
ate input-output mapping, which is useful for solving the
target task. The extra samples of all difficulties prevent the
network from utilizing all the memory on the easy exam-
ples, thus eliminating the need to restructure the memory
patterns.

8. Critique
Perfect prediction of program output requires an exact un-
derstanding of all operands and concepts. However, imper-
fect prediction might be achieved in a multitude of ways,
and could heavily rely on memorization, without a genuine
understanding of the underlying concepts. For instance,
perfect addition is relatively intricate, as the LSTM needs

Learning to Execute

to know the order of numbers and to correctly compute the
carry.

There are many alternatives to the addition algorithm if per-
fect output is not required. For instance, one can perform
element-wise addition, and as long as there is carry then
the output would be perfectly correct. Another alternative,
which requires more memory, but is also more simpler, is
to memorize all results of addition for 2 digit numbers.
Then multi-digit addition can be broken down to multiple
2-digits additions element-wise. Once again, such an al-
gorithm would have a reasonably high prediction accuracy,
although it would be far from correct.

We do not know how heavily our model relies on memo-
rization and how far the learnt algorithm is from the actual,
correct algorithm. This could be tested by creating a big
discrepancy between the training and test data, but in this
work, the training and the test distributions are the same.
We plan to examine how well our models would generalize
on very different new examples in future work.

9. Discussion
We have shown that it is possible to learn to evaluate pro-
grams with limited prior knowledge. This work demon-
strate the power and expressiveness of LSTMs. We also
showed that proper curriculum learning is crucial for get-
ting good results on very difficult tasks that cannot be opti-
mized with conventional SGD.

We also found that the general method of doubling the input
reliably improves the performance of LSTMs.

Our results are encouraging but they leave many questions
open, such as learning to execute generic programs (e.g.,
ones that run in more than O(n) time). This cannot be
achieved with conventional RNNs or LSTMs due to their
runtime restrictions. We also do not know the optimal cur-
riculum learning strategy. To understand that, we may need
to identify those training samples that are most beneficial
to the model.

References
Bengio, Yoshua, Louradour, Jérôme, Collobert, Ronan, and

Weston, Jason. Curriculum learning. In Proceedings
of the 26th annual international conference on machine
learning, pp. 41–48. ACM, 2009.

Bengio, Yoshua, Boulanger-Lewandowski, Nicolas, and
Pascanu, Razvan. Advances in optimizing recurrent
networks. In Acoustics, Speech and Signal Processing
(ICASSP), 2013 IEEE International Conference on, pp.
8624–8628. IEEE, 2013.

Bowman, Samuel R. Can recursive neural tensor net-

works learn logical reasoning? arXiv preprint
arXiv:1312.6192, 2013.

Bowman, Samuel R, Potts, Christopher, and Manning,
Christopher D. Recursive neural networks for learn-
ing logical semantics. arXiv preprint arXiv:1406.1827,
2014.

Cho, Kyunghyun, van Merrienboer, Bart, Gulcehre, Caglar,
Bougares, Fethi, Schwenk, Holger, and Bengio, Yoshua.
Learning phrase representations using rnn encoder-
decoder for statistical machine translation. arXiv
preprint arXiv:1406.1078, 2014.

Graves, Alex. Generating sequences with recurrent neural
networks. arXiv preprint arXiv:1308.0850, 2013.

Graves, Alex, Mohamed, Abdel-rahman, and Hinton, Ge-
offrey. Speech recognition with deep recurrent neural
networks. In Acoustics, Speech and Signal Processing
(ICASSP), 2013 IEEE International Conference on, pp.
6645–6649. IEEE, 2013.

Hochreiter, Sepp and Schmidhuber, Jürgen. Long short-
term memory. Neural computation, 9(8):1735–1780,
1997.

Jaeger, Herbert, Lukoševičius, Mantas, Popovici, Dan, and
Siewert, Udo. Optimization and applications of echo
state networks with leaky-integrator neurons. Neural
Networks, 20(3):335–352, 2007.

Koutnı́k, Jan, Greff, Klaus, Gomez, Faustino, and Schmid-
huber, Jürgen. A clockwork rnn. arXiv preprint
arXiv:1402.3511, 2014.

Kumar, M Pawan, Packer, Benjamin, and Koller, Daphne.
Self-paced learning for latent variable models. In Ad-
vances in Neural Information Processing Systems, pp.
1189–1197, 2010.

Lee, Yong Jae and Grauman, Kristen. Learning the easy
things first: Self-paced visual category discovery. In
Computer Vision and Pattern Recognition (CVPR), 2011
IEEE Conference on, pp. 1721–1728. IEEE, 2011.

Maddison, Chris J and Tarlow, Daniel. Structured gen-
erative models of natural source code. arXiv preprint
arXiv:1401.0514, 2014.

Martens, James. Deep learning via hessian-free optimiza-
tion. In Proceedings of the 27th International Con-
ference on Machine Learning (ICML-10), pp. 735–742,
2010.

Mikolov, Tomáš. Statistical language models based on
neural networks. PhD thesis, Ph. D. thesis, Brno Uni-
versity of Technology, 2012.

Learning to Execute

Mikolov, Tomas, Karafiát, Martin, Burget, Lukas, Cer-
nockỳ, Jan, and Khudanpur, Sanjeev. Recurrent neural
network based language model. In INTERSPEECH, pp.
1045–1048, 2010.

Mou, Lili, Li, Ge, Liu, Yuxuan, Peng, Hao, Jin, Zhi,
Xu, Yan, and Zhang, Lu. Building program vec-
tor representations for deep learning. arXiv preprint
arXiv:1409.3358, 2014.

Pascanu, Razvan, Gulcehre, Caglar, Cho, Kyunghyun, and
Bengio, Yoshua. How to construct deep recurrent neural
networks. arXiv preprint arXiv:1312.6026, 2013.

Pham, Vu, Kermorvant, Christopher, and Louradour,
Jérôme. Dropout improves recurrent neural net-
works for handwriting recognition. arXiv preprint
arXiv:1312.4569, 2013.

Robinson, Tony, Hochberg, Mike, and Renals, Steve. The
use of recurrent neural networks in continuous speech
recognition. In Automatic speech and speaker recogni-
tion, pp. 233–258. Springer, 1996.

Sutskever, Ilya. Training Recurrent Neural Networks. PhD
thesis, University of Toronto, 2013.

Sutskever, Ilya, Vinyals, Oriol, and Le, Quoc V. Se-
quence to sequence learning with neural networks. arXiv
preprint arXiv:1409.3215, 2014.

Zaremba, Wojciech, Kurach, Karol, and Fergus, Rob.
Learning to discover efficient mathematical identities.
arXiv preprint arXiv:1406.1584, 2014a.

Zaremba, Wojciech, Sutskever, Ilya, and Vinyals, Oriol.
Recurrent neural network regularization. arXiv preprint
arXiv:1409.2329, 2014b.

