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Abstract

We address a question answering task on real-world im-
ages that is set up as a Visual Turing Test. By combining
latest advances in image representation and natural lan-
guage processing, we propose Neural-Image-QA, an end-
to-end formulation of this problem for which all parts are
trained jointly. In contrast to previous efforts, we are facing
a multi-modal problem where the language output (answer)
is conditioned on visual and natural language input (ques-
tion). Our result doubles the performance of the previous
best result on this problem. We provide additional insights
into the problem by analyzing how much information is con-
tained only in the language part for which we provide a
new human baseline. Further annotations were collected to
study human consensus, which is related to the ambiguities
inherent in this challenging task.

1. Introduction

With the advances of natural language processing and
image understanding, more complex and demanding tasks
have become within reach. Our aim is to take advantage
of the most recent developments in order to push the state-
of-the-art on answering natural language questions on real-
world images. This task unites inference of question intend
and visual scene understanding with a word sequence pre-
diction task.

Most recently, architectures based on the idea of lay-
ered, end-to-end trainable artificial neural networks have
improved the state of the art across a wide range of diverse
tasks. Most prominently Convolutional Neural Networks
have raised the bar on image classification tasks [12] and
Long Short Term Memory Networks are dominating perfor-
mance on a range of sequence prediction tasks as machine
translation [20].

Very recently these two trends of employing neural ar-
chitectures have been combined fruitfully with methods that
can generate image [8] and video descriptions [3]. Both
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Figure 1. Our approach Neural-Image-QA to question answering
with a Recurrent Neural Network using Long Short Term Memory
(LSTM). To answer a question about an image, we feed in both,
the image (CNN features) and the question (green boxes) into the
LSTM. After the (variable length) question is encoded, we gener-
ate the answers (multiple words, orange boxes). During the answer
generation phase the previously predicted answers are fed into the
LSTM until the 〈END〉 symbol is predicted.

are conditioning on the visual features that stem from deep
learning architectures and employ recurrent neural network
approaches to produce descriptions.

In order to further push the boundaries and explore the
limits of deep learning architectures, we propose an archi-
tecture for answering questions about images. In contrast
to prior work, this task needs conditioning on language as
well visual input. Both modalities have to be interpreted
and jointly represented as an answer depends on inferred
meaning of the question and image content.

While there is a rich body of work on natural language
understanding that has addressed textual question answer-
ing tasks based on semantic parsing, symbolic representa-
tion and deduction systems, which also has seen applica-
tions to question answering on images [15], there is initial
evidence that deep architectures can indeed achieve a sim-
ilar goal [25]. This motivates our work to seek an end-to-
end architectures that learns to answer questions in a single
holistic and monolithic model.

We propose Neural-Image-QA, an approach to question
answering with a recurrent neural network. An overview
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is given in Figure 1. The image is analyzed via a Convo-
lutional Neural Network (CNN) and the question together
with the visual representation is fed into a Long Short Term
Memory (LSTM) network. The system is trained to pro-
duce the correct answer to the question on the image. CNN
and LSTM are trained jointly and end-to-end starting from
the word and pixel level.
Contributions: We proposes a novel approach based on re-
current neural networks for the challenging task of answer-
ing of questions about images. It combines a CNN with a
LSTM into an end-to-end architecture that predict answers
conditioning on a question and an image. Our approach
significantly outperforms prior work on this task – doubling
the performance. We collect additional data to study human
consensus on this task, propose two new metrics sensitive
to these effects, and provide a new baseline, by asking hu-
mans to answer the questions without observing the image.
We demonstrate a variant of our system that also answers
question only based on the question, that beats the human
baseline. Inspection of the answer produced by our “lan-
guage only” system show that biases that can be interpreted
as a form of common sense are captured by our system.
Code and data will be made available at time of publica-
tion.

2. Related Work

As our method touches upon different areas in machine
learning, computer vision and natural language processing,
we have organized related work in the following way:

Convolutional Neural Networks for visual recognition
We are building on the recent success of Convolutional Neu-
ral Networks (CNN) for visual recognition [13, 17, 12], that
are directly learnt from the raw image data and pre-trained
on large image corpora. Due to the rapid progress in this
area within the last two years, a rich set of models [19, 21]
is at our disposal and following common practice we fine-
tune such models for our task [7].

Recurrent Neural Networks (RNN) for sequence mod-
eling Recurrent Neural Networks allow Neural Networks
to handle sequences of flexible length. A particular variant
called Long Short Term Memory (LSTM) [5] has shown
recent success on natural language tasks such as machine
translation [2, 20].

Combining RNNs and CNNs for description of visual
content The task of describing visual content like still im-
ages as well as videos has been successfully addressed with
a combination of the previous two ideas [28, 23, 3, 22, 8].
This is achieved by using the RNN-type model that first

gets to observe the visual content and is trained to after-
wards predict a sequence of words that is a description of
the visual content. Our work extends this idea to question
answering, where we formulate a model trained to generate
an answer based on visual as well as natural language input.

Grounding of natural language and visual concepts
Dealing with natural language input does involve the asso-
ciation of words with meaning. This is often referred to as
grounding problem - in particular if the “meaning” is associ-
ated with a sensory input. While such problems have been
historically addressed by symbolic semantic parsing tech-
niques [11, 16], there is a recent trend of machine learning-
based approaches [9, 8, 10] to find the associations. Our
approach follows the idea that we do not enforce or evalu-
ate any particular representation of “meaning” on the lan-
guage or image modality. We treat this as latent and leave
this to the joint training approach to establish an appropriate
internal representation for the question answering task.

Question answering Answering on purely textual ques-
tions has been studied in the NLP community [14, 1] and
state of the art techniques typically employ semantic pars-
ing to arrive at a logical form capturing the intended mean-
ing and infer relevant answers. Only very recently, the suc-
cess of the previously mentioned neural sequence models as
RNNs has carried over to this task [6, 25].

Visual Turing Test Most recently question answering
task based on images have been proposed that relates to the
idea of a Visual Turing Test. [4] proposes such an approach
where the task is limited to yes/no answers, and [24] pro-
poses a set of different question answering benchmarks us-
ing synthetic data. Most related to our work, [15] presents a
question answering system based on a semantic parser on a
more varied set of human question-answer pairs that poses
a sequence prediction problem based on language and vi-
sion. In contrast, our method is based on a neural archi-
tecture, that is trained end-to-end and therefore liberates the
approach from any ontological commitment that would oth-
erwise be introduced by a semantic parser.

3. Approach
Visual question is the problem of predicting an answer a

given an image x and a question q according to a parametric
probability measure:

â = argmax
a∈A

p(a|x, q;θ) (1)

where θ represent a vector of all parameters to learn and A
is a set of all answers. Later we describe how we represent
x, a, q, and p(·|x, q;θ) in more details.
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Figure 2. Our approach Neural-Image-QA, see Section 3 for de-
tails.

In our scenario questions can have multiple word an-
swers and we consequently decompose the problem to pre-
dicting a set of answer words aq,x =

{
a1,a2, ...,aN (q,x)

}
,

where at are words from a finite vocabulary V ′, and
N (q, x) is the number of answer words for the given ques-
tion and image. In our approach, named Neural-Image-QA,
we propose to tackle the problem as follows. To predict
multiple words we formulate the problem as predicting a se-
quence of words from the vocabulary V := V ′ ∪ {$} where
the extra token $ indicates the end of the answer sequence,
and points out that the question has been fully answered.
We thus formulate the prediction procedure recursively:

ât = argmax
a∈V

p(a|x, q, Ât−1;θ) (2)

where Ât−1 = {â1, . . . , ât−1} is the set of previous words,
with Â0 = {} at the beginning, when our approach has
not given any answer so far. The approach is terminated
when ât = $. We evaluate the method solely based on
the predicted answer words ignoring the extra token $. To
ensure uniqueness of the predicted answer words, which
would make sense since we want to predict a set of the
answer words, the prediction procedure can be be trivially
changed by maximizing over V \ Ât−1. However, in prac-
tice, our algorithm learns not to predict any previously pre-
dicted words.
As shown in Figure 1 and Figure 2, we feed Neural-Image-
QA with a question as a sequence of words, i.e. q =[
q1, . . . , qn−1, J?K

]
, where each qt is the t-th word ques-

tion and J?K := qn encodes the question mark - the end of
the question. Since our problem is formulated as a variable-
length input/output sequence, we model the parametric dis-
tribution p(·|x, q;θ) of Neural-Image-QA with a recurrent
neural network and a softmax prediction layer. More pre-
cisely, Neural-Image-QA is a deep network built of CNN
[13] and Long-Short Term Memory (LSTM) [5]. LSTM has
been recently shown to be effective in learning a variable-
length sequence-to-sequence mapping [3, 20].
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Figure 3. LSTM unit. See Section 3, Equations (3)-(8) for details.

Both question and answer words are represented with
one-hot vector encoding (a binary vector with exactly one
non-zero entry at the position indicating the index of the
word in the vocabulary) and embedded in a lower dimen-
sional space, using a jointly learnt latent linear embedding.
In the training phase, we augment the question words se-
quence q with the corresponding ground truth answer words
sequence a, i.e. q̂ := [q,a]. During the test time, in the
prediction phase, at time step t, we augment q with previ-
ously predicted answer words â1..t := [â1, . . . , ât−1], i.e.
q̂t := [q, â1..t]. This means the question q and the previous
answers are encoded implicitly in the hidden states of the
LSTM, while the latent hidden representation is learnt. We
encode the image x using a CNN and provide it at every
time step as input to the LSTM. We set the input vt as a
concatenation of [x, q̂t].

As visualized in detail in Figure 3, the LSTM unit takes
an input vector vt at each time step t and predicts an out-
put word zt which is equal to its latent hidden state ht. As
discussed above zt is a linear embedding of the correspond-
ing answer word at. In contrast to a simple RNN unit the
LSTM unit additionally maintains a memory cell c. This
allows to learn long-term dynamics more easily and signifi-
cantly reduces the vanishing and exploding gradients prob-
lem [5]. More precisely, we use the LSTM unit as described
in [27] and the Caffe implementation from [3]. With the
sigmoid nonlinearity σ : R 7→ [0, 1], σ(v) = (1 + e−v)

−1

and the hyperbolic tangent nonlinearity φ : R 7→ [−1, 1],
φ(v) = ev−e−v

ev+e−v = 2σ(2v)− 1, the LSTM updates for time
step t given inputs vt, ht−1, and the memory cell ct−1 as
follows:

it = σ(Wvivt +Whiht−1 + bi) (3)
f t = σ(Wvfvt +Whfht−1 + bf ) (4)
ot = σ(Wvovt +Whoht−1 + bo) (5)
gt = φ(Wvgvt +Whght−1 + bg) (6)
ct = f t � ct−1 + it � gt (7)
ht = ot � φ(ct) (8)

where � denotes element-wise multiplication. All the
weights W and biases b of the network are learnt jointly
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with the cross-entropy loss. Conceptually, as shown in
Figure 3, Equation 3 corresponds to the input gate, Equa-
tion 6 the input modulation gate, and Equation 4 the forget
gate, which determines how much to keep from the previ-
ous memory ct−1 state. As Figures 1 and 2 suggest, all the
output predictions that occur before the question mark are
excluded from the loss computation, so that the model is
penalized solely based on the predicted answer words.

Implementation We use default hyper-parameters of
LSTM [3] and CNN [7]. All CNN models are first pre-
trained on the ImageNet dataset [17], and next we fine-tune
the last layer together with the full training of the LSTM
network on the task. We find this step crucial in obtaining
good results. We have explored the use of a 2 layered LSTM
model, but have consistently obtained worse performance.
In a pilot study, we have found that GoogleNet architec-
ture [7, 21] consistently outperforms the AlexNet architec-
ture [7, 12] as a CNN model for our task and model.

4. Experiments
In this section we benchmark our method on a task of

answering questions about images. We compare different
versions of our proposed model to prior work. In addition,
we analyze how well questions can be answered without us-
ing the image in order to gain an understanding of biases in
form of prior knowledge and common sense. We provide
a new human baseline for this task. We also realize am-
biguities in the question answering tasks and analyze them
further by introducing metrics that are sensitive to this phe-
nomena and additional ground truth annotations to quantify
the effects.

Experimental protocol We evaluate our approach on the
DAQUAR dataset [15] which provides 12468 human ques-
tion answer pairs on images of indoor scenes[18] and follow
their evaluation protocol by providing results on accuracy
and the WUPS score at {0.9, 0.0}. We run experiments for
the full dataset as well as their proposed reduced set that re-
stricts the output space to only 37 object categories and uses
25 test images.

4.1. Evaluation of Neural-Image-QA

We start with the evaluation of our Neural-Image-QA on
the full DAQUAR dataset in order to study different vari-
ants and training conditions. Afterwards we evaluate on the
reduced DAQUAR for additional points of comparison to
prior work.

Results on full DAQUAR Table 1 shows the results of
our Neural-Image-QA method on the full set (“multiple
words”). In addition, we evaluate a variant that is trained

to predict only a single word (“single word”) as well as a
variant that does not use visual features (“Language only”).
In comparison to the prior work [15] (shown in the first row
in Table 1), we observe strong improvements of over 9%
points in accuracy and over 11 in the WUPS scores [sec-
ond row in Table 1 that corresponds to “multiple words”].
Note that, we achieve this improvement despite the fact
that the number available for the comparison on the full set
uses ground truth object annotations [15] – which puts our
method at a disadvantage. Further improvements are ob-
served when we train only on a single word answer, which
almost triples the accuracy obtained in the prior work. We
attribute this to a joint training of the language and visual
representations and the dataset bias, where about 90% of the
answers contain only a single word. We further analyze this
effect in Figure 4, where we show performance of our ap-
proach (“multiple words”) in dependence on the number of
words in the answer (truncated at 4 words due to the dimin-
ishing performance). The performance of the “single word”
variants are shown as horizontal lines. Although accuracy
drops rapidly for longer answers, our model is capable of
producing a significant number of correct multiple word an-
swers. The “single word” variants have an edge on the sin-
gle answers and benefit from the dataset bias towards these
type of answers. While we have made substantial progress
compared to prior work, there is still a 30% points margin to
human accuracy and 25 in WUPS score [“Human answers”
in Table 1].

Results on reduced DAQUAR In order to provide perfor-
mance numbers that are comparable to the proposed Multi-
World approach in [15], we also run our method on the
reduced set with 37 object classes and only 25 test im-
ages. Table 2 shows that Neural-Image-QA also improves
on the reduced DAQUAR set, achieving 34.68% Accuracy
and 40.76% WUPS at 0.9 substantially outperforming [15]
by a 21.95% and 22.6 WUPS score difference. Similarly
to previous experiments, we achieve the best performance
using the “single word” variant.

4.2. Answering questions without looking at images

In order to study how much information is already con-
tained in questions, we train a version of our model that
ignores the visual input. The results are shown in Table 1
and Table 2 under “Language only (ours)”. The best “Lan-
guage only” models with 17.15% and 32.32% compare very
well in terms of accuracy to the best models that include vi-
sion. The latter achieve 19.43% and 34.68% on the full and
reduced set respectively.

In order to further analyze this finding, we have collected
a new human baseline “Human answer, no image”, where
we have asked participants to answer on the DAQUAR
questions without looking at the images. It turns out that hu-

4



Accuracy WUPS WUPS
@0.9 @0.0

Malinowski et. al. [15] 7.86 11.86 38.79

Neural-Image-QA (ours)
- multiple words 17.49 23.28 57.76
- single word 19.43 25.28 62.00
Human answers [15] 50.20 50.82 67.27

Language only (ours)
- multiple words 17.06 22.30 56.53
- single word 17.15 22.80 58.42
Human answers, no images 11.99 16.82 33.57

Table 1. Results on DAQUAR with all classes, in %.

Accuracy WUPS WUPS
@0.9 @0.0

Malinowski et. al. [15] 12.73 18.10 51.47

Neural-Image-QA (ours)
- multiple words 29.27 36.50 79.47
- single word 34.68 40.76 79.54

Language only (ours)
- multiple words 32.32 38.39 80.05
- single word 31.65 38.35 80.08

Table 2. Results on DAQUAR with a reduced set of 37 object
classes and 25 test images, in %.
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Figure 4. Comparison between the “Language only” (blue bar) and
“Neural-Image-QA” (red bar) models. The blue and red horizontal
bars represent a single word “Language only” and “Neural-Image-
QA” models evaluated on the answers with exactly 1 words.

mans can guess the correct answer in 11.99% of the cases
by exploiting prior knowledge and common sense. Inter-
estingly, our best “language only” model outperforms the
human baseline by over 5% for which we conclude that our
model has captured some of the reoccurring patterns that
can be viewed as a form of common sense knowledge.
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Figure 5. At x-axis: no consensus (0), at least half consensus (50),
full consensus (100). Results in %. Left: consensus on the whole
data, right: consensus on the test data.

4.3. Human Consensus

We observe that in many cases there is an inter human
agreement in the answers for a given image and question
and this is also reflected by the human baseline performance
on the question answering task of 50.20% [“Human an-
swers” in Table 1]. We study and analyze this effect fur-
ther by supplying an extended set of human answers in Sec-
tion 4.3.1, proposing new measure that handles disagree-
ment in Section 4.3.2, as well as conducting additional ex-
periments in Section 4.3.3.

4.3.1 Extended annotation set

In order to study the effects of consensus in the question an-
swering task, we have asked participants to answer the ques-
tions of the DAQUAR dataset given the respective images.
We follow the same scheme as in the original data collec-
tion effort, where the answer is a set of words or numbers.
We do not impose any further restrictions on the answers.
This extends the original data to an average of 5 answers
per image and question.

4.3.2 Consensus Measures

While we have to acknowledge inherent ambiguities in our
task, we seek a metric, that prefers an answer that is com-
monly seen as preferred. We make two proposals:

Average Consensus: We use our new annotation set that
contains multiple answers per question in order to compute
an expected score in the evaluation:

1

NK

N∑
i=1

K∑
k=1

min{
∏
a∈Ai

max
t∈T i

k

µ(a, t),
∏
t∈T i

k

max
a∈Ai

µ(a, t)}

(9)

where for the i-th questionAi is the answer produced by the
architecture and T i

k is the k-th possible human answer cor-
responding to the k-th interpretation of the question. Both
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answers Ai and T i
k are sets of the words, and µ is a mem-

bership measure, for instance WUP [26]. We call the metric
in Equation 9 Average Consensus Metric (ACM) since, in
the limits, as K approaches the total number of humans, we
truly measure the inter human agreement of every question.

Min Consensus: The Average Consensus Metric puts
more weights on more “mainstream” answers due to the
summation over possible answers given by humans. In or-
der to measure if the result was at least with one human in
agreement, we propose a Min Consensus Metric (MCM) by
replacing the averaging in Equation 9 with a max operator.
We call such metric Min Consensus and suggest using both
metrics in the benchmarks. We will make the implementa-
tion of both metrics publicly available.

1

N

N∑
i=1

K
max
k=1

min{
∏
a∈Ai

max
t∈T i

k

µ(a, t),
∏
t∈T i

k

max
a∈Ai

µ(a, t)}


(10)

Both Equation 10 and Equation 9 are multiplied by 100.0
to report the results in %. Intuitively, the max operator uses
in evaluation a human answer that is the closest to the pre-
dicted one – which represents a minimal form of consensus.

4.3.3 Consensus results

Based on the additional answer we have collected on
DAQUAR we can show a more detailed analysis of in-
ter human agreement. Figure 5 shows the fraction of the
data where the answers agree between all available ques-
tions (“100”), at least 50% of the available questions and
do not agree at all (no agreement - “0”). We observe that
for the majority of the data, there is partial agreement, but
even full disagreement is possible. We split the dataset into
three parts according to the above criteria “No agreement”,
“≥ 50% agreement” and “Full agreement” and evaluate our
models on these splits (Table 3 summarizes the results).
On subsets with stronger agreement, we achieve substan-
tial gains up to 10% points in accuracy. These splits can be
seen as curated versions of DAQUAR, which allows stud-
ies with factored out ambiguities - yet this approach comes
with the problem of drastically reducing the test set size.

Therefore, we also show in Table 3 the application of
our new consensus measures: “Average Consensus Met-
ric” and “Min Consensus Metric”. We observe that the
“Min Consensus Metric” has the desired effect of provid-
ing an additional more optimistic evaluation, while still us-
ing the whole dataset. The “Average Consensus Metric” on
the other hand takes alternative answers into account while
encouraging prediction of the most agreeable one. We ar-
gue that these improved metrics on the extended annotation
set should be further considered to facilitate more accurate

Accuracy WUPS WUPS
@0.9 @0.0

Subset: No agreement
Language only (ours)
- multiple words 8.86 12.46 38.89
- single word 8.50 12.05 40.94

Neural-Image-QA (ours)
- multiple words 10.31 13.39 40.05
- single word 9.13 13.06 43.48

Subset: ≥ 50% agreement
Language only (ours)
- multiple words 21.17 27.43 66.68
- single word 20.73 27.38 67.69

Neural-Image-QA (ours)
- multiple words 20.45 27.71 67.30
- single word 24.10 30.94 71.95

Subset: Full Agreement
Language only (ours)
- multiple words 27.86 35.26 78.83
- single word 25.26 32.89 79.08

Neural-Image-QA (ours)
- multiple words 22.85 33.29 78.56
- single word 29.62 37.71 82.31

Average Consensus Metric
Language only (ours)
- multiple words 11.60 18.24 52.68
- single word 11.57 18.97 54.39

Neural-Image-QA (ours)
- multiple words 11.31 18.62 53.21
- single word 13.51 21.36 58.03

Min Consensus Metric
Language only (ours)
- multiple words 22.14 29.43 66.88
- single word 22.56 30.93 69.82

Neural-Image-QA (ours)
- multiple words 22.74 30.54 68.17
- single word 26.53 34.87 74.51

Table 3. Results on DAQUAR with all classes, Consensus in %.

measurements of progress on such question answering tasks
that have a level of ambiguity inherent to the task.

4.4. Qualitative results

We show predicted answers of different variants of our
architecture in Table 4, 5, and 6. We have chosen the exam-
ples to highlight differences between “Neural-Image-QA”
and the “language only”. We call both versions of the for-
mer, either “multiple words” or “single word”, collectively
“Vision+Language”. We use a “multiple words” approach
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What is on the right side of the cabinet? How many drawers are there? What is the largest object?

Vision+Language: bed 3 bed

Language only: bed 6 table

Table 4. Examples of questions and answers. Correct predictions are colored in green, incorrect in red.

What is on the refrigerator? What is the colour of the comforter? What objects are found on the bed?

Vision+Language: magnet, paper blue, white bed sheets, pillow

Language only: magnet, paper blue,green, red, yellow doll, pillow

Table 5. Examples of questions and answers with multiple words. Correct predictions are colored in green, incorrect in red.

only in Table 5. Despite some failure cases, the latter model
makes “reasonable guesses” like predicting that the largest
object could be table or an object that could be found on the
bed is either a pillow or doll. The last Table 6 shows remain-
ing failure cases that include (in order) strong occlusion, a
possible answer not captured by our ground truth answers,
and unusual instances (red toaster).

5. Conclusions
We have presented a neural architecture for answering

natural language questions on image that contrasts with
prior efforts based on semantic parsing and outperforms
prior work by doubling performance on this challenging
task. A variant of our model that does not use the im-
age to answer the question performs only slightly worse
and even outperforms a new human baseline that we have
collected under the same condition. We conclude that our
model has learnt biases and patterns that can be seen as
forms of common sense knowledge and prior knowledge

that humans use to accomplish this task. We contribute an
extended collection of additional answers that complement
the existing dataset and study inter human agreement and
consensus on the question answer task. We propose two
new metrics “Average Consensus” and “Min Consensus”
that constitute a more realistic, which takes into account
human disagreement, measure and a more optimistic one
that ignores consensus but captures disagreement in human
question answering.
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