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Abstract
Scene parsing consists in labeling each pixel in
an image with the category of the object it be-
longs to. We propose a method that uses a mul-
tiscale convolutional network trained from raw
pixels to extract dense feature vectors that encode
regions of multiple sizes centered on each pixel.
The method alleviates the need for engineered
features. In parallel to feature extraction, a tree
of segments is computed from a graph of pixel
dissimilarities. The feature vectors associated
with the segments covered by each node in the
tree are aggregated and fed to a classifier which
produces an estimate of the distribution of object
categories contained in the segment. A subset of
tree nodes that cover the image are then selected
so as to maximize the average “purity” of the
class distributions, hence maximizing the overall
likelihood that each segment will contain a sin-
gle object. The system yields record accuracies
on the the Sift Flow Dataset (33 classes) and the
Barcelona Dataset (170 classes) and near-record
accuracy on the Stanford Background Dataset
(8 classes), while being an order of magnitude
faster than competing approaches, producing a
320 × 240 image labeling in less than 1 second,
including feature extraction.

1. Overview
Scene parsing, or full scene labeling (FSL), is the task of
labeling each pixel in a scene with the category of the ob-
ject to which it belongs. FSL requires to solve the detec-
tion, segmentation, recognition and contextual integration
problems simultaneously, so as to produce a globally con-
sistent labeling. One of the obstacles to FSL is that the
information necessary for the labeling of a given pixel may
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come from very distant pixels as well as their labels. The
category of a pixel may depend on relatively short-range
information (e.g. the presence of a human face generally
indicates the presence of a human body nearby), as well as
on very long-range dependencies (is this grey pixel part of
a road, a building, or a cloud?).

This paper proposes a new method for FSL, depicted on
Figure 1 that relies on five main ingredients:
1) Trainable, dense, multi-scale feature extraction: a
multi-scale, dense feature extractor produces a series of
feature vectors for regions of multiple sizes centered
around every pixel in the image, covering a large context.
The feature extractor is a three-stage convolutional network
applied to a multi-scale contrast-normalized laplacian pyra-
mid computed from the image. The convolutional network
is fed with raw pixels and trained end to end, thereby alle-
viating the need for hand-engineered features.
2) Segmentation Tree: A graph over pixels is computed
in which each pixel is connected to its 4 nearest neighbors
through an edge whose weight is a measure of dissimilarity
between the colors of the two pixels. A segmentation tree is
then constructed using a classical region merging method,
based on the minimum spanning tree of the graph. Each
node in the tree corresponds to a potential image segment.
The final image segmentation will be a judiciously chosen
subset of nodes of the tree whose corresponding regions
cover the entire image.
3) Region-wise feature aggregation: for each node in the
tree, the corresponding image segment is encoded by a
3 × 3 spatial grid of aggregated feature vectors. The ag-
gregated feature vector of each grid cell is computed by a
component-wise max pooling of the feature vectors cen-
tered on all the pixels that fall into the grid cell; This pro-
duces a scale-invariant representation of the segment and
its surrounding.
4) Class histogram estimation: a classifier is then applied
to the aggregated feature grid of each node. The classifier
is trained to estimate the histogram of all object categories
present in its input segments.
5) Optimal purity cover: a subset of tree nodes is selected
whose corresponding segments cover the entire image. The
nodes are selected so as to maximize the average purity of
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the class distribution. We define the class purity as a quan-
tity that is inversely proportional to the entropy of the class
distribution. The choice of the cover thus attempts to find
a consistent overall segmentation in which each segment
contains pixels belonging to only one of the learned cate-
gories.

All the steps in the process have a complexity linear (or
almost linear) in the number of pixels. The bulk of the
computation resides in the convolutional network feature
extractor. The resulting system is very fast, producing a
full parse of a 320 × 240 image in less than 1 second on a
conventional CPU, and in less than 100ms using dedicated
hardware, opening the door to real-time applications. Once
trained, the system is parameter free, and requires no ad-
justment of thresholds or other knobs.

There are three key contributions in this paper 1) using a
multi-scale convolutional net to learn good features for re-
gion classification; While using a multiscale representation
seems natural for FSL, it has rarely been used in the con-
text of feature learning systems. 2) using a class purity
criterion to decide if a segment contains a single objet, as
opposed to several objects, or part of an object; 3) an effi-
cient procedure to obtain a cover that optimizes the overall
class purity of a segmentation.

2. Related work
The FSL problem has been approached with a wide variety
of methods in recent years. Many methods rely on MRFs,
CRFs, or other types of graphical models to ensure the con-
sistency of the labeling and to account for context (He &
Zemel, 2008; Russell et al., 2009; Gould et al., 2009; Ku-
mar & Koller, 2010; Munoz et al., 2010; Tighe & Lazeb-
nik, 2010; Lempitsky et al., 2011). Most methods rely on
a pre-segmentation into super-pixels or other segment can-
didates, and extract features and categories from individ-
ual segments and from various combinations of neighbor-
ing segments. The graphical model inference pulls out the
most consistent set of segments which covers the image.

Socher et al. (2011) propose a method to aggregate seg-
ments in a greedy fashion using a trained scoring function.
The originality of the approach is that the feature vector
of the combination of two segments is computed from the
feature vectors of the individual segments through a train-
able function. Like us, they use “deep learning” methods
to train their feature extractor. But unlike us, their feature
extractor operates on hand-engineered features.

One of the main question in scene parsing is how to take a
wide context into account to make a local decision. Munoz
et al. (2010) proposed to use the histogram of labels ex-
tracted from a coarse scale as input to the labeler that looks
at finer scales. Our approach is somewhat simpler: our
feature extractor is applied densely to an image pyramid.
The coarse feature maps thereby generated are upsampled
to match that of the finest scale. Hence with three scales,
each feature vector has multiple fields which encode multi-
ple regions of increasing sizes and decreasing resolutions,
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Figure 1. Diagram of the scene parsing system. The raw input
image is transformed through a Laplacian pyramid. Each scale
is fed to a 3-stage convolutional network, which produces a set
of feature maps. The feature maps of all scales are concatenated,
the coarser-scale maps being upsampled to match the size of the
finest-scale map. Each feature vector thus represents a large con-
textual window around each pixel (184 × 184 in this paper). In
parallel, a segmentation tree is computed via the minimum span-
ning tree of the dissimilarity graph of neighboring pixels. The
segment associated with each node in the tree is encoded by a
spatial grid of feature vectors pooled in the segment’s region. A
classifier is then applied to all the aggregated feature grids to pro-
duce a histogram of categories, the entropy of which measures
the “impurity” of the segment. Each pixel is then labeled by the
minimally-impure node above it, which is the segment that best
explains the pixel’s class.
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centered on the same pixel location.

Like us, a number of authors have used trees to generate
candidate segments by aggregating elementary segments,
as in Russell et al. (2009); Lempitsky et al. (2011). These
approaches rely on inference algorithms based on Graph
Cuts or other methods. In this paper, we use an innova-
tive method based on finding a set of tree nodes that covers
the image while minimizing a class purity criterion, that al-
lows us to label scenes in less that one second whereas the
previously mentionned approaches require minutes.

Our system extracts features densely from a multiscale
pyramid of images using a convolutional network (Conv-
Net) (LeCun et al., 1998a). ConvNets can be fed with raw
pixels and can automatically learn low-level and mid-level
features, alleviating the need for hand-engineered features.
One big advantage of ConvNets is the ability to compute
dense features efficiently over large images. ConvNets are
best known for their applications to detection and recog-
nition (Osadchy et al., 2007; Jarrett et al., 2009), but they
have also been used for image segmentation, particularly
for biological image segmentation (Ning et al., 2005; Jain
et al., 2007; Turaga et al., 2009).

The only published work on using ConvNets for scene
parsing is that of Grangier et al. (2009). While some-
what preliminary, their work showed that convolutional
networks fed with raw pixels could be trained to perform
scene parsing with decent accuracy. Unlike Grangier et al.
(2009) however, our system uses a boundary-based hierar-
chy of segmentations to align the labels produced by the
ConvNet to the boundaries in the image and thus produces
representations that are independent of the size of the seg-
ments through feature pooling.

3. An end-to-end trainable model for scene
parsing

The model proposed in this paper, depicted on Figure 1, re-
lies on two complementary image representations. In the
first representation, an image patch of size P is seen as a
point in RP , and we seek to find a transform f : RP → RQ

that maps each patch into RQ, a space where it can be clas-
sified linearly. This first representation typically suffers
from two main problems when using a classical ConvNet,
where the image is divided following a grid pattern: (1) the
window considered rarely contains an object that is prop-
erly centered and scaled, and therefore offers a poor obser-
vation basis to predict the class of the underlying object,
(2) integrating a large context involves increasing the grid
size, and therefore the dimensionality P of the input; given
a finite amount of training data, it is then necessary to en-
force some invariance in the function f itself. This is usu-
ally achieved by using pooling/subsampling layers, which
in turn degrades the ability of the model to precisely locate
and delineate objects. In this paper, f is implemented by a
multiscale convolutional network, which allows integrating
large contexts (as large as the complete scene) into local
decisions, yet still remaining manageable in terms of pa-
rameters/dimensionality. This multiscale model, in which

weights are shared across scales, allows the model to cap-
ture long-range interactions, without the penalty of extra
parameters to train. This model is described in Section 3.1.

In the second representation, the image is seen as an
edge-weighted graph, on which a hierarchy of segmenta-
tions/clusterings can be constructed. This representation
yields a natural abstraction of the original pixel grid, and
provides a hierarchy of observation levels for all the ob-
jects in the image. It can be used as a solution to the first
problem exposed above: assuming the capability of assess-
ing the quality of all the components of this hierarchy, a
system can automatically choose its components so as to
produce the best set of predictions. Moreover, these com-
ponents are spatially accurate, and naturally delineate the
underlying objects, as this representation conserves pixel-
level precision. Section 3.2 describes our methodology.

3.1. Scale-invariant, scene-level feature extraction

The feature extractor is a three-stage ConvNet. Each of the
first two stages contains a bank of filters producing multi-
ple feature maps, a point-wise non-linear mapping, and a
spatial pooling and subsampling of each feature map; the
third stage only contains a bank of filters and a point-wise
non-linear mapping. The filters (convolution kernels) are
subject to training. Each filter is applied to the input fea-
ture maps through a 2D convolution operation, which de-
tects local features at all locations on the input. Each filter
bank of a ConvNet produces features that are equivariant
under shifts, i.e. if the input is shifted, the output is also
shifted but otherwise unchanged.

While ConvNets have been successfully applied to a num-
ber of image labeling problems, image-level tasks such as
full-scene understanding (pixel-wise labeling, or any dense
feature estimation) require the system to model complex
interactions at the scale of complete images, not simply
within a patch. To view a large contextual window at
full resolution, a ConvNet would have to be unmanageably
large.

The solution is to use a multiscale approach. Our multi-
scale convolutional network overcomes these limitations by
extending the concept of spatial weight replication to the
scale space. Given an input image I, a multiscale pyramid
of images Xs, ∀s ∈ {1, . . . , N} is constructed, where X1

has the size of I. The multiscale pyramid can be a Lapla-
cian pyramid, and is typically pre-processed, so that local
neighborhoods have zero mean and unit standard deviation.
Given a classical convolutional network fs with parame-
ters θs, the multiscale network is obtained by instantiating
one network per scale s, and sharing all parameters across
scales: θs = θ1, ∀s ∈ {1, . . . , N}.
The maps in the pyramid are computed using a scal-
ing/normalizing function gs as Xs = gs(I), for all s ∈
{1, . . . , N}.
For each scale s, the convolutional network fs can
be described as a sequence of linear transforms, inter-
spersed with non-linear symmetric squashing units (typi-
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cally the tanh function (LeCun et al., 1998b)), and pool-
ing/subsampling operators. For a network fs with L lay-
ers, we have: fs(Xs; θs) = WLHL−1, where the vector of
hidden units at layer l is Hl = pool(tanh(WlHl−1+bl))
for all l ∈ {1, . . . , L − 1}, with bl a vector of bias pa-
rameters, and H0 = Xs. The matrices Wl are Toeplitz
matrices, therefore each hidden unit vector Hl can be ex-
pressed as a regular convolution between kernels from
Wl and the previous hidden unit vector Hl−1, squashed
through a tanh, and pooled spatially. More specifically,
Hlp = pool(tanh(blp +

∑
q∈parents(p) wlpq ∗Hl−1,q)).

The filters Wl and the biases bl constitute the trainable
parameters of our model, and are collectively denoted θs.
The function tanh is a point-wise non-linearity, while pool
is a function that considers a neighborhood of activations,
and produces one activation per neighborhood. In all our
experiments, we use a max-pooling operator, which takes
the maximum activation within the neighborhood. Pooling
over a small neighborhood provides built-in invariance to
small translations.

Finally, the outputs of the N networks are upsampled and
concatenated so as to produce F, a map of feature vec-
tors of size N times the size of F1, which can be seen as
local patch descriptors and scene-level descriptors: F =
[F1, u(F2), . . . , u(FN )], where u is an upsampling func-
tion.

As mentioned above, weights are shared between networks
fs. Intuitively, imposing complete weight sharing across
scales is a natural way of forcing the network to learn scale
invariant features, and at the same time reduce the chances
of over-fitting. The more scales used to jointly train the
models fs(θs) the better the representation becomes for all
scales. Because image content is, in principle, scale invari-
ant, using the same function to extract features at each scale
is justified. In fact, we observed a performance decrease
when removing the weight-sharing.

3.2. Parameter-free hierarchical parsing

Predicting the class of a given pixel from its own feature
vector is difficult, and not sufficient in practice. The task is
easier if we consider a spatial grouping of feature vectors
around the pixel, i.e. a neighborhood. Among all possible
neighborhoods, one is the most suited to predict the pixel’s
class. In Section 3.2.1 we formulate the search for the most
adapted neighborhood as an optimization problem. The
construction of the cost function that is minimized is then
described in Section 3.2.2.

3.2.1. OPTIMAL PURITY COVER

We define the neighborhood of a pixel as a connected com-
ponent that contains this pixel. Let Ck, ∀k ∈ {1, . . . ,K}
be the set of all possible connected components of the lat-
tice defined on image I, and let Sk be a cost associated to
each of these components. For each pixel i, we wish to
find the index k∗(i) of the component that best explains the
class of the pixel, that is, the component with the minimal

C7
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C1 C2 C3 C4
min min min min

0.8

.3 .5

.2 .4 .2 .1

Optimal cover:

{C1, C3, C4, C5}

Figure 2. Finding the optimal cover. For each pixel (leaf) i, the
optimal component Ck∗(i) is the one along the path between the
leaf and the root with minimal cost Sk∗(i). The optimal cover is
the union of all these components. In this example, the optimal
cover {C1, C3, C4, C5} will result in a segmentation in disjoint
sets {C1, C2, C3, C4}, with the subtle difference that component
C2 will be labelled with the class of C5, as C5 is the best obser-
vation level for C2.

cost Sk∗(i):
k∗(i) = argmin

k | i∈Ck

Sk (1)

Note that componentsCk∗(i) are non-disjoint sets that form
a cover of the pixels (lattice). Note also that the overall cost
S∗ =

∑
i Sk∗(i) is minimal.

In practice, the set of components Ck is too large, and only
a subset of it can be considered. A classical technique to
reduce the set of components is to consider a hierarchy of
segmentations (Najman & Schmitt, 1996; Arbeláez et al.,
2011), that can be represented as a tree T . Solving Eq 1 on
T can be done simply by exploring the tree in a depth-first
search manner, and finding the component with minimal
weight along each branch. Figure 2 illustrates the proce-
dure.

3.2.2. PRODUCING THE CONFIDENCE COSTS

Given a set of components Ck, we explain how to produce
all the confidence costs Sk. These costs represent the class
purity of the associated components. Given the groundtruth
segmentation, we can compute the cost as being the entropy
of the distribution of classes present in the component. At
test time, when no groundtruth is available, we need to de-
fine a function that can predict this cost by simply looking
at the component. We now describe a way of achieving
this, as illustrated in Figure 3.

Given the feature vectors in F, we define a compact repre-
sentation to describe objects as an adaptive spatial arrange-
ment of such features. In other terms, an object, or cate-
gory in general, can be best described as a spatial arrange-
ment of features, or parts. We define a simple attention
function a used to mask the feature vector map with each
componentCk, producing a set ofK masked feature vector
patterns {F

⋂
Ck}, ∀k ∈ {1, . . . ,K}. The function a is

called an attention function because it suppresses the back-
ground around the component being analyzed. The patterns
{F

⋂
Ck} are resampled to produce fixed-size representa-

tions. In our model the sampling is done using an adaptive
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Figure 3. The shape-invariant attention function a. For each com-
ponent Ck in the segmentation tree T , the corresponding image
segment is encoded by a spatial grid of feature vectors that fall
into this segment. The aggregated feature vector of each grid
cell is computed by a component-wise max pooling of the fea-
ture vectors centered on all the pixels that fall into the grid cell;
this produces a scale-invariant representation of the segment and
its surroundings. The result, Ok, is a descriptor that encodes spa-
tial relations between the underlying object’s parts. The grid size
was set to 3× 3 for all our experiments.

max-pooling function, which remaps input patterns of ar-
bitrary size into a fixed G × G grid. This grid can be seen
as a highly invariant representation that encodes spatial re-
lations between an object’s attributes/parts. This represen-
tation is denoted Ok. Some nice properties of this encod-
ing are: (1) elongated, or in general ill-shaped objects, are
nicely handled, (2) the dominant features are used to repre-
sent the object, combined with background subtraction, the
features pooled represent solid basis functions to recognize
the underlying object.

Once we have the set of object descriptors Ok, we define
a classifier function c : Ok → [0, 1]Nc (where Nc is the
number of classes) as predicting the distribution of classes
present in component Ck. We associate a cost Sk to this
distribution. In this paper, c is implemented as a simple 2-
layer neural network, and Sk is the entropy of the predicted
distribution. More formally, let xk be the feature vector
associated with component Ck, d̂k the predicted class dis-
tribution, and Sk the cost associated to this distribution. We
have

yk = W2 tanh(W1xk + b1), (2)

d̂k,a =
eyk,a∑

b∈classes e
yk,b

, (3)

Sk = −
∑

a∈classes

d̂k,a ln(d̂k,a). (4)

Matrices W1 and W2 are noted θc, and represent the train-
able parameters of c. These parameters need to be learned
over the complete set of hierarchies, computed on the en-
tire training set available. The exact training procedure is
described in Section 4.

4. Training procedure
Let F be the set of all feature maps in the training set, and
T the set of all hierarchies. Training the model described
in Section 3 can be done in two steps. First, we train the
low-level feature extractor f in complete independence of

the rest of the model. The goal of that first step is to pro-
duce features (F)F∈F that are maximally discriminative
for pixelwise classification. Next, we construct the hierar-
chies (T )T∈T on the entire training set, and, for all T ∈ T
train the classifier c to predict the distribution of classes in
component Ck ∈ T , as well as the costs Sk. Once this sec-
ond part is done, all the functions in Figure 1 are defined,
and inference can be performed on arbitrary images. In the
next two sections we describe these two steps.

4.1. Learning discriminative scale-invariant features

As described in Section 3.1, feature vectors in F are ob-
tained by concatenating the outputs of multiple networks
fs, each taking as input a different image in a multiscale
pyramid. Ideally a linear classifier should produce the cor-
rect categorization for all pixel locations i, from the feature
vectors Fi. We train the parameters θs to achieve this goal,
using the multiclass cross entropy loss function. Let ĉi be
the normalized prediction vector from the linear classifier
for pixel i. We compute normalized predicted probability
distributions over classes ĉi,a using the softmax function,
i.e.

ĉi,a =
ew

T
a Fi∑

b∈classes e
wT

b Fi
, (5)

where w is a temporary weight matrix only used to learn
the features. The cross entropy between the predicted class
distribution ĉ and the target class distribution c penalizes
their deviation and is measured by

Lcat = −
∑

i∈pixels

∑
a∈classes

ci,a ln(ĉi,a). (6)

The true target probability ci,a of class a to be present at
location i can either be a distribution of classes at location
i, in a given neighborhood or a hard target vector: ci,a = 1
if pixel i is labeled a, and 0 otherwise. For training max-
imally discriminative features, we use hard target vectors
in this first stage. Once the parameters θs are trained, we
discard the classifier in Eq 5.

4.2. Teaching a classifier to find its best observation
level

Given the trained parameters θs, we build F and T , i.e.we
compute all vector maps F and hierarchies T on all the
training data available, so as to produce a new training set
of descriptors Ok. This time, the parameters θc of the clas-
sifier c are trained to minimize the KL-divergence between
the true (known) distributions of labels dk in each compo-
nent, and the prediction from the classifier d̂k (Eq 3):

ldiv =
∑

a∈classes

d̂k,aln(
d̂k,a

dk,a
). (7)

In this setting, the groundtruth distributions dk are not
hard target vectors, but normalized histograms of the la-
bels present in component Ck. Once the parameters θc are
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P / C CT (sec.)
Gould et al. (2009) 76.4% / - 10 to 600s
Munoz et al. (2010) 76.9% / 66.2% 12s

Tighe & Lazebnik (2010) 77.5% / - 10 to 300s
Socher et al. (2011) 78.1% / - ? 2

Kumar & Koller (2010) 79.4% / - < 600s
Lempitsky et al. (2011) 81.9% / 72.4%1 > 60s

singlescale convnet 66.0 % / 56.5 % 0.3s
multiscale convnet 77.5 % / 70.0% 0.5s

multiscale net + cover 79.5% / 74.3% 1s

Table 1. Performance of our system on the Stanford Background
dataset (Gould et al., 2009): per-pixel / average per-class accu-
racy. The third column reports compute times, as reported by the
authors. Our algorithms were computed using a 4-core Intel i7.
1 We would like to thank Victor Lempitsky who kindly provided
us with his classification results. 2Socher et al. (2011) only pro-
vide compute time for their inference (110ms), omitting the time
to compute features.

trained, d̂k accurately predicts the distribution of labels,
and Eq 4 is used to assign a purity cost to the component.

Note that the parameters of the feature extractor are not
updated while training this classifier. This has been tried,
and, interestingly, gave results that were slightly worse. We
believe this is caused by the fact that learning all the param-
eters of the complete system jointly is more prone to over-
fitting. Moreover, the feature extractor and the classifier
are trained on the same data, which can also be suboptimal
in terms of generalization, as mentioned in (Munoz et al.,
2010).

5. Experiments
We report our semantic scene understanding results on
three different datasets: “Stanford Background” on which
related state-of-the-art methods report classification errors,
and two more challenging datasets with a larger number
of classes: “SIFT Flow” and “Barcelona”. The Stanford
Background dataset Gould et al. (2009) contains 715 im-
ages of outdoor scenes composed of 8 classes, where each
image contains at least one foreground object. We use the
evaluation procedure introduced in Gould et al. (2009), 5-
fold cross validation: 572 images used for training, and 143
for testing. The SIFT Flow dataset Liu et al. (2009) is com-
posed of 2, 688 images, 2, 488 training images and 200
test images containing 33 semantic labels. The Barcelona
dataset, as described in Tighe & Lazebnik (2010), is de-
rived from the LabelMe subset and contains 170 unique
labels. It has 14, 871 training and 279 test images. The
test set consists of street scenes from Barcelona, while the
training set ranges in scene types but has no street scenes
from Barcelona.

For all experiments, we use a 3-stage convolutional net-
work. Each layer of the network is composed of a bank
of filters of size 7 × 7 followed by tanh units and 2 × 2
max-pooling operations. The input image I is transformed

P / C
Liu et al. (2009) 74.75 % / -

Tighe & Lazebnik (2010) 76.9 % / 29.4 %
multiscale net + cover1 78.5 % / 29.6 %
multiscale net + cover2 74.2 % / 46.0 %

Table 2. Performance of our system on the SIFT Flow dataset (Liu
et al., 2009) Our multiscale network is trained using two sampling
methods: 1natural frequencies, 2balanced frequencies.

into a 16-dimension feature map, using a bank of 16 fil-
ters, the second layer transforms the 16-dimension fea-
ture map into a 64-dimension feature map, each compo-
nent being produced by a combination of 8 filters, finally
the 64-dimension feature map is transformed into a 256-
dimension feature map, using a combination of 16 filters.
The network is applied to a locally normalized Laplacian
pyramid constructed on the input image. For these exper-
iments, the pyramid consists of 3 rescaled versions of the
input. All inputs are properly padded, and outputs of each
of the 3 networks upsampled and concatenated, so as to
produce a 256× 3 = 768-dimension feature vector map F.
The field-of-view of the network at each scale is 46 × 46,
such that the complete quarter-resolution field-of-view is
184×184. The network is trained on all 3 scales in parallel.
Simple grid-search was performed to find the best learning
rate and regularization parameters , using a holdout of 10%
of the training dataset for validation. To ensure that the
features do not overfit some irrelevant biases present in the
data, jitter – horizontal flipping of all images, and rotations
between−8 and 8 degrees – was used to artificially expand
the size of the training data.

The segmentation tree used to find the optimal cover is
computed from a 4-connexity graph built on the raw (un-
normalized) RGB pixels. The edge weights are set to the
Euclidean distance between two pixels. A minimum span-
ning tree is then computed, and the dendrogram of that
spanning tree is our segmentation tree. Each edge in that
tree is the weakest edge between the two components. Fi-
nally, the tree is filtered according to a morphologic vol-
umetric criterion (Meyer & Najman, 2010; Cousty & Na-
jman, 2011), completed by a removal of non-informative
small components (less than 100 pixels). These two opera-
tions help produce larger, more stable components.

Classically segmentation methods find a partition of the
segments rather than a cover. Partitioning the segments
consists in finding an optimal cut in the tree (so that each
terminal node in the pruned tree corresponds to a segment).
We experimented with a number of graph based methods
to do so, including graph-cuts (Ford & Fulkerson, 1955;
Boykov & Jolly, 2001), but the results were less accurate
than with our optimal cover method.

The 2−layer neural network c (Eq 2) has 3×3×3×256 in-
put units (using a 3×3 grid of feature vectors from F), 512
hidden units; and the size of the output unit corresponds to
the number of different classes in the dataset.

To evaluate the gain of each specific components of our pu-
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rity tree approach, we report on the Stanford dataset three
experiments: a system based on a convolutional network
alone; the multiscale convolutional network, and the full
model as described in Section 3. Results are reported in
Table 1, and compared with related works. Our model
achieves very good results in comparison with previous
approaches. Methods of (Kumar & Koller, 2010; Lempit-
sky et al., 2011) achieve similar or better performances on
this particular dataset but to the price of several minutes
to parse one image. We demonstrate that our system scales
nicely when augmenting the number of classes on two other
datasets, in Tables 2 and 3. Example parses on the SIFT
Flow dataset are shown on Figure 4.

Network and multiscale network: for our baseline, we
trained a single-scale network and a three-scale network as
raw site predictors, for each location i, using the classi-
fication loss Lcat defined in Eq 6. Table 1 shows the clear
advantage of the multi-scale representation, which captures
scene-level dependencies, and can classify more pixels ac-
curately. Without an explicit segmentation model, the vi-
sual aspect of the predictions still suffers from poor spatial
consistency, and poor object delineation.

Complete system, network and hierarchy: in this exper-
iment, we use the complete model, as described in Section
3. Results are significantly better than the baseline method,
in particular, much better delineation is achieved.

For the SIFT Flow dataset, we experimented with two sam-
pling methods when learning the multiscale features: re-
specting natural frequencies of classes, and balancing them
so that an equal amount of each class is shown to the
network. Both results are reported in Table 2. Training
with balanced frequencies allows better discrimination of
small objects, and although it decreases the overall pixel-
wise accuracy, it is more correct from a recognition point of
view. Frequency balancing is used on the Stanford Back-
ground dataset, as it consistently gives better results. For
the Barcelona dataset, both sampling methods are used as
well, but frequency balancing worked rather poorly in that
case. This could be explained by the fact that this dataset
has a large amount of classes with very few training exam-
ples. These classes are therefore extremely hard to model,
and overfitting occurs much faster than for the SIFT Flow
dataset. Results are shown on Table 3.

Results in Table 1 demonstrate the impressive computa-
tional advantage of convolutional networks over competing
algorithms. Exploiting the parallel structure of this special
network, by computing convolutions in parallel, allows us
to parse an image of size 320 × 240 in less than one sec-
ond on a 4-core Intel i7 laptop. Our scene parsing method
shows promise of real time applications, which would con-
stitute a breakthrough in the fields of machine learning and
computer vision. Training time is also remarkably fast: re-
sults on the Stanford dataset were typically obtained in 48h
on a regular server.

P / C
Tighe & Lazebnik (2010) 66.9 % / 7.6 %
multiscale net + cover1 67.8 % / 9.5 %
multiscale net + cover2 39.1 % 10.7 %

Table 3. Performance of our system on the Barcelona dataset

6. Discussion
We introduced a discriminative framework for learning to
identify and delineate objects in a scene. Our model does
not rely on engineered features, and uses a multi-scale con-
volutional network operating on raw pixels to learn appro-
priate low-level and mid-level features. The convolutional
network is trained in supervised mode to directly produce
labels. Unlike many other scene parsing systems that rely
on expensive graphical models to ensure consistent label-
ings, our system relies on a multiscale feature representa-
tion to consider large a large context for each local deci-
sion. It also relies on on a segmentation tree in which the
nodes (corresponding to image segments) are labeled with
the entropy of the distribution of classes contained in the
corresponding segment. Instead of graph cuts or other in-
ference methods, we use the new concept of optimal cover
to extract the most consistent segmentation from the tree.

The complexity of each operation is linear in the num-
ber of pixels, except for the production of the tree, which
is quasi-linear (meaning cheap in practice). The system
produces state-of-the-art accuracy on the SIFT Flow and
Barcelona datasets (both measured per pixel, or averaged
per class) and state-of-the-art averaged per class accuracy
on the Stanford Background dataset, while dramatically
outperforming competing models in inference time.

Our current system relies on a single segmentation tree
constructed from image gradients, and implicitly assumes
that the correct segmentation is contained in the tree. Fu-
ture work will involve searches over multiple segmentation
trees, or will use other graphs than simple trees to encode
the possible segmentations (since our optimal cover algo-
rithm can work from other graphs than trees). Other direc-
tions for improvements include the use of structured learn-
ing criteria such as Maximin Learning (Turaga et al., 2009)
to learn low-level feature vectors from which better seg-
mentation trees can be produced.
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