
Copyright © Siemens AG 2012. All rights reserved.

Corporate Technology

For Performance and Latency,
not for Fun
How to overcome the Big QEMU Lock

Jan Kiszka, Siemens AG, Corporate Technology
Corporate Competence Center Embedded Linux

jan.kiszka@siemens.com

Slide 2 2012-11-07 © Siemens AG, Corporate TechnologyJan Kiszka

Agenda

 Motivation
 Locking rules

 Memory access dispatching

 Back end / front end interaction

 Exemplary cut-through
 Conclusion

Slide 3 2012-11-07 © Siemens AG, Corporate TechnologyJan Kiszka

Motivation:
Concurrency in QEMU/KVM

VCPU
VCPU

VCPU
VCPU

IO-Thread

• Device models
• I/O back-ends
• GUI
• QMP, HMP
• ...

VNC CCID
Card

Posix
AIO

pulse
audio

VCPU
VCPU

VCPU
VCPU

VCPU
VCPU

VCPU
VCPU

VCPU
VCPU

VCPU
VCPU

VCPU
VCPU

VCPU
VCPU

Slide 4 2012-11-07 © Siemens AG, Corporate TechnologyJan Kiszka

BQL – One after the other

Slide 5 2012-11-07 © Siemens AG, Corporate TechnologyJan Kiszka

Pros & Cons

Limitations
 Scalability bottleneck for high-speed I/O
 Causes high latencies,

unacceptable for real-time workloads

Benefits
 Simple model, easier to get right
 Well confined, most subsystems do not need to bother

Slide 6 2012-11-07 © Siemens AG, Corporate TechnologyJan Kiszka

Requirements for New Concurrency Scheme

Improvements for scalability and latency
 Enable decoupled I/O paths with different priorities
 Flexible locking policies, also allowing lock-free schemes

Integration / migration of BQL-dependent components
 Device models
 I/O back ends & timers
 TCG system & user emulation

Compact & comprehensible concept
 Consistent scheme with few or no exceptions
 Low impact on device models

Slide 7 2012-11-07 © Siemens AG, Corporate TechnologyJan Kiszka

Fine-grained Locking –
and all will be good!?

Source: Glauber Costa

Slide 8 2012-11-07 © Siemens AG, Corporate TechnologyJan Kiszka

Lock Ordering Rules

Big before small
 Big = coarse-grained, small = fine-grained

Reasoning
 Ordering avoids ABBA
 Risk of priority inversions:

 Waiting on big lock while holding small one
 turns small into big

Implications
 BQL-dependent services cannot be called while holding finer locks
 While holding the BQL, any lock can be taken in addition

Slide 9 2012-11-07 © Siemens AG, Corporate TechnologyJan Kiszka

Lock Ordering Rules (2)

While holding lock A, do not call anything that takes lock B
if you can be called back to take A while B is locked

 Examples:
 Device A triggers access to device B triggers access to Device A
or
 Context 1: back end A triggers access to device B
 Context 2: device B triggers access to back end A

Reasoning
 Avoid lock recursion
 Avoid ABBA deadlock

Implications
 Managing mutual access of devices and backends will be tricky

Slide 10 2012-11-07 © Siemens AG, Corporate TechnologyJan Kiszka

Critical BQL Zones (from last year's talk)

CPUState
 Read/write access
 cpu_single_env

PIO/MMIO request-to-device dispatching

Coalesced MMIO flushing

Back-end access
 TX on network layer
 Write to character device
 Timer setup, etc.

Back-end events (iothread jobs)
 Network RX, read from chardev, timer signals, …

IRQ delivery
 Raising/lowering from device model to IRQ chip
 Injection into VCPU (if user space IRQ chips)

Slide 11 2012-11-07 © Siemens AG, Corporate TechnologyJan Kiszka

Memory Region Access Dispatching
(by Liu Ping Fan, simplified version)

 address_space.lock()
 region_section = look_up(address)
 reference_held = region_section.reference()
 address_space.unlock()
 if (reference_held) { /* means: use fine grained locking */
 region_section.access_handler(...)
 region_section.unreference()
 } else { /* use BQL */
 bql.lock()
 address_space.lock()
 region_section = look_up(address)
 address_space.unlock()
 region_section.access_handler(...)
 bql.unlock()
 }

Slide 12 2012-11-07 © Siemens AG, Corporate TechnologyJan Kiszka

Memory Region Reconfiguration

 add/remove/enable_memory_region()
 for_each_address_space()
 address_space.lock()
 address_space.update_topology()
 address_space.unlock()

Implications
 May but need not run under BQL
 Access possible after disabling/removing
 Memory region must not vanish after removal

Address space locking alternatives
 RCU

=> accelerates read path
 Stop VM

=> cannot be triggerd from region access handlers

Slide 13 2012-11-07 © Siemens AG, Corporate TechnologyJan Kiszka

Handling Destruction

Referencing section locks down memory region owner
 Object (opaque) addressed via callback must not vanish
 Proposal by Liu Ping Fan

 New memory region ops for
reference/unreference

 Region owner implements callbacks
to reference QOM object (e.g. device)
=> Boilerplate code in device models

 Alternative: pass QOM object (not qdev!)
 ...replacing opaque
 ...in addition to opaque, as “owner”

Object destruction on last reference release

Challenge: Race between destruction and callback execution
 Rule: callback must not “re-activate” object

Slide 14 2012-11-07 © Siemens AG, Corporate TechnologyJan Kiszka

Prevent Dispatch Nesting

Prevention approach
 Reject nested MMIO access, still allowing RAM access
 Uses thread local variable to track nesting

Impact
 Lock recursion
 ABBA deadlock between devices
 May prevent few valid corner cases

(still looking for examples...)

Device A, MMIO write

device.lock()
mmio_write()

Device B, MMIO write

device.lock()
mmio_write()

Slide 15 2012-11-07 © Siemens AG, Corporate TechnologyJan Kiszka

Generalization:
Event Dispatching & Callback Management

Reuse these patterns!

Candidates
 Memory regions
 Timers
 File descriptor callbacks
 Event notifiers
 …

Slide 16 2012-11-07 © Siemens AG, Corporate TechnologyJan Kiszka

Locking of Front Ends and Back Ends –
Separate Locks

Device A, MMIO write

device.lock()
qemu_mod_timer()

Alarm timer X, modify

timer.lock()
modifiy_timer_list
set_alarm_timer
...

Alarm timer X, timer thread

wait_expiry()
timer.lock()
callback = lookup_n_ref()
timer.unlock()
callback()

Device A, timer handler

device.lock()
handle_timeout()
...

Slide 17 2012-11-07 © Siemens AG, Corporate TechnologyJan Kiszka

Locking of Front Ends and Back Ends –
Back End as Library

Device A, MMIO write

device.lock()
qemu_mod_timer()

Alarm timer X, modify

modifiy_timer_list
set_alarm_timer
...

Alarm timer X, expiry

callback = lookup(timer)
callback()

Device A, timer handler

handle_timeout()
...

Device A, timer thread

wait_event()
device.lock()
alarm_timer_check()

Slide 18 2012-11-07 © Siemens AG, Corporate TechnologyJan Kiszka

“Let's use glib's main loop!”

Advantages
 Abstractions for event handling

on all supported host platforms
 Can obsolete many lines of code in QEMU

Show-stopper
 Uses internal locks in an uncontrollable way
 Locks are incompatible with RT prioritization
=> OK for main (best effort) I/O thread,
 no-go for real-time I/O paths

Slide 19 2012-11-07 © Siemens AG, Corporate TechnologyJan Kiszka

Managing Legacy

Motivation:
BQL will be present for a long time,
maybe forever

How to create BQL-free services?
 Keep existing interfaces
 Provide BQL-free alternatives
=> Existing code continues to work
 (TCG, device models, …)
=> No need to convert “uninteresting” subsystems
 (UI, slirp, ...)

Ludmiła Pilecka, licensed under CC BY-3.0

Slide 20 2012-11-07 © Siemens AG, Corporate TechnologyJan Kiszka

Direct IRQ Forwarding (slide from last year)

Typical IRQ path
 Device changes level / generates edge
 IRQ routers (PCI host, bridges, IRQ remapper, etc.)

forward to interrupt controller
 Interrupt controller forwards to CPU
=> Routing involves multiple device models,

i.e. potentially multiple critical sections

Cannot take the long road if source & sink are in-kernel
 Hacks exist to explore and monitor routes – on x86
=> Generic mechanism required

Fast path from device to target CPU
 No interaction with routing devices
 State changes (reroutes, blockings) reported to subscribers
 Routing device states can be updated on demand

PCI-specific
workaround
merged for
vfio & pci-assign

Slide 21 2012-11-07 © Siemens AG, Corporate TechnologyJan Kiszka

Scenario:
(Partially) Decoupled PC RTC Device Model

Use case
 Real-time capable periodic timer

Requirements
 BQL-free periodic timer IRQ
 BQL-free read of register C (IRQ cause)
 BQL-free write of index register

Derived requirements
 BQL-free PIO dispatching
 BQL-free alarm timer backend
 Strategy to avoid complete conversion

Slide 22 2012-11-07 © Siemens AG, Corporate TechnologyJan Kiszka

Scalable Clock/Timer Subsystem

Clock issues
 CLOCK_REALTIME works without locks
 CLOCK_HOST requires dedicated lock for reset detection
 CLOCK_VIRTUAL requires lock for timers_state –

but then stumbles over icount

Timer issues
 Multi-instance support required,

binding to separate threads
 Preferred future model yet open

 timerfd (+ current signal code as fallback)
 select/poll timeouts

Slide 23 2012-11-07 © Siemens AG, Corporate TechnologyJan Kiszka

Prototype Results

First cut-through
 Unlocked PIO dispatch
 Flag controls BQL need per memory region
 Multi-instance alarm timer (dynticks only)
 mc146818rtc changes^Whacks
=>Guest accepted RTC as reliable clock source

Not considered (means: left broken behind)
 PIO hotplug => keep hands off devices!
 HPET control over RTC => -no-hpet
 Lost tick compensation => -global [...].lost_tick_policy=discard
 VM-clock based RTC => -rtc clock=host|rt
 IRQ delivery in TCG mode => -enable-kvm

Slide 24 2012-11-07 © Siemens AG, Corporate TechnologyJan Kiszka

Summary

Down with the BQL!
 Limits I/O scalability
 Prevents RT use cases

Locking is hard, so let's use more of it!
 Fine grained locking can help
 Strict ordering rules, nesting prevention required

Lots of fun ahead!
 Subsystems require BQL-free interfaces
 Device models need to be converted
 Likely some tricky corner cases remaining...

Work toward cut-through!
 Generic show case needed, e.g. low-latency networking via E1000
 Further suggestions welcome => RT-KVM BoF

Slide 25 2012-11-07 © Siemens AG, Corporate TechnologyJan Kiszka

Any Questions?

Thank you!

	Slide 1
	Agenda
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

