
Last date of modification: Dec 19 2013

By: Vinod Kumar Vavilapalli, Zhijie Shen, Mayank Bansal

YARN solves the generic resource-management problem in a generic fashion. But
today, there is no general solution for recording history of applications that are run
in YARN. ResourceManager has a small cache of completed applications, but once
that is forgotten (after limits are hit or if RM crashed), all history about the finished
applications is lost.

The MapReduce specific JobHistoryServer (JHS) is an implementation that is
custom made for MapReduce - the first and largest application on top of YARN thus
far. At present, it needs to be deployed as a separate trusted server alongside
YARN. A MapReduce JobHistoryServer reads JobHistory files written by individual
MapReduce jobs (MR ApplicationMasters) and so has to coevolve with the
MapReduce runtime. By extension, a version of MapReduce framework has to work
with the corresponding JobHistoryServer of the same version - any changes to the
format of the underlying JobHistoryFiles forces an upgrade of both the MapReduce
framework as well as the JobHistoryServer.

Beyond MapReduce, alternate frameworks on top of YARN including the sample
Distributed Shell, Apache Tez, Giraph on YARN etc don’t have a generic solution for
storing their application history. Today they are left to fend off for themselves by
implementing a custom solution and/or a trusted HistoryServer specific to that
framework - a not so scalable solution. If there is no custom server, they can only
depend on the small cache in RM’s memory till the application is flushed out of the
cache.

Solve the application-history problem in a generic fashion with a generic

YARN–321 : The Generic Application History Service

Problem statement

State of the art

Proposal overview



ApplicationHistoryServer (AHS). There are two parts to it:

Remember generic information about completed apps. Generic information
includes

Application level data like queue name, user information etc in the
ApplicationSubmissionContext

List of ApplicationAttempts run for the app

Information about each ApplicationAttempt

List of containers run under each ApplicationAttempt and

Generic information about each container.

Remember per-framework information about completed apps.

The per-framework information is completely specific to the framework in
question

For e.g, for MapReduce framework, this includes things like number of
map tasks, reduce tasks, counters etc.

This document only proposes a solution for storing the generic
information about applications. Solution for the per-framework
information is tracked in a separate JIRA.

The ResourceManager will write per-​application data to a (very likely) thin and
pluggable HistoryStorage layer.

The ResourceManager will push the data to HistoryStorage using a separate
thread which is flushed after an application finishes.

ApplicationHistory uses a reader HistoryStorage interface to read and serve
generic application data.

Design

Basics

HistoryStorage



HistoryStorage is different from the current RMStateStore (where
ResourceManager’s state is stored for recovery) and so, unlike JobHistory files,
HistoryStorage isn’t used for state-tracking or as a transaction log.

ResourceManager will try to publish information about completed apps in a
best-case manner but there will always be a few edge conditions during restart
of ResourceManager where it is not possible to guarantee the data storage.

HistoryStorage will have APIs for publishing app-​info, retrieving app​info and
listing completed apps.

HistoryStorage may have different implementations
A file based implementation where RM writes per​-app files to HDFS,
which will take care of file-management like we do today in
JobHistoryServer and serve users by reading the data in files

A shared bus implementation where RM directly writes to AHS and AHS
persists them in a storage that it controls ​ Files/DB etc.

Or an implementation where the shared-bus is a database.

To start with, we will have an implementation with a per-​app HDFS file.

Here’s a representation of the components and how they are placed:



Generic Application History Service

Running as process: ApplicationHistoryServer will be a separate process,
which is independent of ResourceManager, such that it doesn’t need to be
synchronous with the life cycle of ResourceManager and deployment is more
flexible.

Caching: Any caching of information should be transparent to the underlying
HistoryStorage.

Filtering: A number of filters should be provided to efficiently retrieve a subset
of the historic application collection in HistoryStorage.

Aggregated logs: Logs will be served and potentially log management (expiry
etc.) by ApplicationHistoryService via an abstract LogService component.

Security: ApplicationHistoryService will have security from start, using tokens
similar to how the JHS does.

ApplicationHistoryServer



User interfaces: Command line clients and/or web​clients will have RPC, web
and REST interfaces to interact with ApplicationHistoryService to get info
about finished applications. Fundamentally, we’ll have two types of interfaces

Per​-app info. And more granular related APIs for getting AppAttempt and
container specific information

List of all apps
Querying list of apps based on user​name, queue​name etc. To start
with, we can either imitate what ResourceManager does in REST
interface only. Ultimately, we’d like to make RPC and web have the
consistent filtering capability. In addition, it may be good to push the
filtering computation to HistoryStorage for better performance.

Miscellaneous


