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Abs t rac t 

Stacked generalization is a general method of 
using a high-level model to combine lower-
level models to achieve greater predictive ac­
curacy. In this paper we address two crucial is­
sues which have been considered to be a 'black 
ar t ' in classification tasks ever since the intro­
duction of stacked generalization in 1992 by 
Wolpert: the type of generalizer that is suitable 
to derive the higher-level model, and the kind of 
attributes that should be used as its input. We 
demonstrate the effectiveness of stacked gener­
alization for combining three different types of 
learning algorithms. 

1 I n t r oduc t i on 
Stacked generalization is a way of combining multiple 
models that have been learned for a classification task 
[Wolpert, 1992]. The first step is to collect the output of 
each model into a new set of data. For each instance in 
the original training set, this data set represents every 
model's prediction of that instance's class, along wi th 
its true classification. During this step, care is taken 
to ensure that the models are formed from a batch of 
training data that does not include the instance in ques­
t ion, in just the same way as ordinary cross-validation. 
The new data is treated as the data for another learning 
problem, and in the second step a learning algorithm is 
employed to solve this problem. In Wolpert's terminol­
ogy, the original data and the models constructed for it 
in the first step are referred to as level-0 data and level-0 
models, respectively, while the set of cross-validated data 
and the second-stage learning algorithm are referred to 
as level-1 data and the level-1 generalizer. 

In this paper, we show how to make stacked gener­
alization work for classification tasks by addressing two 
crucial issues which Wolpert [1992] originally described 
as 'black art ' and have not been resolved since. The two 

issues are (i) the type of attributes that should be used 
to form level-1 data, and (ii) the type of level-1 general­
izer in order to get improved accuracy using the stacked 
generalization method. 

Breiman [1996a] demonstrated the success of stacked 
generalization in the setting of ordinary regression. The 
level-0 models are regression trees of different sizes or l in­
ear regressions using different number of variables. But 
instead of selecting the single model that works best as 
judged by (for example) cross-validation, Breiman used 
the different level-0 regressors' output values for each 
member of the training set to form level-1 data. Then 
he used least-squares linear regression, under the con­
straint that all regression coefficients be non-negative, 
as the level-1 generalizer. The non-negativity constraint 
turned out to be crucial to guarantee that the predictive 
accuracy would be better than that achieved by selecting 
the single best predictor. 

Here we show how stacked generalization can be made 
to work reliably in classification tasks. We do this by 
using the output class probabilities generated by level-0 
models to form level-1 data. Then, for the level-1 gener­
alizer we use a version of least squares linear regression 
adapted for classification tasks. We find the use of class 
probabilities to be crucial for the successful application 
of stacked generalization in classification tasks. How­
ever, the non-negativity constraints found necessary by 
Breiman in regression are irrelevant to improved predic­
tive accuracy in our classification situation. 

In Section 2, we formally introduce the technique of 
stacked generalization and describe pertinent details of 
each learning algorithm used in our experiments. Sec­
t ion 3 describes the results of stacking three different 
types of learning algorithms. The following section de­
scribes related work, and is followed by a summary of 
our conclusions and future work. 

2 Stacked General izat ion 
Given a data set £ = { y n , x n ) , n = 1 , . . . , TV}, where yn 

is the class value and xn represents the attr ibute values of 
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Table 1: Details of the datasets used in the experiment. 
Datasets 
Led24 
Waveform 
Horse 
Credit 
Vowel 
Euthyroid 
Splice 
Abalone 
Nettalk(s) 
Coding 

# Samples 
200-5000 
300-5000 

368 
690 
990 

3163 
3177 
4177 
5438 

20000 

# Classes 
10 
3 
2 
2 

11 
2 
3 
3 
5 
2 

# Attr & Type" 

10N 40C 
3B+12N+7C 
4B+5N+6C 

10C 
18B+7C 

60N 
1N+7C 

7N 
15N 

N-nominal; B-binary; C: Continuous. 

seed. The algorithms used for the experiments are then 
tested on a separate dataset of 5000 instances. Results 
are expressed as the average error rate of ten repetitions 
of this entire procedure. 

For the real-world datasets, W-fold cross-validation 
is performed. In each fold of this cross-validation, the 
training dataset is used as L, and the models derived 
are evaluated on the test dataset. The result is expressed 
as the average error rate of the W-fold cross-validation. 
Note that this cross-validation is used for evaluation of 
the entire procedure, and is quite different from the J-
fold cross-validations employed as part of the stacked 
generalization operation. However, both W and J are 
set to 10 in the experiments. 

Table 2 shows the average error rates of C4.5, NB and 
I B 1 , and BestCV, which is the best of the three, selected 
using J-fold cross-validation. As expected, BestCV is 
almost always the classifier wi th the lowest error rate.2 

Table 3 shows the result of stacked generalization us­
ing the level-1 model M, for which the level-1 data com­
prises the classifications generated by the level-0 models, 
and M', for which the level-1 data comprises the prob­
abilities generated by the level-0 models. Results are 
shown for the best two level-1 generalizers in each case 
(full results see Ting and Wi t ten [1997a]), along wi th 
BestCV. The lowest error rate for each dataset is given 
in bold. 

Table 4 summarizes the results in Table 3 in terms of 
a comparison of each level-1 model w i th BestCV totaled 
over all datasets. Clearly, the best level-1 model is M' 
derived using MLR. It performs better than BestCV in 
nine datasets and equally well in the tenth. The best 
performing M is derived from NB, which performs better 
than BestCV in seven datasets but significantly worse in 
two. 

The datasets are shown in the order of increasing size. 
M L R performs significantly better than BestCV in the 

2Note that BestCV does not always select the same clas­
sifier in all W folds. That is why its error rate is not always 
equal to the lowest error rate among the three classifiers. 
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Table 2: Ave. error rates of C4.5, NB and IB1 , and the 
best among them selected using J-fold cross-validation. 

Datasets 

Led24 
Waveform 
Horse 
Credit 
Vowel 
Euthyroid 
Splice 
Abalone 
Nettalk(s) 
Coding 

Level-0 Generalizers 
C4.5 
35.4 
31.8 
15.8 
17.4 
22.7 

1.9 
5.5 

41.4 
17.0 
27.6 

NB 
35.4 
17.1 
17.9 
17.3 
51.0 
9.8 
4.5 

42.1 
15.9 
28.8 

IB1 
32.2 
26.2 
15.8 
28.1 
2.6 
8.6 
4.7 

40.5 
12.7 
25.0 

BestCV 
32.8 
17.1 
17.1 
17.4 
2.6 
1.9 
4.5 

40.1 
12.7 
25.0 

Table 3: Ave, error rates for stacking C4.5, NB and I B l . 
Datasets 

Led24 
Waveform 
Horse 
Credit 
Vowel 
Euthyroid 
Splice 
Abalone 
Nettalk(s) 
Coding 

BestCV 
32.8 
17.1 
17.1 
17.4 
2.6 
1.9 
4.5 

40.1 
12.7 
25.0 

M 
NB 

32.4 
19.2 

14.9 
16.1 
3.8 
1.9 
3.9 

38.5 
11.9 
23.1 

M L R 
33.3 
17.2 
16.3 
17.4 
2.6 
1.9 
3.8 

38.1 
12.6 
23.2 

M' 
I B l 

32.1 
17.8 
17.7 

14.3 
3.3 
2.0 
3.8 

39.2 
12.0 
21.2 

MLR 
32.1 
16.8 
15.2 
16.2 
2.5 
1.9 
3.8 

37.9 
11.5 
20.7 

Table 4: Summary of Table 3—Comparison of BestCV 
with M and M'. 

# W i n vs. #Loss 

M 
NB M L R 
2-7 2-5 

M' 
I B l MLR 
4-6 0-9 

four largest datasets.3 This indicates that stacked gener­
alization is more likely to give significant improvements 
in predictive accuracy if the volume of data is large— 
a direct consequence of more accurate estimation using 
cross-validation. 

M L R has an advantage over the other three level-1 
generalizers in that its model can easily be interpreted. 
Examples of the combination weights it derives (for the 
probability-based model M') appear in Table 5 for the 
Splice dataset. The weights indicate the relative impor­
tance of the level-0 generalizers for each prediction class. 
In this dataset, NB is the dominant generalizer for pre­
dicting class 2, NB and I B l are both good at predicting 
class 3, and all three generalizers make a worthwhile con­
tr ibut ion to the prediction of class 1. 

3 We regard a difference of more than two standard errors 
as significant (95% confidence). 

Table 5: Weights generated by MLR (model M') for the 
Splice dataset. The first column indicates the class. 

Table 6: Average error rates of three versions of MLR. 
NC - no constraints; NI - no intercept. 

Datasets 

Led24 
Waveform 
Horse 
Credit 
Vowel 
Euthyroid 
Splice 
Abalone 
Nettalk(s) 
Coding 

M L R with ! 
NC NI Non-Negativity 

34.1 34.1 32.1 
16.8 16.8 16.8 
15.8 15.8 15.2 ! 
16.2 16.2 16.2 
2.4 2.4 2.5 
1.9 1.9 1.9 
3.7 3.7 3.8 

37.9 37.9 37.9 
11.5 11.5 11.5 
20.7 20.7 20.7 

3.2 A r e n o n - n e g a t i v i t y c o n s t r a i n t s 
necessary? 

Both Breiman [1996a] and LeBlanc and Tibshirani [1993] 
use the stacked generalization method in a regression set­
ting and report that it is necessary to constrain the re­
gression coefficients to be non-negative in order to guar­
antee that stacked regression improves predictive accu­
racy. Here we investigate this finding in the domain of 
classification tasks. 

To assess the effect of the non-negativity constraint 
on performance, three versions of M L R are employed to 
derive the level-1 model M' 

i each linear regression in M L R is calculated wi th an 
intercept constant (that is, / 4- 1 weights for the / 
classes) but without any constraints; 

ii each linear regression is derived wi th neither an in­
tercept constant (J weights for I classes) nor con­
straints; 

i i i each linear regression is derived without an inter­
cept constant, but with non-negativity constraints 
(I non-negative weights for I classes). 

The third version is the one used for the results pre-
sented earlier. Table 6 shows the results of all three ver­
sions. They all have almost indistinguishable error rates. 
We conclude that in classification tasks, non-negativity 
constraints are not necessary to guarantee that stacked 
generalization improves predictive accuracy. 

However, there is another reason why it is a good idea 
to employ non-negativity constraints. Table 7 shows an 
example of the weights derived by these three versions 
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Table 7: Weights for the Euthyroid dataset wi th three 
versions of MLR: (i) no constraints, (ii) no intercept, and 
(iii) non-negativity constraints. 

Table 8: Ave. error rates of BestCV, Major i ty Vote and 
M L R (model M'), along wi th the standard error (#SE) 
between BestCV and the worst level-0 generalizes. 

[ Dataset 
Horse 
Splice 
Abalone 
Led24 
Credit 
Nettalk(s) 
Coding 
Waveform 
Euthyroid 
Vowel 

#SE 
0.5 
2.5 
3.3 
8.7 
8.9 

10.8 
12.7 
18.7 
26.3 

242.0 

BestCV 
17.1 
4.5 

40.1 
32.8 
17.4 
12.7 
25.0 
17.1 
1.9 
2.6 

Majority 
15.0 

4.0 
39.0 
31.8 
16.1 
12.2 
23.1 
19.5 
8.1 

13.0 

MLR 
15.2 
3.8 

37.9 
32.1 j 
16.2 
11.5 
20.7 
16.8 

1.9 
2.5 

of M L R on the Euthyroid dataset. The third version, 
shown in row ( i i i ) , supports a more perspicuous inter­
pretation of each level-0 general ized contribution to the 
class predictions than do the other two. In this dataset 
C4.5 is the dominant generalizer, as evidenced by its 
high weights. However, the negative weights render the 
interpretation of the other two versions much less clear. 

3.3 H o w d o e s s t a c k e d g e n e r a l i z a t i o n 
c o m p a r e t o m a j o r i t y v o t e ? 

Let us now compare the error rate of M', derived from 
MLR, to that of majori ty vote, a simple decision com­
bination method which requires neither cross-validation 
nor level-1 learning. Table 8 shows the average error 
rates of BestCV, major i ty vote and MLR. In order to see 
whether the relative performances of level-0 generalizes 
have any effect on these methods, the number of stan­
dard errors (#SE) between the error rates of the worst 
performing level-0 generalizer and BestCV is given, and 
the datasets are re-ordered according to this measure. 
Since BestCV almost always selects the best performing 
level-0 generalizer, small values of # S E indicate that the 
level-0 generalizers perform comparably to one another, 
and vice versa. 

M L R compares favorably to majori ty vote, wi th seven 
wins versus three losses. Out of the seven wins, six have 
significant differences (the only exception is for the Splice 

dataset); whereas all three losses have insignificant differ­
ences. Thus the extra computation for cross-validation 
and level-1 learning seems to have paid off. 

It is interesting to note that the performance of ma­
jor i ty vote is related to the size of # S E . Major i ty vote 
compares favorably to BestCV in the first seven datasets, 
where the values of # S E are small. In the last three, 
where # S E is large, majori ty vote performs worse. This 
indicates that if the level-0 generalizers perform compa­
rably, it is not worth using cross-validation to determine 
the best one, because the result of major i ty vote—which 
is far cheaper—is not significantly different. The same 
applies when majority vote is compared wi th MLR. M L R 
performs significantly better in the five datasets that 
have large # S E values, but only one in the other cases. 

S u m m a r y 
• None of the four learning algorithms used to obtain 

model M perform satisfactorily. 

• M L R is the best of the four learning algorithms to use 
as the level-1 generalizer for obtaining model M'. 

• When obtained using MLR, M' has lower predictive 
error rate than the best model selected by J-fold 
cross-validation, for almost all datasets used in the 
experiments. 

• Another advantage of M L R over the other three level-
1 generalizers is its interpretability. The weights 
aki indicates the different contributions that each 
level-0 model makes to the prediction classes. 

• Model M' can be derived by M L R wi th or without 
non-negativity constraints. Such constraints make 
l i t t le difference to the model's predictive accuracy. 

• The use of non-negativity constraints in M L R has the 
advantage of interpretability. Non-negative weights 

support easier interpretation of the extent to 
which each model contributes to each class. 

• When derived using MLR, model M' compares favor­
ably wi th majori ty vote. 

4 Related work 
Our analysis of stacked generalization was motivated by 
that of Breiman [1996a], discussed earlier, and LeBlanc 
and Tibshirani [1993]. LeBlanc and Tibshirani [1993] ex­
amine the stacking of a linear discriminant and a near­
est neighbor classifier and show that, for one artif icial 
dataset, a method such as M L R performs better wi th 
non-negativity constraints than without. Our results 
show that these constraints are irrelevant to MLR's pre­
dictive accuracy in the classification situation. 

The l imitations of M L R are well-known [Duda and 
Hart , 1973]. For a /-class problem, it divides the descrip­
t ion space into / convex decision regions. Every region is 
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singly connected, and the decision boundaries are linear 
hyperplanes. This means that M L R is most suitable for 
problems wi th unimodal probability densities. Despite 
these l imitations, M L R sti l l performs better as a level-1 
generalizer than I B l , its nearest competitor in deriving 
M ' . These l imitations may hold the key for a fuller 
understanding of the behavior of stacked generalization. 
Jacobs [1995] reviews linear combination methods like 
that used in MLR. 

Previous work on stacked generalization, especially as 
applied to classification tasks, has been limited in sev­
eral ways. They have a different focus and evaluate the 
results on just a few datasets [LeBlanc and Tibshirani, 
1993; Chan and Stolfo, 1995; K im and Bartlett, 1995; 
Fan et a l , 1996]. 

5 Conclusions and fu ture work 
We have addressed two crucial issues for the successful 
implementation of stacked generalization in classification 
tasks. First, class probabilities should be used instead of 
the single predicted class as input attributes for higher-
level learning. Second, the multi-response least squares 
linear regression technique should be employed as the 
high-level generalizer. 

When combining three different types of learning al­
gorithms, this implementation of stacked generalization 
was found to achieve better predictive accuracy than 
both model selection based on cross-validation and ma­
jor i ty vote. Unlike stacked regression, non-negativity 
constraints in the least-squares regression are not neces­
sary to guarantee improved predictive accuracy in clas­
sification tasks. However, these constraints are still pre­
ferred because they increase the interpretability of the 
level-1 model. 

This paper concentrates on finding conditions under 
which stacked generalization works. A better under­
standing of why it works in this particular configuration 
may open up other possibilities for further improvement 
of stacked generalization. 

The implication of our successful implementation of 
stacked generalization is that earlier model combination 
methods which employs (weighted) majority vote, aver­
aging, or other computations that do not make use of 
level-1 learning, can now apply this learning to improve 
their predictive accuracy. This includes methods which 
combine models derived from a single learning algorithm 
such as bagging and arcing [Breiman, 1996b; 1996c]. The 
ful l version of this paper [Ting and Wit ten, 1997a] and 
a subsequent investigation [Ting and Wit ten, 1997b] in­
clude studies of this kind of model combination. 
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