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ABSTRACT 
Facebook recently deployed Facebook Messages, its first ever 
user-facing application built on the Apache Hadoop platform. 
Apache HBase is a database-like layer built on Hadoop designed 
to support billions of messages per day. This paper describes the 
reasons why Facebook chose Hadoop and HBase over other 
systems such as Apache Cassandra and Voldemort and discusses 
the application�’s requirements for consistency, availability, 
partition tolerance, data model and scalability. We explore the 
enhancements made to Hadoop to make it a more effective 
realtime system, the tradeoffs we made while configuring the 
system, and how this solution has significant advantages over the 
sharded MySQL database scheme used in other applications at 
Facebook and many other web-scale companies. We discuss the 
motivations behind our design choices, the challenges that we 
face in day-to-day operations, and future capabilities and 
improvements still under development. We offer these 
observations on the deployment as a model for other companies 
who are contemplating a Hadoop-based solution over traditional 
sharded RDBMS deployments.  

Categories and Subject Descriptors 
H.m [Information Systems]: Miscellaneous. 

General Terms 
Management, Measurement, Performance, Distributed Systems, 
Design, Reliability, Languages. 

Keywords 
Data, scalability, resource sharing, distributed file system, 
Hadoop, Hive, HBase, Facebook, Scribe, log aggregation, 
distributed systems. 

 

 

 

1. INTRODUCTION 
Apache Hadoop [1] is a top-level Apache project that includes 
open source implementations of a distributed file system [2] and 
MapReduce that were inspired by Google�’s GFS [5] and 
MapReduce [6] projects. The Hadoop ecosystem also includes 
projects like Apache HBase [4] which is inspired by Google�’s 
BigTable, Apache Hive [3], a data warehouse built on top of 
Hadoop, and Apache ZooKeeper [8], a coordination service for 
distributed systems. 

At Facebook, Hadoop has traditionally been used in conjunction 
with Hive for storage and analysis of large data sets. Most of this 
analysis occurs in offline batch jobs and the emphasis has been on 
maximizing throughput and efficiency. These workloads typically 
read and write large amounts of data from disk sequentially. As 
such, there has been less emphasis on making Hadoop performant 
for random access workloads by providing low latency access to 
HDFS. Instead, we have used a combination of large clusters of 
MySQL databases and caching tiers built using memcached[9]. In 
many cases, results from Hadoop are uploaded into MySQL or 
memcached for consumption by the web tier. 

Recently, a new generation of applications has arisen at Facebook 
that require very high write throughput and cheap and elastic 
storage, while simultaneously requiring low latency and disk 
efficient sequential and random read performance. MySQL 
storage engines are proven and have very good random read 
performance, but typically suffer from low random write 
throughput. It is difficult to scale up our MySQL clusters rapidly 
while maintaining good load balancing and high uptime. 
Administration of MySQL clusters requires a relatively high 
management overhead and they typically use more expensive 
hardware. Given our high confidence in the reliability and 
scalability of HDFS, we began to explore Hadoop and HBase for 
such applications. 

The first set of applications requires realtime concurrent, but 
sequential, read access to a very large stream of realtime data 
being stored in HDFS. An example system generating and storing 
such data is Scribe [10], an open source distributed log 
aggregation service created by and used extensively at Facebook. 
Previously, data generated by Scribe was stored in expensive and 
hard to manage NFS servers. Two main applications that fall into 
this category are Realtime Analytics [11] and MySQL backups. 
We have enhanced HDFS to become a high performance low 
latency file system and have been able to reduce our use of 
expensive file servers. 
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The second generation of non-MapReduce Hadoop applications 
needed to dynamically index a rapidly growing data set for fast 
random lookups. One primary example of such an application is 
Facebook Messages [12]. Facebook Messages gives every 
Facebook user a facebook.com email address, integrates the 
display of all e-mail, SMS and chat messages between a pair or 
group of users, has strong controls over who users receive 
messages from, and is the foundation of a Social Inbox. In 
addition, this new application had to be suited for production use 
by more than 500 million people immediately after launch and 
needed to scale to many petabytes of data with stringent uptime 
requirements. We decided to use HBase for this project. HBase in 
turn leverages HDFS for scalable and fault tolerant storage and 
ZooKeeper for distributed consensus.  

In the following sections we present some of these new 
applications in more detail and why we decided to use Hadoop 
and HBase as the common foundation technologies for these 
projects. We describe specific improvements made to HDFS and 
HBase to enable them to scale to Facebook�’s workload and 
operational considerations and best practices around using these 
systems in production. Finally we discuss ongoing and future 
work in these projects. 

2. WORKLOAD TYPES 
Before deciding on a particular software stack and whether or not 
to move away from our MySQL-based architecture, we looked at 
a few specific applications where existing solutions may be 
problematic. These use cases would have workloads that are 
challenging to scale because of very high write throughput, 
massive datasets, unpredictable growth, or other patterns that may 
be difficult or suboptimal in a sharded RDBMS environment. 

2.1 Facebook Messaging 
The latest generation of Facebook Messaging combines existing 
Facebook messages with e-mail, chat, and SMS. In addition to 
persisting all of these messages, a new threading model also 
requires messages to be stored for each participating user. As part 
of the application server requirements, each user will be sticky to 
a single data center. 

2.1.1 High Write Throughput 
With an existing rate of millions of messages and billions of 
instant messages every day, the volume of ingested data would be 
very large from day one and only continue to grow. The 
denormalized requirement would further increase the number of 
writes to the system as each message could be written several 
times. 

2.1.2 Large Tables 
As part of the product requirements, messages would not be 
deleted unless explicitly done so by the user, so each mailbox 
would grow indefinitely. As is typical with most messaging 
applications, messages are read only a handful of times when they 
are recent, and then are rarely looked at again. As such, a vast 
majority would not be read from the database but must be 
available at all times and with low latency, so archiving would be 
difficult. 

Storing all of a user�’s thousands of messages meant that we�’d 
have a database schema that was indexed by the user with an 
ever-growing list of threads and messages. With this type of 

random write workload, write performance will typically degrade 
in a system like MySQL as the number of rows in the table 
increases. The sheer number of new messages would also mean a 
heavy write workload, which could translate to a high number of 
random IO operations in this type of system. 

2.1.3 Data Migration 
One of the most challenging aspects of the new Messaging 
product was the new data model. This meant that all existing 
user�’s messages needed to be manipulated and joined for the new 
threading paradigm and then migrated. The ability to perform 
large scans, random access, and fast bulk imports would help to 
reduce the time spent migrating users to the new system. 

2.2 Facebook Insights 
Facebook Insights provides developers and website owners with 
access to real-time analytics related to Facebook activity across 
websites with social plugins, Facebook Pages, and Facebook Ads. 

Using anonymized data, Facebook surfaces activity such as 
impressions, click through rates and website visits. These 
analytics can help everyone from businesses to bloggers gain 
insights into how people are interacting with their content so they 
can optimize their services. 

Domain and URL analytics were previously generated in a 
periodic, offline fashion through our Hadoop and Hive data 
warehouse. However, this yields a poor user experience as the 
data is only available several hours after it has occurred. 

2.2.1 Realtime Analytics 
The insights teams wanted to make statistics available to their 
users within seconds of user actions rather than the hours 
previously supported. This would require a large-scale, 
asynchronous queuing system for user actions as well as systems 
to process, aggregate, and persist these events. All of these 
systems need to be fault-tolerant and support more than a million 
events per second. 

2.2.2 High Throughput Increments 
To support the existing insights functionality, time and 
demographic-based aggregations would be necessary. However, 
these aggregations must be kept up-to-date and thus processed on 
the fly, one event at a time, through numeric counters. With 
millions of unique aggregates and billions of events, this meant a 
very large number of counters with an even larger number of 
operations against them. 

2.3 Facebook Metrics System (ODS) 
At Facebook, all hardware and software feed statistics into a 
metrics collection system called ODS (Operations Data Store). 
For example, we may collect the amount of CPU usage on a given 
server or tier of servers, or we may track the number of write 
operations to an HBase cluster. For each node or group of nodes 
we track hundreds or thousands of different metrics, and 
engineers will ask to plot them over time at various granularities. 
While this application has hefty requirements for write 
throughput, some of the bigger pain points with the existing 
MySQL-based system are around the resharding of data and the 
ability to do table scans for analysis and time roll-ups. 



2.3.1 Automatic Sharding 
The massive number of indexed and time-series writes and the 
unpredictable growth patterns are difficult to reconcile on a 
sharded MySQL setup. For example, a given product may only 
collect ten metrics over a long period of time, but following a 
large rollout or product launch, the same product may produce 
thousands of metrics. With the existing system, a single MySQL 
server may suddenly be handling much more load than it can 
handle, forcing the team to manually re-shard data from this 
server onto multiple servers.  

2.3.2 Fast Reads of Recent Data and Table Scans 
A vast majority of reads to the metrics system is for very recent, 
raw data, however all historical data must also be available. 
Recently written data should be available quickly, but the entire 
dataset will also be periodically scanned in order to perform time-
based rollups. 

3. WHY HADOOP AND HBASE 
The requirements for the storage system from the workloads 
presented above can be summarized as follows (in no particular 
order): 

1. Elasticity: We need to be able to add incremental capacity to 
our storage systems with minimal overhead and no downtime. In 
some cases we may want to add capacity rapidly and the system 
should automatically balance load and utilization across new 
hardware.  

2. High write throughput: Most of the applications store (and 
optionally index) tremendous amounts of data and require high 
aggregate write throughput. 

3. Efficient and low-latency strong consistency semantics 
within a data center: There are important applications like 
Messages that require strong consistency within a data center. 
This requirement often arises directly from user expectations. For 
example �‘unread�’ message counts displayed on the home page 
and the messages shown in the inbox page view should be 
consistent with respect to each other. While a globally distributed 
strongly consistent system is practically impossible, a system that 
could at least provide strong consistency within a data center 
would make it possible to provide a good user experience. We 
also knew that (unlike other Facebook applications), Messages 
was easy to federate so that a particular user could be served 
entirely out of a single data center making strong consistency 
within a single data center a critical requirement for the Messages 
project. Similarly, other projects, like realtime log aggregation, 
may be deployed entirely within one data center and are much 
easier to program if the system provides strong consistency 
guarantees. 

4. Efficient random reads from disk: In spite of the 
widespread use of application level caches (whether embedded or 
via memcached), at   Facebook scale, a lot of accesses miss the 
cache and hit the back-end storage system. MySQL is very 
efficient at performing random reads from disk and any new 
system would have to be comparable. 

5. High Availability and Disaster Recovery: We need to 
provide a service with very high uptime to users that covers both 
planned and unplanned events (examples of the former being 
events like software upgrades and addition of hardware/capacity 

and the latter exemplified by failures of hardware components). 
We also need to be able to tolerate the loss of a data center with 
minimal data loss and be able to serve data out of another data 
center in a reasonable time frame. 

6. Fault Isolation: Our long experience running large farms of 
MySQL databases has shown us that fault isolation is critical. 
Individual databases can and do go down, but only a small 
fraction of users are affected by any such event. Similarly, in our 
warehouse usage of Hadoop, individual disk failures affect only a 
small part of the data and the system quickly recovers from such 
faults. 

 

7. Atomic read-modify-write primitives: Atomic increments 
and compare-and-swap APIs have been very useful in building 
lockless concurrent applications and are a must have from the 
underlying storage system. 

8. Range Scans: Several applications require efficient retrieval 
of a set of rows in a particular range. For example all the last 100 
messages for a given user or the hourly impression counts over 
the last 24 hours for a given advertiser. 

It is also worth pointing out non-requirements: 

1. Tolerance of network partitions within a single data 
center: Different system components are often inherently 
centralized. For example, MySQL servers may all be located 
within a few racks, and network partitions within a data center 
would cause major loss in serving capabilities therein. Hence 
every effort is made to eliminate the possibility of such events at 
the hardware level by having a highly redundant network design. 

2. Zero Downtime in case of individual data center failure: In 
our experience such failures are very rare, though not impossible. 
In a less than ideal world where the choice of system design boils 
down to the choice of compromises that are acceptable, this is one 
compromise that we are willing to make given the low occurrence 
rate of such events. 

3. Active-active serving capability across different data 
centers: As mentioned before, we were comfortable making the 
assumption that user data could be federated across different data 
centers (based ideally on user locality). Latency (when user and 
data locality did not match up) could be masked by using an 
application cache close to the user. 
Some less tangible factors were also at work. Systems with 
existing production experience for Facebook and in-house 
expertise were greatly preferred. When considering open-source 
projects, the strength of the community was an important factor. 
Given the level of engineering investment in building and 
maintaining systems like these �– it also made sense to choose a 
solution that was broadly applicable (rather than adopt point 
solutions based on differing architecture and codebases for each 
workload). 

After considerable research and experimentation, we chose 
Hadoop and HBase as the foundational storage technology for 
these next generation applications. The decision was based on the 
state of HBase at the point of evaluation as well as our confidence 
in addressing the features that were lacking at that point via in-
house engineering. HBase already provided a highly consistent, 
high write-throughput key-value store. The HDFS NameNode 



stood out as a central point of failure, but we were confident that 
our HDFS team could build a highly-available NameNode in a 
reasonable time-frame, and this would be useful for our 
warehouse operations as well. Good disk read-efficiency seemed 
to be within striking reach (pending adding Bloom filters to 
HBase�’s version of LSM[13] Trees, making local DataNode reads 
efficient and caching NameNode metadata). Based on our 
experience operating the Hive/Hadoop warehouse, we knew 
HDFS was stellar in tolerating and isolating faults in the disk 
subsystem. The failure of entire large HBase/HDFS clusters was a 
scenario that ran against the goal of fault-isolation, but could be 
considerably mitigated by storing data in smaller HBase clusters. 
Wide area replication projects, both in-house and within the 
HBase community, seemed to provide a promising path to 
achieving disaster recovery. 

HBase is massively scalable and delivers fast random writes as 
well as random and streaming reads. It also provides row-level 
atomicity guarantees, but no native cross-row transactional 
support. From a data model perspective, column-orientation gives 
extreme flexibility in storing data and wide rows allow the 
creation of billions of indexed values within a single table. HBase 
is ideal for workloads that are write-intensive, need to maintain a 
large amount of data, large indices, and maintain the flexibility to 
scale out quickly. 

4. REALTIME HDFS  
HDFS was originally designed to be a file system to support 
offline MapReduce application that are inherently batch systems 
and where scalability and streaming performance are most 
critical. We have seen the advantages of using HDFS: its linear 
scalability and fault tolerance results in huge cost savings across 
the enterprise. The new, more realtime and online usage of HDFS 
push new requirements and now use HDFS as a general-purpose 
low-latency file system. In this section, we describe some of the 
core changes we have made to HDFS to support these new 
applications. 

4.1 High Availability - AvatarNode 
The design of HDFS has a single master �– the NameNode. 
Whenever the master is down, the HDFS cluster is unusable until 
the NameNode is back up. This is a single point of failure and is 
one of the reason why people are reluctant to deploy HDFS for an 
application whose uptime requirement is 24x7. In our experience, 
we have seen that new software upgrades of our HDFS server 
software is the primary reason for cluster downtime. Since the 
hardware is not entirely unreliable and the software is well tested 
before it is deployed to production clusters, in our four years of 
administering HDFS clusters, we have encountered only one 
instance when the NameNode crashed, and that happened because 
of a bad filesystem where the transaction log was stored. 

4.1.1 Hot Standby - AvatarNode 
At startup time, the HDFS NameNode reads filesystem metadata 
from a file called the fsimage file. This metadata contains the 
names and metadata of every file and directory in HDFS. 
However, the NameNode does not persistently store the locations 
of each block. Thus, the time to cold-start a NameNode consists 
of two main parts: firstly, the reading of the file system image, 
applying the transaction log and saving the new file system image 
back to disk; and secondly, the processing of block reports from a 
majority of DataNodes to recover all known block locations of 

every block in the cluster. Our biggest HDFS cluster [16] has 
about 150 million files and we see that the two above stages take 
an equal amount of time. In total, a cold-restart takes about 45 
minutes. 

The BackupNode available in Apache HDFS avoids reading the 
fsimage from disk on a failover, but it still needs to gather block 
reports from all DataNodes. Thus, the failover times for the 
BackupNode solution can be as high as 20 minutes. Our goal is to 
do a failover within seconds; thus, the BackupNode solution does 
not meet our goals for fast failover. Another problem is that the 
NameNode synchronously updates the BackupNode on every 
transaction, thus the reliability of the entire system could now be 
lower than the reliability of the standalone NameNode. Thus, the 
HDFS AvatarNode was born. 

 

 
Figure 1 

 

A HDFS cluster has two AvatarNodes: the Active AvatarNode 
and the Standby AvatarNode. They form an active-passive-hot-
standby pair. An AvatarNode is a wrapper around a normal 
NameNode. All HDFS clusters at Facebook use NFS to store one 
copy of the filesystem image and one copy of the transaction log. 
The Active AvatarNode writes its transactions to the transaction 
log stored in a NFS filesystem. At the same time, the Standby 
opens the same transaction log for reading from the NFS file 
system and starts applying transactions to its own namespace thus 
keeping its namespace as close to the primary as possible. The 
Standby AvatarNode also takes care of check-pointing the 
primary and creating a new filesystem image so there is no 
separate SecondaryNameNode anymore. 

The DataNodes talk to both Active AvatarNode and Standby 
AvatarNode instead of just talking to a single NameNode. That 
means that the Standby AvatarNode has the most recent state 
about block locations as well and can become Active in well 
under a minute. The Avatar DataNode sends heartbeats, block 
reports and block received to both AvatarNodes. 
AvatarDataNodes are integrated with ZooKeeper and they know 
which one of the AvatarNodes serves as the primary and they 
only process replication/deletion commands coming from the 
primary AvatarNode. Replication or deletion requests coming 
from the Standby AvatarNode are ignored. 



4.1.2 Enhancements to HDFS transaction logging 
HDFS records newly allocated block-ids to the transaction log 
only when the file is closed or sync/flushed. Since we wanted to 
make the failover as transparent as possible, the Standby has to 
know of each block allocation as it happens, so we write a new 
transaction to the edits log on each block allocation. This allows a 
client to continue writing to files that it was writing at the moment 
just before the failover.  

When the Standby reads transactions from the transaction log that 
is being written by the Active AvatarNode, there is a possibility 
that it reads a partial transaction. To avoid this problem we had to 
change the format of the edits log to have a transaction length, 
transaction id and the checksum per each transaction written to 
the file. 

4.1.3 Transparent Failover: DAFS 
We developed a DistributedAvatarFileSystem (DAFS), a layered 
file system on the client that can provide transparent access to 
HDFS across a failover event. DAFS is integrated with 
ZooKeeper. ZooKeeper holds a zNode with the physical address 
of the Primary AvatarNode for a given cluster. When the client is 
trying to connect to the HDFS cluster (e.g. dfs.cluster.com), 
DAFS looks up the relevant zNode in ZooKeeper that holds the 
actual address of the Primary AvatarNode (dfs-0.cluster.com) and 
directs all the succeeding calls to the Primary AvatarNode. If a 
call encounters a network error, DAFS checks with ZooKeeper 
for a change of the primary node. In case there was a failover 
event, the zNone will now contain the name of the new Primary 
AvatarNode. DAFS will now retry the call against the new 
Primary AvatarNode. We do not use the ZooKeeper subscription 
model because it would require much more resources dedicated 
on ZooKeeper servers. If a failover is in progress, then DAFS will 
automatically block till the failover is complete. A failover event 
is completely transparent to an application that is accessing data 
from HDFS. 

4.2 Hadoop RPC compatibility 
Early on, we were pretty clear that we will be running multiple 
Hadoop clusters for our Messages application. We needed the 
capability to deploy newer versions of the software on different 
clusters at different points in time. This required that we enhance 
the Hadoop clients to be able to interoperate with Hadoop servers 
running different versions of the Hadoop software. The various 
server process within the same cluster run the same version of the 
software. We enhanced the Hadoop RPC software to 
automatically determine the version of the software running on 
the server that it is communicating with, and then talk the 
appropriate protocol while talking to that server. 

4.3 Block Availability: Placement Policy 
The default HDFS block placement policy, while rack aware, is 
still minimally constrained. Placement decision for non-local 
replicas is random, it can be on any rack and within any node of 
the rack. To reduce the probability of data loss when multiple 
simultaneous nodes fail, we implemented a pluggable block 
placement policy that constrains the placement of block replicas 
into smaller, configurable node groups. This allows us to reduce 
the probability of data loss by orders of magnitude, depending on 
the size chosen for the groups. Our strategy is to define a window 
of racks and machines where replicas can be placed around the 
original block, using a logical ring of racks, each one containing a 

logical ring of machines. More details, the math, and the scripts 
used to calculate these numbers can be found at HDFS-1094[14]. 
We found that the probability of losing a random block increases 
with the size of the node group. In our clusters, we started to use a 
node group of (2, 5), i.e. a rack window size of 2 and a machine 
window size of 5. We picked this choice because the probability 
of data loss is about a hundred times lesser than the default block 
placement policy. 

4.4 Performance Improvements for a 
Realtime Workload 
HDFS is originally designed for high-throughput systems like 
MapReduce. Many of its original design principles are to improve 
its throughput but do not focus much on response time. For 
example, when dealing with errors, it favors retries or wait over 
fast failures. To support realtime applications, offering reasonable 
response time even in case of errors becomes the major challenge 
for HDFS.  

4.4.1 RPC Timeout 
One example is how Hadoop handles RPC timeout. Hadoop uses 
tcp connections to send Hadoop-RPCs. When a RPC client detects 
a tcp-socket timeout, instead of declaring a RPC timeout, it sends 
a ping to the RPC server. If the server is still alive, the client 
continues to wait for a response. The idea is that if a RPC server 
is experiencing a communication burst, a temporary high load, or 
a stop the world GC, the client should wait and throttles its traffic 
to the server. On the contrary, throwing a timeout exception or 
retrying the RPC request causes tasks to fail unnecessarily or add 
additional load to a RPC server.  

However, infinite wait adversely impacts any application that has 
a real time requirement. An HDFS client occasionally makes an 
RPC to some Dataode, and it is bad when the DataNode fails to 
respond back in time and the client is stuck in an RPC. A better 
strategy is to fail fast and try a different DataNode for either 
reading or writing. Hence, we added the ability for specifying an 
RPC-timeout when starting a RPC session with a server. 

4.4.2 Recover File Lease 
Another enhancement is to revoke a writer�’s lease quickly. HDFS 
supports only a single writer to a file and the NameNode 
maintains leases to enforce this semantic. There are many cases 
when an application wants to open a file to read but it was not 
closed cleanly earlier. Previously this was done by repetitively 
calling HDFS-append on the log file until the call succeeds. The 
append operations triggers a file�’s soft lease to expire. So the 
application had to wait for a minimum of the soft lease period 
(with a default value of one minute) before the HDFS name node 
revokes the log file�’s lease. Secondly, the HDFS-append 
operation has additional unneeded cost as establishing a write 
pipeline usually involves more than one DataNode. When an error 
occurs, a pipeline establishment might take up to 10 minutes. 

To avoid the HDFS-append overhead, we added a lightweight 
HDFS API called recoverLease that revokes a file�’s lease 
explicitly. When the NameNode receives a recoverLease request, 
it immediately changes the file�’s lease holder to be itself. It then 
starts the lease recovery process. The recoverLease rpc returns the 
status whether the lease recovery was complete. The application 
waits for a success return code from recoverLease before 
attempting to read from the file.  



4.4.3 Reads from Local Replicas 
There are times when an application wants to store data in HDFS 
for scalability and performance reasons. However, the latency of 
reads and writes to an HDFS file is an order of magnitude greater 
than reading or writing to a local file on the machine. To alleviate 
this problem, we implemented an enhancement to the HDFS 
client that detects that there is a local replica of the data and then 
transparently reads data from the local replica without transferring 
the data via the DataNode. This has resulted in  doubling the 
performance profile of a certain workload that uses HBase. 

4.5 New Features 
4.5.1 HDFS sync 
Hflush/sync is an important operation for both HBase and Scribe. 
It pushes the written data buffered at the client side to the write 
pipeline, making the data visible to any new reader and increasing 
the data durability when either the client or any DataNode on the 
pipeline fails. Hflush/sync is a synchronous operation, meaning 
that it does not return until an acknowledgement from the write 
pipeline is received. Since the operation is frequently invoked, 
increasing its efficiency is important. One optimization we have is 
to allow following writes to proceed while an Hflush/sync 
operation is waiting for a reply. This greatly increases the write 
throughput in both HBase and Scribe where a designated thread 
invokes Hflush/sync periodically. 

4.5.2 Concurrent Readers 
We have an application that requires the ability to read a file 
while it is being written to. The reader first talks to the 
NameNode to get the meta information of the file. Since the 
NameNode does not have the most updated information of its last 
block�’s length, the client fetches the information from one of the 
DataNodes where one of its replicas resides. It then starts to read 
the file. The challenge of concurrent readers and writer is how to 
provision the last chunk of data when its data content and 
checksum are dynamically changing. We solve the problem by re-
computing the checksum of the last chunk of data on demand. 

5. PRODUCTION HBASE 
In this section, we�’ll describe some of the important HBase 
enhancements that we have worked on at Facebook related to 
correctness, durability, availability, and performance. 

5.1 ACID Compliance  
Application developers have come to expect ACID compliance, 
or some approximation of it, from their database systems. Indeed, 
strong consistency guarantees was one of the benefits of HBase in 
our early evaluations. The existing MVCC-like read-write 
consistency control (RWCC) provided sufficient isolation 
guarantees and the HLog (write ahead log) on HDFS provided 
sufficient durability. However, some modifications were 
necessary to make sure that HBase adhered to the row-level 
atomicity and consistency of ACID compliance we needed.  

5.1.1 Atomicity 
The first step was to guarantee row-level atomicity. RWCC 
provided most of the guarantees, however it was possible to lose 
these guarantees under node failure. Originally, multiple entries in 
a single row transaction would be written in sequence to the 
HLog. If a RegionServer died during this write, the transaction 

could be partially written. With a new concept of a log transaction 
(WALEdit), each write transaction will now be fully completed or 
not written at all. 

5.1.2 Consistency 
HDFS provides replication for HBase and thus handles most of 
the strong consistency guarantees that HBase needs for our usage. 
During writes, HDFS sets up a pipeline connection to each replica 
and all replicas must ACK any data sent to them. HBase will not 
continue until it gets a response or failure notification. Through 
the use of sequence numbers, the NameNode is able to identify 
any misbehaving replicas and exclude them. While functional, it 
takes time for the NameNode to do this file recovery. In the case 
of the HLog, where forward progress while maintaining 
consistency and durability are an absolute must, HBase will 
immediately roll the log and obtain new blocks if it detects that 
even a single HDFS replica has failed to write data. 

HDFS also provides protection against data corruption. Upon 
reading an HDFS block, checksum validation is performed and 
the entire block is discarded upon a checksum failure. Data 
discard is rarely problematic because two other replicas exist for 
this data. Additional functionality was added to ensure that if all 3 
replicas contain corrupt data the blocks are quarantined for post-
mortem analysis. 

5.2 Availability Improvements 
5.2.1 HBase Master Rewrite 
We originally uncovered numerous issues during kill testing 
where HBase regions would go offline. We soon identified the 
problem: the transient state of the cluster is stored in the memory 
of the currently active HBase master only. Upon losing the 
master, this state is lost. We undertook a large HBase master 
rewrite effort. The critical component of this rewrite was moving 
region assignment information from the master�’s in-memory state 
to ZooKeeper. Since ZooKeeper is quorum written to a majority 
of nodes, this transient state is not lost on master failover and can 
survive multiple server outages. 

5.2.2 Online Upgrades 
The largest cause of cluster downtime was not random server 
deaths, but rather system maintenance. We had a number of 
problems to solve to minimize this downtime.  

First, we discovered over time that RegionServers would 
intermittently require minutes to shutdown after issuing a stop 
request. This intermittent problem was caused by long 
compaction cycles. To address this, we made compactions 
interruptible to favor responsiveness over completion. This 
reduced RegionServer downtime to seconds and gave us a 
reasonable bound on cluster shutdown time. 

Another availability improvement was rolling restarts. Originally, 
HBase only supported full cluster stop and start for upgrades. We 
added rolling restarts script to perform software upgrades one 
server at a time. Since the master automatically reassigns regions 
on a RegionServer stop, this minimizes the amount of downtime 
that our users experience. We fixed numerous edge case issues 
that resulted from this new restart. Incidentally, numerous bugs 
during rolling restarts were related to region offlining and 
reassignment, so our master rewrite with ZooKeeper integration 
helped address a number of issues here as well. 



5.2.3 Distributed Log Splitting 
When a RegionServer dies, the HLogs of that server must be split 
and replayed before its regions can be reopened and made 
available for reads and writes. Previously, the Master would split 
the logs before they were replayed across the remaining 
RegionServers. This was the slowest part of the recovery process 
and because there are many HLogs per server, it could be 
parallelized. Utilizing ZooKeeper to manage the split tasks across 
RegionServers, the Master now coordinates a distributed log split. 
This cut recovery times by an order of magnitude and allows 
RegionServers to retain more HLogs without severely impacting 
failover performance. 

5.3 Performance Improvements 
Data insertion in HBase is optimized for write performance by 
focusing on sequential writes at the occasional expense of 
redundant reads. A data transaction first gets written to a commit 
log and then applied to an in-memory cache called MemStore. 
When the MemStore reaches a certain threshold it is written out 
as an HFile. HFiles are immutable HDFS files containing 
key/value pairs in sorted order. Instead of editing an existing 
HFile, new HFiles are written on every flush and added to a per-
region list. Read requests are issued on these multiple HFiles in 
parallel & aggregated for a final result. For efficiency, these 
HFiles need to be periodically compacted, or merged together, to 
avoid degrading read performance. 

5.3.1 Compaction 
Read performance is correlated with the number of files in a 
region and thus critically hinges on a well-tuned compaction 
algorithm. More subtly, network IO efficiency can also be 
drastically affected if a compaction algorithm is improperly 
tuned. Significant effort went into making sure we had an 
efficient compaction algorithm for our use case. 

Compactions were initially separated into two distinct code paths 
depending upon whether they were minor or major. Minor 
compactions select a subset of all files based on size metrics 
whereas time-based major compactions unconditionally compact 
all HFiles. Previously, only major compactions processed deletes, 
overwrites, and purging of expired data, which meant that minor 
compactions resulted in larger HFiles than necessary, which 
decreases block cache efficiency and penalizes future 
compactions. By unifying the code paths, the codebase was 
simplified and files were kept as small as possible. 

The next task was improving the compaction algorithm. After 
launching to employees, we noticed that our put and sync 
latencies were very high. We discovered a pathological case 
where a 1 GB file would be regularly compacted with three 5 MB 
files to produce a slightly larger file. This network IO waste 
would continue until the compaction queue started to backlog. 
This problem occurred because the existing algorithm would 
unconditionally minor compact the first four HFiles, while 
triggering a minor compaction after 3 HFiles had been reached. 
The solution was to stop unconditionally compacting files above a 
certain size and skip compactions if enough candidate files could 
not be found. Afterwards, our put latency dropped from 25 
milliseconds to 3 milliseconds. 

We also worked on improving the size ratio decision of the 
compaction algorithm. Originally, the compaction algorithm 
would sort by file age and compare adjacent files. If the older file 

was less than 2x the size of the newer file, the compaction 
algorithm with include this file and iterate. However, this 
algorithm had suboptimal behavior as the number and size of 
HFiles increased significantly. To improve, we now include an 
older file if it is within 2x the aggregate size of all newer HFiles. 
This transforms the steady state so that an old HFile will be 
roughly 4x the size of the next newer file, and we consequently 
have a steeper curve while still maintaining a 50% compaction 
ratio.  

5.3.2 Read Optimizations 
As discussed, read performance hinges on keeping the number of 
files in a region low thus reducing random IO operations. In 
addition to utilizing comapctions to keep the number of files on 
disk low, it is also possible to skip certain files for some queries, 
similarly reducing IO operations. 

Bloom filters provide a space-efficient and constant-time method 
for checking if a given row or row and column exists in a given 
HFile. As each HFile is written sequentially with optional 
metadata blocks at the end, the addition of bloom filters fit in 
without significant changes. Through the use of folding, each 
bloom filter is kept as small as possible when written to disk and 
cached in memory. For queries that ask for specific rows and/or 
columns, a check of the cached bloom filter for each HFile can 
allow some files to be completely skipped. 

For data stored in HBase that is time-series or contains a specific, 
known timestamp, a special timestamp file selection algorithm 
was added. Since time moves forward and data is rarely inserted 
at a significantly later time than its timestamp, each HFile will 
generally contain values for a fixed range of time. This 
information is stored as metadata in each HFile and queries that 
ask for a specific timestamp or range of timestamps will check if 
the request intersects with the ranges of each file, skipping those 
which do not overlap. 

As read performance improved significantly with HDFS local file 
reads, it is critical that regions are hosted on the same physical 
nodes as their files. Changes have been made to retain the 
assignment of regions across cluster and node restarts to ensure 
that locality is maintained. 

6. DEPLOYMENT AND OPERATIONAL 
EXPERIENCES 
In the past year, we have gone from running a small HBase test 
cluster with 10 nodes to many clusters running thousands of 
nodes. These deployments are already serving live production 
traffic to millions of users. During the same time frame, we have 
iterated rapidly on the core software (HBase/HDFS) as well as the 
application logic running against HBase. In such a fluid 
environment, our ability to ship high quality software, deploy it 
correctly, monitor running systems and detect and fix any 
anomalies with minimal downtime are critical. This section goes 
into some of the practices and tools that we have used during this 
evolution. 

6.1 Testing 
From early on in our design of an HBase solution, we were 
worried about code stability. We first needed to test the stability 
and durability of the open source HBase code and additionally 
ensure the stability of our future changes. To this end, we wrote 



an HBase testing program. The testing program generated data to 
write into HBase, both deterministically and randomly. The tester 
will write data into the HBase cluster and simultaneously read and 
verify all the data it has added. We further enhanced the tester to 
randomly select and kill processes in the cluster and verify that 
successfully returned database transactions were indeed written. 
This helped catch a lot of issues, and is still our first method of 
testing changes. 

Although our common cluster contains many servers operating in 
a distributed fashion, our local development verification 
commonly consists of unit tests and single-server setups. We were 
concerned about discrepancies between single-server setups and 
truly distributed scenarios. We created a utility called HBase 
Verify to run simple CRUD workloads on a live server. This 
allows us to exercise simple API calls and run load tests in a 
couple of minutes. This utility is even more important for our 
dark launch clusters, where algorithms are first evaluated at a 
large scale. 

6.2 Monitoring and Tools 
As we gained more experience with production usage of HBase, it 
became clear that our primary problem was in consistent 
assignment of regions to RegionServers. Two RegionServers 
could end up serving the same region, or a region may be left 
unassigned. These problems are characterized by inconsistencies 
in metadata about the state of the regions that are stored in 
different places: the META region in HBase, ZooKeeper, files 
corresponding to a region in HDFS and the in-memory state of the 
RegionServers. Even though many of these problems were solved 
systematically and tested extensively as part of the HBase Master 
rewrite (see Section 5.2.1), we were worried about edge cases 
showing up under production load. To that end, we created HBCK 
as a database-level FSCK [17] utility to verify the consistency 
between these different sources of metadata. For the common 
inconsistencies, we added an HBCK �‘fix�’ option to clear the in-
memory state and have the HMaster reassign the inconsistent 
region. Nowadays we run HBCK almost continuously against our 
production clusters to catch problems as early as possible. 

A critical component for cluster monitoring is operational metrics. 
In particular, RegionServer metrics are far more useful for 
evaluating the health of the cluster than HMaster or ZooKeeper 
metrcs. HBase already had a number of metrics exported through 
JMX. However, all the metrics were for short-running operations 
such as log writes and RPC requests. We needed to add metrics to 
monitor long-running events such as compactions, flushes, and 
log splits. A slightly innocuous metric that ended up being critical 
for monitoring was version information. We have multiple 
clusters that often have divergent versions. If a cluster crash 
happens, we need to understand if any functionality was specific 
to that cluster. Also, rolling upgrades mean that the running 
version and the installed version are not necessarily the same. We 
therefore keep track of both versions and signify when they are 
different. 

6.3 Manual versus Automatic Splitting 
When learning a new system, we needed to determine which 
features we should utilize immediately and which features we 
could postpone adopting. HBase offers a feature called automatic 
splitting, which partitions a single region into 2 regions when its 
size grows too large. We decided that automatic splitting was an 
optional feature for our use case and developed manual splitting 

utilities instead. On table creation, we pre-split a table into a 
specific number of equally sized regions. When the average 
region size becomes too large, we initiate rolling splits of these 
regions. We found a number of benefits from this protocol. 

Since our data grows roughly uniform across all regions, it's easy 
for automatic splitting to cause split and compaction storms as the 
regions all roughly hit the same data size at the same time. With 
manual splits, we can stagger splits across time and thereby 
spread out the network IO load typically generated by the splitting 
process. This minimizes impact to production workload. 

Since the number of regions is known at any given point in time, 
long-term debugging and profiling is much easier. It is hard to 
trace the logs to understand region level problems if regions keep 
splitting and getting renamed. 

When we first started using HBase, we would occasionally run 
into problems with Log Recovery where some log files may be 
left unprocessed on region failover. Manual post-mortem recovery 
from such unexpected events is much easier if the regions have 
not been split (automatically) since then. We can go back to the 
affected region and replay unprocessed logs. In doing this, we 
also leverage the Trash facility in HDFS that retains deleted files 
for a configurable time period. 

An obvious question emerges:  doesn�’t manual splitting negate 
one of the main benefits of HBase?  One of the advantages with 
HBase is that splitting is logical not physical. The shared storage 
underneath (HDFS) allows easy reassignment of regions without 
having to copy or move around large datasets. Thus, in HBase, an 
easy way to shed load isn�’t to create more regions but to instead 
add more machines to the cluster. The master would 
automatically reassign existing regions to the new RegionServers 
in a uniform manner without manual intervention. In addition, 
automatic splitting makes sense in applications that don�’t have 
uniform distribution and we plan to utilize it in the future for 
these. 

6.4 Dark Launch 
Migrating from a legacy messaging system offered one major 
advantage: real-world testing capability. At Facebook, we widely 
use a testing/rollout process called �“Dark Launch�” where critical 
back-end functionality is exercised by a subset of the user base 
without exposing any UI changes to them [15]. We used this 
facility to double-write messaging traffic for some users to both 
the legacy infrastructure and HBase. This allowed us to do useful 
performance benchmarks and find practical HBase bottlenecks 
instead of relying purely on artificial benchmarks and estimations. 
Even after product launch, we still found many uses for Dark 
Launch clusters. All code changes normally spend a week running 
on Dark Launch before a production push is considered. 
Additionally, Dark Launch normally handles at least 2x the load 
that we expect our production clusters to handle. Long term 
testing at 2x load allows us to weather multiple traffic spikes and 
verify that HBase can handle outlier peak conditions before we 
vertically scale. 

6.5 Dashboards/ODS integration 
We have metrics being exported by JMX, but we needed an easy 
way to visualize these metrics and analyze cluster health over 
time. We decided to utilize ODS, an internal tool similar to 
Ganglia, to visualize important metrics as line graphs. We have 



one dashboard per cluster, which contains numerous graphs to 
visualize average and outlier behavior. Graphing min/max is vital 
because it identifies misbehaving RegionServers, which may 
cause the application server processing queue to congest. The 
greatest benefit is that we can observe statistics in realtime to 
observe how the cluster reacts to any changes in the workload (for 
example, running a Hadoop MapReduce job or splitting regions). 

Additionally, we have a couple different cross-cluster dashboards 
that we use for high-level analysis. We place vital stats of all 
clusters in a single overview dashboard to provide a broad health 
snapshot. In this dashboard, we currently display four HBase-
specific graphs: Get/Put Latency, Get/Put Count, Files per Store, 
and Compaction Queue size. We also realized after exceeding a 
half-dozen clusters that we needed some way to visualize our 
version differences. We display the HMaster version, HDFS 
Client version, NameNode version, and JobTracker version for 
each cluster on 4 different heat maps. This allows us to scan our 
versions for consistency and sorting allows us to identify legacy 
builds that may have known bugs. 

6.6 Backups at the Application layer 
How do we take regular backups of this large dataset? One option 
is to copy and replicate the data from one HDFS cluster to 
another. Since this approach is not continuous, there is a 
possibility that data is already corrupt in HDFS before the next 
backup event. This is obviously not an acceptable risk. Instead, 
we decided to enhance the application to continuously generate an 
alternate application log. This log is transported via Scribe and 
stored in a separate HDFS cluster that is used for web analytics. 
This is a reliable and time-tested data capture pipeline, especially 
because we have been using the same software stack to capture 
and transport huge volumes of click-logs from our web 
application to our Hive analytics storage. The records in this 
application log are idempotent, and can be applied multiple times 
without any data loss. In the event of a data loss problem in 
HBase, we can replay this log-stream and regenerate the data in 
HBase. 

6.7 Schema Changes 
HBase currently does not support online schema changes to an 
existing table. This means that if we need to add a new column 
family to an existing table, we have to stop access to the table, 
disable the table, add new column families, bring the table back 
online and then restart the load. This is a serious drawback 
because we do not have the luxury of stopping our workload. 
Instead, we have pre-created a few additional column families for 
some our core HBase tables. The application currently does not 
store any data into these column families, but can use them in the 
future. 

6.8 Importing Data 
We initially imported our legacy Message data into HBase by 
issuing normal database puts from a Hadoop job. The Hadoop job 
would saturate the network IO as put requests were sent across 
servers. During alpha release we observed that this method would 
create over 30 minutes of severe latency as the import data 
intermixed with the live traffic. This kind of impact was not 
acceptable�—we needed the ability to import data for millions of 
users without severely affecting latencies for production 
workload. The solution was switching to a bulk import method 
with compression. The Bulk Import method partitions data into 

regions using a map job and the reducer writes data directly to 
LZO-compressed HFiles. The main cause of network traffic 
would then be the shuffle of the map output. This problem was 
solved by GZIP compressing the intermediate map output. 

6.9 Reducing Network IO 
After running in production for a couple months, we quickly 
realized from our dashboards that we were network IO bound. We 
needed some way to analyze where our network IO traffic was 
coming from. We utilized a combination of JMX statistics and log 
scraping to estimate total network IO on a single RegionServer for 
a 24-hour period. We broke down the network traffic across the 
MemStore flush (15%), size-based minor compactions (38%), and 
time-based major compactions (47%). We found a lot of low-
hanging optimizations by observing these ratios. We were able to 
get 40% network IO reduction by simply increasing our major 
compaction interval from every day to every week. We also got 
big gains by excluding certain column families from being logged 
to the HLog. Best effort durability sufficed for data stored in these 
column families. 

7. FUTURE WORK 
The use of Hadoop and HBase at Facebook is just getting started 
and we expect to make several iterations on this suite of 
technologies and continue to optimize for our applications. As we 
try to use HBase for more applications, we have discussed adding 
support for maintenance of secondary indices and summary views 
in HBase. In many use cases, such derived data and views can be 
maintained asynchronously. Many use cases benefit from storing 
a large amount of data in HBase�’s cache and improvements to 
HBase are required to exploit very large physical memory. The 
current limitations in this area arise from issues with using an 
extremely large heap in Java and we are evaluating several 
proposals like writing a slab allocator in Java or managing 
memory via JNI. A related topic is exploiting flash memory to 
extend the HBase cache and we are exploring various ways to 
utilize it including FlashCache [18]. Finally, as we try to use 
Hadoop and HBase for applications that are built to serve the 
same data in an active-active manner across different data centers, 
we are exploring approaches to deal with multi data-center 
replication and conflict resolution. 
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