Matlab图像处理命令

cy199056 贡献于2014-05-18

作者 Administrator  创建于2012-06-06 01:30:00   修改者admin  修改于2014-04-19 12:59:00字数10499

文档摘要: 其中I为原图象的灰度矩阵,J为加噪声后图象的灰度矩阵;一般情况下用(1)中表示即可,(2)中表示是允许修改参数,而(1)中使用缺省参数;至于type可有五种,分别为'gaussian'(高斯白噪声),'localvar'(与图象灰度值有关的零均值高斯白噪声),'poisson'(泊松噪声).
关键词:

Matlab中为图片加噪声的语句是 (1)J = imnoise(I,type); (2)J = imnoise(I,type,parameters); 其中I为原图象的灰度矩阵,J为加噪声后图象的灰度矩阵; 一般情况下用(1)中表示即可,(2)中表示是允许修改参数, 而(1)中使用缺省参数; 至于type可有五种,分别为'gaussian'(高斯白噪声),'localvar' (与图象灰度值有关的零均值高斯白噪声),'poisson'(泊松噪声), 'salt & pepper'(椒盐噪声)和'speckle'(斑点噪声); 具体(2)中参数值的设定可根据个人需要; 其余情况以及若还有不懂请参考Matlab帮助文件。 图像增强 1. 直方图均衡化的 Matlab 实现 1.1 imhist 函数 功能:计算和显示图像的色彩直方图 格式:imhist(I,n) imhist(X,map) 说明:imhist(I,n) 其中,n 为指定的灰度级数目,缺省值为256;imhist(X,map) 就算和显示索引色图像 X 的直方图,map 为调色板。用 stem(x,counts) 同样可以显示直方图。 1.2 imcontour 函数 功能:显示图像的等灰度值图 格式:imcontour(I,n),imcontour(I,v) 说明:n 为灰度级的个数,v 是有用户指定所选的等灰度级向量。 1.3 imadjust 函数 功能:通过直方图变换调整对比度 格式:J=imadjust(I,[low high],[bottom top],gamma) newmap=imadjust(map,[low high],[bottom top],gamma) 说明:J=imadjust(I,[low high],[bottom top],gamma) 其中,gamma 为校正量r,[low high] 为原图像中要变换的灰度范围,[bottom top] 指定了变换后的灰度范围;newmap=imadjust(map,[low high],[bottom top],gamma) 调整索引色图像的调色板 map 。此时若 [low high] 和 [bottom top] 都为2×3的矩阵,则分别调整 R、G、B 3个分量。 1.4 histeq 函数 功能:直方图均衡化 格式:J=histeq(I,hgram) J=histeq(I,n) [J,T]=histeq(I,...) newmap=histeq(X,map,hgram) newmap=histeq(X,map) [new,T]=histeq(X,...) 说明:J=histeq(I,hgram) 实现了所谓“直方图规定化”,即将原是图象 I 的直方图变换成用户指定的向量 hgram 。hgram 中的每一个元素 都在 [0,1] 中;J=histeq(I,n) 指定均衡化后的灰度级数 n ,缺省值为 64;[J,T]=histeq(I,...) 返回从能将图像 I 的灰度直方图变换成 图像 J 的直方图的变换 T ;newmap=histeq(X,map) 和 [new,T]=histeq(X,...) 是针对索引色图像调色板的直方图均衡。 2. 噪声及其噪声的 Matlab 实现 imnoise 函数 格式:J=imnoise(I,type) J=imnoise(I,type,parameter) 说明:J=imnoise(I,type) 返回对图像 I 添加典型噪声后的有噪图像 J ,参数 type 和 parameter 用于确定噪声的类型和相应的参数。 3. 图像滤波的 Matlab 实现 3.1 conv2 函数 功能:计算二维卷积 格式:C=conv2(A,B) C=conv2(Hcol,Hrow,A) C=conv2(...,'shape') 说明:对于 C=conv2(A,B) ,conv2 的算矩阵 A 和 B 的卷积,若 [Ma,Na]=size(A), [Mb,Nb]=size(B), 则 size(C)=[Ma+Mb-1,Na+Nb-1]; C=conv2(Hcol,Hrow,A) 中,矩阵 A 分别与 Hcol 向量在列方向和 Hrow 向量在行方向上进行卷积;C=conv2(...,'shape') 用来指定 conv2 返回二维卷积结果部分,参数 shape 可取值如下: 》full 为缺省值,返回二维卷积的全部结果; 》same 返回二维卷积结果中与 A 大小相同的中间部分; valid 返回在卷积过程中,未使用边缘补 0 部分进行计算的卷积结果部分,当 size(A)>size(B) 时,size(C)=[Ma-Mb+1,Na-Nb+1] 。 3.2 conv 函数 功能:计算多维卷积 格式:与 conv2 函数相同 3.3 filter2函数 功能:计算二维线型数字滤波,它与函数 fspecial 连用 格式:Y=filter2(B,X) Y=filter2(B,X,'shape') 说明:对于 Y=filter2(B,X) ,filter2 使用矩阵 B 中的二维 FIR 滤波器对数据 X 进行滤波,结果 Y 是通过二维互相关计算出来的,其大 小与 X 一样;对于 Y=filter2(B,X,'shape') ,filter2 返回的 Y 是通过二维互相关计算出来的,其大小由参数 shape 确定,其取值如下 : 》full 返回二维相关的全部结果,size(Y)>size(X); 》same 返回二维互相关结果的中间部分,Y 与 X 大小相同; 》valid 返回在二维互相关过程中,未使用边缘补 0 部分进行计算的结果部分,有 size(Y)

下载文档到电脑,查找使用更方便

文档的实际排版效果,会与网站的显示效果略有不同!!

需要 2 金币 [ 分享文档获得金币 ] 0 人已下载

下载文档