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Agenda

 Motivation
 Locking rules

 Memory access dispatching

 Back end / front end interaction

 Exemplary cut-through
 Conclusion
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Motivation:
Concurrency in QEMU/KVM
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BQL – One after the other
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Pros & Cons

Limitations
 Scalability bottleneck for high-speed I/O
 Causes high latencies,

unacceptable for real-time workloads

Benefits
 Simple model, easier to get right
 Well confined, most subsystems do not need to bother
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Requirements for New Concurrency Scheme

Improvements for scalability and latency
 Enable decoupled I/O paths with different priorities
 Flexible locking policies, also allowing lock-free schemes

Integration / migration of BQL-dependent components
 Device models
 I/O back ends & timers
 TCG system & user emulation

Compact & comprehensible concept
 Consistent scheme with few or no exceptions
 Low impact on device models
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Fine-grained Locking –
and all will be good!?

Source: Glauber Costa
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Lock Ordering Rules

Big before small
 Big = coarse-grained, small = fine-grained

Reasoning
 Ordering avoids ABBA
 Risk of priority inversions:

  Waiting on big lock while holding small one
  turns small into big

Implications
 BQL-dependent services cannot be called while holding finer locks
 While holding the BQL, any lock can be taken in addition
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Lock Ordering Rules (2)

While holding lock A, do not call anything that takes lock B
if you can be called back to take A while B is locked

 Examples:
  Device A triggers access to device B triggers access to Device A
or
  Context 1: back end A triggers access to device B
  Context 2: device B triggers access to back end A

Reasoning
 Avoid lock recursion
 Avoid ABBA deadlock

Implications
 Managing mutual access of devices and backends will be tricky
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Critical BQL Zones (from last year's talk)

CPUState
 Read/write access
 cpu_single_env

PIO/MMIO request-to-device dispatching

Coalesced MMIO flushing

Back-end access
 TX on network layer
 Write to character device
 Timer setup, etc.

Back-end events (iothread jobs)
 Network RX, read from chardev, timer signals, …

IRQ delivery
 Raising/lowering from device model to IRQ chip
 Injection into VCPU (if user space IRQ chips)
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Memory Region Access Dispatching
(by Liu Ping Fan, simplified version)

    address_space.lock()
    region_section = look_up(address)
    reference_held = region_section.reference()
    address_space.unlock()
    if (reference_held) {                /* means: use fine grained locking */
        region_section.access_handler(...)
        region_section.unreference()
    } else {                                      /* use BQL */
        bql.lock()
        address_space.lock()
        region_section = look_up(address)
        address_space.unlock()
        region_section.access_handler(...)
        bql.unlock()
    }
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Memory Region Reconfiguration

    add/remove/enable_memory_region()
    for_each_address_space()
        address_space.lock()
        address_space.update_topology()
        address_space.unlock()

Implications
 May but need not run under BQL
 Access possible after disabling/removing
 Memory region must not vanish after removal

Address space locking alternatives
 RCU

=> accelerates read path
 Stop VM

=> cannot be triggerd from region access handlers
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Handling Destruction

Referencing section locks down memory region owner
 Object (opaque) addressed via callback must not vanish
 Proposal by Liu Ping Fan

 New memory region ops for
reference/unreference

 Region owner implements callbacks
to reference QOM object (e.g. device)
=> Boilerplate code in device models

 Alternative: pass QOM object (not qdev!)
 ...replacing opaque
 ...in addition to opaque, as “owner”

Object destruction on last reference release

Challenge: Race between destruction and callback execution
 Rule: callback must not “re-activate” object
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Prevent Dispatch Nesting

Prevention approach
 Reject nested MMIO access, still allowing RAM access
 Uses thread local variable to track nesting

Impact
 Lock recursion
 ABBA deadlock between devices
 May prevent few valid corner cases

(still looking for examples...)

Device A, MMIO write

device.lock()
mmio_write()

Device B, MMIO write

device.lock()
mmio_write()
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Generalization:
Event Dispatching & Callback Management

Reuse these patterns!

Candidates
 Memory regions
 Timers
 File descriptor callbacks
 Event notifiers
 …
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Locking of Front Ends and Back Ends –
Separate Locks

Device A, MMIO write

device.lock()
qemu_mod_timer()

Alarm timer X, modify

timer.lock()
modifiy_timer_list
set_alarm_timer
...

Alarm timer X, timer thread

wait_expiry()
timer.lock()
callback = lookup_n_ref()
timer.unlock()
callback()

Device A, timer handler

device.lock()
handle_timeout()
...
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Locking of Front Ends and Back Ends –
Back End as Library

Device A, MMIO write

device.lock()
qemu_mod_timer()

Alarm timer X, modify

modifiy_timer_list
set_alarm_timer
...

Alarm timer X, expiry

callback = lookup(timer)
callback()

Device A, timer handler

handle_timeout()
...

Device A, timer thread

wait_event()
device.lock()
alarm_timer_check()
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“Let's use glib's main loop!”

Advantages
 Abstractions for event handling

on all supported host platforms
 Can obsolete many lines of code in QEMU

Show-stopper
 Uses internal locks in an uncontrollable way
 Locks are incompatible with RT prioritization
=> OK for main (best effort) I/O thread,
     no-go for real-time I/O paths
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Managing Legacy

Motivation:
BQL will be present for a long time,
maybe forever

How to create BQL-free services?
 Keep existing interfaces
 Provide BQL-free alternatives
=> Existing code continues to work
     (TCG, device models, …)
=> No need to convert “uninteresting” subsystems
     (UI, slirp, ...)

Ludmiła Pilecka, licensed under CC BY-3.0
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Direct IRQ Forwarding (slide from last year)

Typical IRQ path
 Device changes level / generates edge
 IRQ routers (PCI host, bridges, IRQ remapper, etc.)

forward to interrupt controller
 Interrupt controller forwards to CPU
=> Routing involves multiple device models,

i.e. potentially multiple critical sections

Cannot take the long road if source & sink are in-kernel
 Hacks exist to explore and monitor routes – on x86
=> Generic mechanism required

Fast path from device to target CPU
 No interaction with routing devices
 State changes (reroutes, blockings) reported to subscribers
 Routing device states can be updated on demand

PCI-specific
workaround
merged for
vfio & pci-assign
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Scenario:
(Partially) Decoupled PC RTC Device Model

Use case
 Real-time capable periodic timer

Requirements
 BQL-free periodic timer IRQ
 BQL-free read of register C (IRQ cause)
 BQL-free write of index register

Derived requirements
 BQL-free PIO dispatching
 BQL-free alarm timer backend
 Strategy to avoid complete conversion
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Scalable Clock/Timer Subsystem

Clock issues
 CLOCK_REALTIME works without locks
 CLOCK_HOST requires dedicated lock for reset detection
 CLOCK_VIRTUAL requires lock for timers_state –

but then stumbles over icount

Timer issues
 Multi-instance support required,

binding to separate threads
 Preferred future model yet open

 timerfd (+ current signal code as fallback)
 select/poll timeouts
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Prototype Results

First cut-through
 Unlocked PIO dispatch
 Flag controls BQL need per memory region
 Multi-instance alarm timer (dynticks only)
 mc146818rtc changes^Whacks
=>Guest accepted RTC as reliable clock source

Not considered (means: left broken behind)
 PIO hotplug => keep hands off devices!
 HPET control over RTC => -no-hpet
 Lost tick compensation => -global [...].lost_tick_policy=discard
 VM-clock based RTC => -rtc clock=host|rt
 IRQ delivery in TCG mode => -enable-kvm



Slide 24 2012-11-07 © Siemens AG, Corporate TechnologyJan Kiszka

Summary

Down with the BQL!
 Limits I/O scalability
 Prevents RT use cases

Locking is hard, so let's use more of it!
 Fine grained locking can help
 Strict ordering rules, nesting prevention required

Lots of fun ahead!
 Subsystems require BQL-free interfaces
 Device models need to be converted
 Likely some tricky corner cases remaining...

Work toward cut-through!
 Generic show case needed, e.g. low-latency networking via E1000
 Further suggestions welcome => RT-KVM BoF
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Any Questions?

Thank you!
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