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Abstract
We propose an online visual tracking algorithm
by learning discriminative saliency map using
Convolutional Neural Network (CNN). Given a
CNN pre-trained on a large-scale image reposi-
tory in offline, our algorithm takes outputs from
hidden layers of the network as feature descrip-
tors since they show excellent representation per-
formance in various general visual recognition
problems. The features are used to learn discrim-
inative target appearance models using an online
Support Vector Machine (SVM). In addition, we
construct target-specific saliency map by back-
propagating CNN features with guidance of the
SVM, and obtain the final tracking result in each
frame based on the appearance model genera-
tively constructed with the saliency map. Since
the saliency map visualizes spatial configuration
of target effectively, it improves target localiza-
tion accuracy and enable us to achieve pixel-level
target segmentation. We verify the effectiveness
of our tracking algorithm through extensive ex-
periment on a challenging benchmark, where our
method illustrates outstanding performance com-
pared to the state-of-the-art tracking algorithms.

1. Introduction
Object tracking has played important roles in a wide range
of computer vision applications. Although it has been
studied extensively during past decades, object tracking
is still a difficult problem due to many challenges in real
world videos such as occlusion, pose variations, illumina-
tion changes, fast motion, and background clutter. Success
in object tracking relies heavily on how robust the repre-

sentation of target appearance is against such challenges.

For this reason, reliable target appearance modeling prob-
lem has been investigated in recent tracking algorithms ac-
tively (Bao et al., 2012; Jia et al., 2012; Mei & Ling, 2009;
Zhang et al., 2012; Zhong et al., 2012; Ross et al., 2004;
Han et al., 2008; Babenko et al., 2011; Hare et al., 2011;
Grabner et al., 2006; Saffari et al., 2010), which are classi-
fied into two major categories depending on learning strate-
gies: generative and discriminative methods. In generative
framework, the target appearance is typically described by
a statistical model estimated from tracking results in pre-
vious frames. To maintain the target appearance model,
various approaches have been proposed including sparse
representation (Bao et al., 2012; Jia et al., 2012; Mei &
Ling, 2009; Zhang et al., 2012; Zhong et al., 2012), online
density estimation (Han et al., 2008), incremental subspace
learning (Ross et al., 2004), etc. On the other hand, dis-
criminative framework (Babenko et al., 2011; Hare et al.,
2011; Grabner et al., 2006; Saffari et al., 2010) aims to
learn a classifier that discriminates target from surround-
ing background. Various learning algorithms have been in-
corporated including online boosting (Grabner et al., 2006;
Saffari et al., 2010), multiple instance learning (Babenko
et al., 2011), structured support vector machine (Hare et al.,
2011), and online random forest (Gall et al., 2011; Schul-
ter et al., 2011). These approaches are limited to using too
simple and/or hand-crafted features for target representa-
tion, such as template, Haar-like features, histogram fea-
tures and so on, which may not be effective to handle latent
challenges imposed on video sequences.

Convolutional Neural Network (CNN) has recently drawn
a lot of attention in computer vision community due to its
representation power. (Krizhevsky et al., 2012) trained a
network using 1.2 million images for image classification
and demonstrated significantly improved performance in
ImageNet challenge (Berg et al., 2012). Since the huge
success of this work, CNN has been applied to represent-
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Figure 1. Overall procedure of the proposed algorithm. Our tracker exploits a pre-trained CNN for both image representation and target
localization. Given a set of samples on the input frame, we first extract their features using a pre-trained CNN (Section 3.1), and classify
them by the online SVM trained until the previous time step. For each positive sample, we back-propagate the features relevant to
target, which are identified by observing the model parameter of the SVM, through the network to obtain a saliency map of the sample
that highlights the regions discriminating target from background. The saliency maps of the positive examples are aggregated to build
the target-specific saliency map (Section 3.2). Finally, tracking is performed by a sequential Bayesian filtering using the target-specific
saliency map as observation. To this end, a generative model is learned from target appearances in the previous saliency maps, and a
dense likelihood map is calculated by convolution between the appearance model and the target-specific saliency map (Section 3.3).
Based on the tracking result of the current frame, the SVM and generative model are updated for subsequent tracking (Section 3.4).

ing images or objects in various computer vision tasks in-
cluding object detection (Girshick et al., 2014; Sermanet
et al., 2014; He et al., 2014), object recognition (Oquab
et al., 2014; Donahue et al., 2014; Zhang et al., 2014),
pose estimation (Toshev & Szegedy, 2014), image segmen-
tation (Hariharan et al., 2014), image stylization (Karayev
et al., 2014), etc.

Despite such popularity, there are only few attempts to em-
ploy CNNs for visual tracking since offline classifiers are
not appropriate for visual tracking conceptually and online
learning based on CNN is not straightforward due to large
network size and lack of training data. In addition, the fea-
ture extraction from the deep structure may not be appropri-
ate for visual tracking because the visual features extracted
from top layers encode semantic information and exhibit
relatively poor localization performance in general. (Fan
et al., 2010) presents a human tracking algorithm based on
a network trained offline, but it needs to learn a separate
class-specific network to track other kind of objects. On the
other hand, (Li et al., 2014) proposes a target-specific CNN
for object tracking, where the CNN is trained incremen-
tally during tracking with new examples obtained online.
The network used in this work is shallow since learning a
deep network using a limited number of training examples
is challenging, and the algorithm fails to take advantage
of rich information extracted from deep CNNs. There is a
tracking algorithm based on a pre-trained network (Wang
& Yeung, 2013), where a stacked denoising autoencoder is

trained using a large number of images to learn generic im-
age features. Since this network is trained with tiny gray
images and has no shared weight, its representation power
is limited compared to recently proposed CNNs.

We propose a novel tracking algorithm based on a pre-
trained CNN to represent target, where the network is
trained originally for large-scale image classification. On
top of the hidden layers in the CNN, we put an additional
layer of an online Support Vector Machine (SVM) to learn
a target appearance discriminatively against background.
The model learned by SVM is used to compute a target-
specific saliency map by back-propagating the information
relevant to target to input layer (Simonyan et al., 2014). We
exploit the target-specific saliency map to obtain genera-
tive target appearance models (filters) and perform tracking
with understanding of spatial configuration of target. The
overview of our algorithm is illustrated in Figure 1, and the
contributions of this paper are summarized below:

• Although recent tracking methods based on CNN typ-
ically attempt to learn a network in an online man-
ner (Li et al., 2014), our algorithm employs a pre-
trained CNN to represent generic objects for tracking
and achieves outstanding performance empirically.

• We propose a technique to construct a target-specific
saliency map by back-propagating only relevant fea-
tures through CNN, which overcomes the limitation of
the existing method to visualize saliency correspond-
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ing to the predefined classes only. This technique also
enable us to obtain pixel-level target segmentation.

• We learn a simple target-specific appearance filter on-
line and apply it to the saliency map; this strategy
improves target localization performance even with
shift-invariant property of CNN-based features.

The rest of this paper is organized as follows. We first de-
scribe the overall framework of our algorithm in Section 2
and the detailed methodology is discussed in Section 3.
The performance of our algorithm is presented in Section 4.

2. Overview of Our Algorithm
Our tracking algorithm employs a pre-trained CNN to rep-
resent target. In each frame, it first draws samples for can-
didate bounding boxes near the target location in the previ-
ous frame, takes their image observations, and extracts fea-
ture descriptors for the samples using the pre-trained CNN.
We found out that the features from the CNN capture se-
mantic information of target effectively and handle various
geometric and photometric transformations successfully as
reported in (Oquab et al., 2014; Karayev et al., 2014; Don-
ahue et al., 2014). However, it may lose some spatial in-
formation of the target due to pooling operations in CNN,
which is not desirable for tracking since the spatial config-
uration is a useful cue for accurate target localization.

To fully exploit the representation power of CNN features
while preserving spatial information of target, we adopt the
target-specific saliency map as our observation for tracking,
which is generated by back-propagating target-specific in-
formation of CNN features to input layer. This technique
is inspired by (Simonyan et al., 2014), where class-specific
saliency map is constructed by back-propagating the infor-
mation corresponding to the identified label to visualize the
region of interest. Since target in visual tracking problem
belongs to an arbitrary class and its label is unknown in ad-
vance, the model for target class is hard to be pre-trained.

Hence, we employ an online SVM, which discriminates
target from background by learning target-specific infor-
mation in the CNN features; the target-specific information
learned by the online SVM can be regarded as label infor-
mation in the context of (Simonyan et al., 2014). The SVM
classifies each sample, and we compute the saliency map
for each positive example by back-propagating its CNN
feature along the pre-trained CNN with guidance of the
SVM till the input layer. Each saliency map highlights re-
gions discriminating target from background. The saliency
maps of the positive examples are aggregated to build the
target-specific saliency map. The target-specific saliency
map alleviates the limitation of CNN features for tracking
by providing important spatial configuration of target.

Our tracking algorithm is then formulated as a sequen-
tial Bayesian filtering framework using the target-specific
saliency map for observation in tracking. A generative ap-
pearance model is constructed by accumulating target ob-
servations in target-specific saliency maps over time, which
reveals meaningful spatial configuration of target such as
shape and parts. A dense likelihood map of each frame
is computed efficiently by convolution between the target-
specific saliency map and the generative appearance model.
The overall algorithm is illustrated in Figure 1.

Our algorithm exploits the discriminative properties of on-
line SVM, which helps generate target-specific saliency
map. In addition, we construct the generative appearance
model from the saliency map and perform tracking through
sequential Bayesian filtering. This is a natural combination
of discriminative and generative approaches, and we take
the benefits from both frameworks.

3. Proposed Algorithm
This section describes the comprehensive procedure of our
tracking algorithm. We first discuss the features obtained
from pre-trained CNN. The method to construct target-
specific saliency map are presented in detail, and how the
saliency map can be employed for constructing generative
models and tracking object is described. After that, we
present online SVM technique employed to learn target ap-
pearance in a discriminative manner sequentially.

3.1. Pre-Trained CNN for Feature Descriptor

To represent target appearances, our tracking algorithm em-
ploys a CNN, which is pre-trained on a large number of
images. The pre-trained generic model is useful especially
for online tracking since it is not straightforward to col-
lect a sufficient number of training data. In this paper, R-
CNN (Girshick et al., 2014) is adopted as the pre-trained
model, but other CNN models can be used alternatively.
Out of the entire network structure, we take outputs from
the first fully-connected layer as they tend to capture gen-
eral characteristics of objects and have shown excellent
generalization performance in many other domains as de-
scribed in (Donahue et al., 2014).

For a target proposal xi, the CNN takes its correspond-
ing image observation zi as its input, and returns an output
from the first fully-connected layer φ(xi) as a feature vec-
tor of xi. We apply the SVM to each CNN feature vector
φ(xi) and classify xi into either positive or negative.

3.2. Target-Specific Saliency Map Estimation

For target tracking, we first compute SVM scores of candi-
date samples represented by the CNN features and classify
them into target or background. Based on this information,
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one naı̈ve option to complete tracking is to simply select
the optimal sample with the maximum score as

x∗ = arg max
i

w>φ(xi).

However, this approach typically has the limitation of in-
accurate target localization since, when calculating φ(xi),
the spatial configuration of target may be lost by spatial
pooling operations (Fan et al., 2010).

To handle the localization issue while enjoying the effec-
tiveness of CNN features, we propose the target-specific
saliency map, which highlights discriminative target re-
gions within the image. This is motivated by the class-
specific saliency map discussed in (Simonyan et al., 2014).
The class-specific saliency map of a given image I is the
gradient of class score Sc(I) with respect to the image as

gc(I) =
∂Sc(I)

∂I
. (1)

The saliency map is constructed by back-propagation.
Specifically, let f (1), . . . , f (L) and F (1), . . . , F (L) denote
the transformation functions and their outputs in the net-
work, where F (l) = f (l) ◦ f (l−1) ◦ · · · ◦ f (1)(x) and
Sc(I) = F (L). Eq. (1) is computed using chain rule as

∂Sc(I)

∂I
=

∂F (L)

∂F (L−1)
∂F (L−1)

∂F (L−2) · · ·
∂F (1)

∂I
. (2)

Intuitively, the pixels that are closely related to the class c
affect changes in Sc more, which means that nearby regions
of such pixels would have high values in saliency map.

When calculating such saliency map for object tracking, we
impose target-specific information instead of class mem-
bership due to the reasons discussed in Section 2. For
the purpose, we adopt the SVM weight vector w =
(w1, . . . , wn)>, which is learned online to discriminate
between target and background. Since the last fully-
connected layer corresponds to the online SVM, the out-
puts of the last two layers in our network are given by

F (L) = wTF (L−1) + b (3)
F (L−1) = φ(xi). (4)

Plugging Eq. (3) and (4) into Eq. (2), the gradient map of
the target proposal xi is given by

g(xi) =
∂F (L)

∂F (L−1)
∂F (L−1)

∂zi
= wT

(
∂φ(xi)

∂zi

)
, (5)

where zi is the image observation of xi.

Instead of using all entries in φ(xi) to generate target-
specific saliency map, we only select the dimensions corre-
sponding to positive weights in w since they have clearer
contribution to make xi positive. Note that every element

Figure 2. An example of target-specific saliency map. The face
of a person in left image is being tracked. The target-specific
saliency map reveals meaningful spatial configuration of the tar-
get, such as eyes, a nose and lips.

in φ(xi) is positive due to ReLU operations in CNN learn-
ing. Then, we obtain the target-specific feature φ+(xi) as

φ+k (xi) =

{
wkφk(xi), if wk > 0

0, otherwise ,

where φk(xi) denotes the k-th entry of φ(xi). Then the
gradient of target-specific feature φ+(xi) with respect to
the image observation is obtained by

g(xi) =
∂φ+(xi)

∂zi
, (6)

Since the gradient is computed only for the target-specific
information φ+(xi), pixels to distinguish the target from
background would have high values in g(xi).

The target-specific saliency map M is obtained by aggre-
gating g(xi) of samples with positive SVM scores in im-
age space. As g(xi) is defined over sample observation
zi, we first project it to image space and zero-pad outside
of zi; we denote the result by Gi afterwards. Then, the
target-specific saliency map is obtained by taking the pix-
elwise maximum magnitude of the gradient maps Gi’s cor-
responding to positive examples, which is given by

M(p) = max
i
|Gi(p)|, ∀i ∈ {j|wTφ(xj) + b > 0}, (7)

where p denotes pixel location. We suppress erroneous ac-
tivations from background by considering only positive ex-
amples when aggregating sample gradient maps. An exam-
ple of target-specific saliency map is illustrated in Figure 2,
where strong activations typically come from target areas
and spatial layouts of target are exposed clearly.

3.3. Target Localization with Saliency Map

Given the target-specific saliency map at frame t denoted
by Mt, the next step of our algorithm is to locate the target
through sequential Bayesian filtering. Let xt and Mt de-
note the state and observation variables at current frame t,
respectively, where saliency map is used for measurement.
The posterior of the target state p(xt|M1:t) is given by

p(xt|M1:t) ∝ p(Mt|xt)p(xt|M1:t−1), (8)
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where p(xt|M1:t−1) denotes the prior distribution pre-
dicted from the previous time step, and p(Mt|xt) means
observation likelihood.

The prior distribution p(xt|M1:t−1) of target state at the
current time step is estimated from the posterior at the pre-
vious frame through prediction, which is given by

p(xt|M1:t−1) =

∫
p(xt|xt−1)p(xt−1|M1:t−1)dxt−1, (9)

where p(xt|xt−1) denotes a state transition model. Target
dynamics between two consecutive frames is given by a
simple linear equation as

xt = xt−1 + dt + εt, (10)

where dt denotes a displacement of target location, and εt
indicates a Gaussian noise. Both dt and εt are unknown
before tracking in general, but is estimated from the sam-
ples classified as target by our online SVM in our case.
Specifically, dt and εt are given respectively by

dt = µt − x∗t−1, εt ∼ N (0,Σt), (11)

where x∗t−1 denotes the target location at the previous
frame, and µt and Σt indicate mean and variance of loca-
tions of positive samples at the current frame, respectively.
From Eq. (10) and (11), the transition model for prediction
is derived as follows:

p(xt|xt−1) = N (xt − xt−1;dt,Σt). (12)

Since the transition model is linear with Gaussian noise,
computation of the prior in Eq. (9) can be performed ef-
ficiently by transforming the posterior p(xt−1|M1:t−1) at
the previous step by dt and applying Gaussian smoothing
with covariance Σt.

The measurement density function p(Mt|xt) represents the
likelihood in the state space, which is typically obtained
by computing the similarity between the appearance mod-
els of target and candidates. In our case, we utilize Mt,
target-specific saliency map at frame t, for observation to
compute the likelihood of each target state. Note that pixel-
wise intensity and its spatial configuration in the saliency
map provide useful information for target localization. At
frame t, we construct the target appearance modelHt given
the previous saliency mapsM1:t−1 in a generative way. Let
Mk(x∗k) denote the target filter at frame k, which is ob-
tained by extracting the subregion in Mk at the location
corresponding to the optimal target bounding box given by
x∗k. The appearance model Ht is constructed by aggregat-
ing the recent target filters as follows:

Ht =
1

m

t−1∑
k=t−m

Mk(x∗k), (13)

where m is a constant for the number of target filters to be
used for model construction. The main idea behind Eq. (13)
is that the local saliency map nearby the optimal target lo-
cation in a frame plays a role as a filter to identify the target
within the saliency map in the subsequent frames. Since the
target filter is computed based on m recent filters, we need
to store the m filters to update the target filter. Therefore,
given the appearance model defined in Eq. (13), the obser-
vation likelihood p(Mt|xt) is computed by simple convo-
lution between Ht and Mt by

p(Mt|xt) ∝ Ht ⊗Mt(xt), (14)

where ⊗ denotes convolution operator. This is similar to
the procedure in object detection, e.g., (Felzenszwalb et al.,
2010), where the filter is constructed from features to rep-
resent the object category and applied to the feature map to
localize the object by convolution.

Given the prior in Eq. (9) and the likelihood in Eq. (14),
the target posterior at the current frame is computed simply
by applying Eq. (8). Once the target posterior is obtained,
the optimal target state is given by solving the maximum a
posteriori problem as

x∗t = arg max
x

p(xt|M1:t). (15)

Once tracking at frame t is completed, we update the clas-
sifier based on x∗t , which is discussed next.

3.4. Discriminative Model Update by Online SVM

We employ an online SVM to learn a discriminative model
of target. Our SVM can be regarded as a fully-connected
layer with a single node but provides a fast and exact solu-
tion in a single pass to learn a model incrementally.

Given a set of samples with associated labels, {(x′i, y′i)},
obtained from the current tracking results, we hope to up-
date a weight vector w of SVM. The label y′i of a new ex-
ample x′i is given by

y′i =

{
+1, if x′i = x∗t
−1, if BB(x∗t )∩BB(x

′
i)

BB(x∗t )∪BB(x′i)
< δ

, (16)

where BB(x) denotes the bounding box corresponding to
the given state x and δ denotes a pre-defined threshold.
Note that the examples with the bounding box overlap ra-
tios larger than δ are not included in the training set for our
online learning to avoid drift problem.

Before discussing online SVM, we briefly review the opti-
mization procedure of an offline learning algorithm. Given
training examples {(xi, yi)}, the offline SVM learns a
weight vector w = (w1, . . . , wn)> by solving a quadratic
convex optimization problem. The dual form of SVM ob-
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jective function is given by

min
0≤ai≤C

: W =
1

2

∑
i,j

aiQijaj−
∑
i

ai+b
∑
i

yiai, (17)

where {ai} are Largrange multipliers, b is bias, and Qij =
yiyjK(xi,xj). In our tracking algorithm, the kernel func-
tion is defined by the inner product between two CNN fea-
tures, i.e., K(xi,xj) = φ(xi)

>φ(xj). In online tracking,
it is not straightforward for conventional QP solvers to han-
dle the optimization problem in Eq. (17) as training data are
given sequentially, not at once. Incremental SVM (Diehl &
Cauwenberghs, 2003; Cauwenberghs & Poggio, 2000) is
an algorithm designed to learn SVMs in such cases. The
key idea of the algorithm is to retain KKT conditions on
all the existing examples while updating model with a new
example, so that it guarantees an exact solution at each in-
crement of dataset. Specifically, KKT conditions are the
first-order necessary conditions for the optimal solution of
Eq. (17), which are given by

∂W

∂ai
=
∑
j

Qijaj + yib− 1

≥ 0, if ai = 0
= 0, if 0 < ai < C
≤ 0, if ai = C,

(18)

∂W

∂b
=
∑
j

yjaj = 0, (19)

where ∂W
∂ai

is related to the margin of the i-th example
that is denoted by mi afterwards. By the conditions in
Eq. (18), each training example belongs to one of the fol-
lowing three categories: E1 for support vectors lying on the
margin (mi = 0), E2 for support vectors inside the margin
(mi < 0), and E3 for non-support vectors.

Given the k-th example, incremental SVM estimates its La-
grangian multiplier ak while retaining the KKT conditions
on all the existing k − 1 training examples. In a nutshell,
ak is initialized to 0 and updated by increasing its value
over iterations. In each iteration, the algorithm estimates
the largest possible increment ∆ak that guarantees KKT
conditions on the existing examples, and updates ak and
existing model parameters with ∆ak. This iterative proce-
dure will stop when the k-th example becomes a support
vector or at least one existing example changes its mem-
bership across E1, E2, and E3. We can generalize this on-
line update procedure easily when multiple examples are
provided as new training data. With the new and updated
Lagrangian multipliers, the weight vector w is given by

w =
∑

i∈E1∪E2

aiyiφ(xi). (20)

For efficiency, we maintain only a fixed number of support
vectors with smallest margins during tracking. We ask to
refer to (Diehl & Cauwenberghs, 2003; Cauwenberghs &

Poggio, 2000) for more details. Also, note that any other
methods for online SVM learning, such as LaSVM (Bordes
et al., 2005) and LaRank (Bordes et al., 2007), can also be
adopted in our framework.

4. Experiments
This section describes our implementation details and ex-
perimental setting. The effectiveness of our tracking algo-
rithm is then demonstrated by quantitative and qualitative
analysis on a large number of benchmark sequences.

4.1. Implementation Details

For feature extraction, we adopt the R-CNN model built
upon the Caffe library (Jia, 2013). The CNN takes an image
from sample bounding box, which is resized to 227× 227,
and outputs a 4096-dimensional vector from its first fully-
connected (fc6) layer as a feature vector corresponding to
the sample. To generate target candidates in each frame,
we draw N(= 120) samples from a normal distribution as
xi ∼ N (x∗t−1,

√
wh/2), where w and h denote the width

and height of target, respectively. The SVM classifier and
the generative model are updated only if at least one exam-
ple is classified as positive by the SVM. When generating
training examples for our SVM, the threshold δ in Eq. (16)
is set to 0.3. The number of observations m used to build
generative model in Eq. (13) is set to 30. To obtain seg-
mentation mask, we employ GrabCut (Rother et al., 2004),
where pixels that have saliency value larger than 70% of
maximum saliency are used as foreground seeds, and back-
ground pixels around the target bounding box up to 50 pix-
els margin are used as background seeds. All parameters
are fixed for all sequences throughout our experiment.

4.2. Analysis of Generative Appearance Models

The generative modelHt is used to localize the target using
the target-specific saliency map. As described earlier, the
target-specific saliency map shows high responses around
discriminative target regions; our generative model exploits
such property and is constructed using the saliency maps in
the previous frames. Figure 3 illustrates examples of the
learned generative models in several sequences. Generally,
the model successfully captures parts and shape of an ob-
ject, which are useful to discriminate the target from back-
ground. More importantly, the distribution of responses
within the model reveals the spatial configuration of the
target, which provides a strong cue for precise localization.
This can be clearly observed in examples of face and doll,
where the scores from the areas of eyes and nose can be
used to localize the target. When target is not rigid (e.g.,
person), we observe that the model has stronger responses
on less deformable parts of the target (e.g., head) and local-
ization relies more on the stable parts consequently.



Online Tracking by Learning Discriminative Saliency Map with Convolutional Neural Network

Figure 3. Examples of generative models learned by our algo-
rithm. In each example, the left and right image indicate the target
and learned model, respectively.

4.3. Evaluation

Dataset and compared algorithms To evaluate the per-
formance, we employ all 50 sequences from the recently
released tracking benchmark dataset (Wu et al., 2013).
The sequences in the dataset involve various tracking chal-
lenges such as illumination variation, deformation, mo-
tion blur, background clutter, etc. We compared our
method with top 10 trackers in (Wu et al., 2013), which
include SCM (Zhong et al., 2012), Struck (Hare et al.,
2011), TLD (Kalal et al., 2012), ASLA (Jia et al., 2012),
CXT (Dinh et al., 2011), VTD (Kwon & Lee, 2010),
VTS (Kwon & Lee, 2011), CSK (Henriques et al., 2012),
LSK (Liu et al., 2011) and DFT (Sevilla-Lara & Learned-
Miller, 2012). We used the reported results in (Wu et al.,
2013) for these tracking algorithms.

Evaluation methodology We follow the evaluation pro-
tocols in (Wu et al., 2013), where the performance of track-
ers are measured based on two different metrics: success
rate and precision plots. In both metrics, the ratio of suc-
cessfully tracked frames is measured by a set of thresholds,
where bounding box overlap ratio and center location error
are employed in success rate plot and precision plot, re-
spectively. We rank the tracking algorithms based on Area
Under Curve (AUC) for success rate plot and center loca-
tion error at 20 pixels for precision plot.

Quantitative results in bounding box We evaluate our
method quantitatively and make a comparative study with
other methods in all the 50 benchmark sequences; the re-
sults are summarized in Figure 4 for both of success rate
and precision plots. In both measures, our method outper-
forms all other trackers with substantial margins. It is prob-
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Figure 4. Average success plot (top) and precision plot (bottom)
over 50 benchmark sequences. Numbers in the legend indicate
overall score of each tracker calculated by area under curve and
distance at 20 pixels for success plot and precision plot.

ably because the CNN features are more effective to repre-
sent high-level concept of target than hand-crafted ones al-
though the network is trained offline for other purpose. We
also compare our full algorithm with its reduced version
denoted by OursSVM, which depends only on SVM scores
as conventional tracking-by-detection algorithms do. Our
full algorithm achieves non-trivial performance improve-
ment over the reduced version, which shows that our gener-
ative model based on target-specific saliency map is useful
to localize target in general.

To gain more insight about the proposed algorithm, we
evaluate the performance of trackers based on individual
attributes provided in the benchmark dataset. Note that the
attributes describe 11 different types of tracking challenges
and are annotated for each sequence. Table 1 and 2 sum-
marize the results in two different measures. The numbers
next to the attributes indicate the number of sequences in-
volving the corresponding attribute. As illustrated in the ta-
bles, our algorithm consistently outperforms other methods
in almost all challenges, and our full algorithm is generally
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Table 1. Average success rate scores on individual attributes. Red: best, blue: second best.
DFT LSK CSK VTS VTD CXT ASLA TLD Struck SCM OursSVM Ours

Illumination variation (25) 0.383 0.371 0.369 0.429 0.420 0.368 0.429 0.399 0.428 0.473 0.522 0.556
Out-of-plane rotation (39) 0.387 0.400 0.386 0.425 0.434 0.418 0.422 0.420 0.432 0.470 0.524 0.582

Scale variation (28) 0.329 0.373 0.350 0.400 0.405 0.389 0.452 0.421 0.425 0.518 0.456 0.513
Occlusion (29) 0.381 0.409 0.365 0.398 0.403 0.372 0.376 0.402 0.413 0.487 0.539 0.563

Deformation (19) 0.439 0.377 0.343 0.368 0.377 0.324 0.372 0.378 0.393 0.448 0.623 0.640
Motion blur (12) 0.333 0.302 0.305 0.304 0.309 0.369 0.258 0.404 0.433 0.298 0.572 0.565
Fast motion (17) 0.320 0.328 0.316 0.300 0.302 0.388 0.247 0.417 0.462 0.296 0.545 0.545

In-plane rotation (31) 0.365 0.411 0.399 0.416 0.430 0.452 0.425 0.416 0.444 0.458 0.501 0.571
Out of view (6) 0.351 0.430 0.349 0.443 0.446 0.427 0.312 0.457 0.459 0.361 0.592 0.571

Background clutter (21) 0.407 0.388 0.421 0.428 0.425 0.338 0.408 0.345 0.458 0.450 0.519 0.593
Low resolution (4) 0.200 0.235 0.350 0.168 0.177 0.312 0.157 0.309 0.372 0.279 0.438 0.461
Weighted average 0.389 0.395 0.398 0.416 0.416 0.426 0.434 0.437 0.474 0.499 0.554 0.597

Table 2. Average precision scores on individual attributes. Red: best, blue: second best.
DFT LSK CSK VTS VTD CXT ASLA TLD Struck SCM OursSVM Ours

Illumination variation (25) 0.475 0.449 0.481 0.573 0.557 0.501 0.517 0.537 0.558 0.594 0.725 0.780
Out-of-plane rotation (39) 0.497 0.525 0.540 0.604 0.620 0.574 0.518 0.596 0.597 0.618 0.745 0.832

Scale variation (28) 0.441 0.480 0.503 0.582 0.597 0.550 0.552 0.606 0.639 0.672 0.679 0.827
Occlusion (29) 0.481 0.534 0.500 0.534 0.545 0.491 0.460 0.563 0.564 0.640 0.734 0.770

Deformation (19) 0.537 0.481 0.476 0.487 0.501 0.422 0.445 0.512 0.521 0.586 0.870 0.858
Motion blur (12) 0.383 0.324 0.342 0.375 0.375 0.509 0.278 0.518 0.551 0.339 0.764 0.745
Fast motion (17) 0.373 0.375 0.381 0.353 0.352 0.515 0.253 0.551 0.604 0.333 0.735 0.723

In-plane rotation (31) 0.469 0.534 0.547 0.579 0.599 0.610 0.511 0.584 0.617 0.597 0.720 0.836
Out of view (6) 0.391 0.515 0.379 0.455 0.462 0.510 0.333 0.576 0.539 0.429 0.744 0.687

Background clutter (21) 0.507 0.504 0.585 0.578 0.571 0.443 0.496 0.428 0.585 0.578 0.716 0.789
Low resolution (4) 0.211 0.304 0.411 0.187 0.168 0.371 0.156 0.349 0.545 0.305 0.536 0.705
Weighted average 0.496 0.505 0.545 0.575 0.576 0.575 0.532 0.608 0.656 0.649 0.780 0.852

ASLA Struck SCM CXT TLD Ours 

Figure 5. Qualitative results for selected sequences: (from left to right) MotorRolling, FaceOcc1, Lemming, Jogging, Tiger, Basketball
and David3. (Row1) Comparisons to other trackers. (Row2) Target-specific saliency maps. (Row3) Segmentation by GrabCut with
target-specific saliency maps.

better than its reduced version.

Quantitative results in segmentation The proposed algo-
rithm produces pixel-wise target segmentation using target-
specific discriminative saliency map. To evaluate segmen-
tation accuracy, we select 9 video sequences from the on-
line tracking benchmark dataset1 and annotate ground-truth

1Since accurate annotation of segmentation is labor intensive
and time consuming, we selected a subset of sequences (typically
short ones) for evaluation.

segmentation for each sequence. The selected sequences
cover various attributes in tracking challenges, and the list
of sequences with associated attributes are summarized in
Table 3.

The segmentation performance of the proposed algorithm
is evaluated based on the overlap ratio—intersection over
union—between ground-truth and identified target segmen-
tation. As other trackers used for comparison may not be
able to generate pixel-wise segmentation, we employ their
bounding box outputs as segmentation masks and compute
the overlap ratio with respect to the ground-truth segmen-
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Table 3. List of sequences and their attributes used for segmen-
tation performance evaluation. The set of sequences contains 10
attributes (out of 11 altogether) such as illumination variations
(IV), out-of-plane rotation (OPR), scale variations (SV), occlu-
sion (OCC), deformation (DEF), motion blur (MB), fast motion
(FM), in-plane rotation (IPR), background clutter (BC) and low
resolution (LR). The numbers in parentheses denote the number
of frames.

Sequence name Attributes
Bolt (350) OPR, OCC, DEF, IPR
Coke (291) IV, OPR, OCC, FM, IPR

Couple (140) OPR, SC, DEF FM, BC
Jogging (307) OPR, OCC, DEF

MotorRolling (164) IV, SC, MB, FM, IPR, BC, LR
MountainBike (228) OPR, IPR, BC

Walking (412) SC, OCC, DEF
Walking2 (500) SC, OCC, LR
Woman (597) IV, OPR, SC, OCC, DEF, MB, FM
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Figure 6. Average success plot over 9 selected sequences. Num-
bers in the legend indicate overall scores calculated by AUC.

tation. The results are presented by success plot as in Fig-
ure 6, where Oursseg denotes the proposed algorithm with
target segmentation. According to Figure 6, our method
outperforms all other trackers with substantial margin. Es-
pecially, we can observe a large performance improvement
of the proposed target segmentation algorithm over our
bonding box trackers denoted by Ours and OursSVM. It
suggests that the proposed target-specific saliency map is
sufficiently accurate to estimate the target area in a video
thus can be utilized to further improve tracking.

Qualitative Results We present the results of several se-
quences in Figure 5, where original frames with tracking
results, target-specific saliency maps, and segmentation re-
sults are illustrated. We can observe that our algorithm

also demonstrates superior performance to other algorithms
qualitatively.

5. Conclusion
We proposed a novel visual tracking algorithm based on
pre-trained CNN, where outputs from the last convolu-
tional layer of the CNN are employed as generic feature de-
scriptors of objects, and discriminative appearance models
are learned online using an online SVM. With CNN fea-
tures and learned discriminative model, we compute the
target-specific saliency map by back-propagation, which
highlights the discriminative target regions in spatial do-
main. Tracking is performed by sequential Bayesian fil-
tering with the target-specific saliency map as observation.
The proposed algorithm achieves substantial performance
gain over the existing state-of-the-art trackers and shows
the capability for target segmentation.
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