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ABSTRACT

Syntactic parsing is a fundamental problem in computatitimguistics and nat-
ural language processing. Traditional approaches to rgarsie highly com-
plex and problem specific. Recently, Sutskever et al. (2Ptd3ented a domain-
independent method for learning to map input sequencesputsequences that
achieved strong results on a large scale machine transfatidlem. In this work,
we show that precisely the same sequence-to-sequencedrethives results
that are close to state-of-the-art on syntactic constaygarsing, whilst making
almost no assumptions about the structure of the problem.

1 INTRODUCTION

It has recently been shown that a recurrent neural netwarlkezan complex sequence-to-sequence
mappings directly from raw data. This was first demonstratethe English-to-French translation
task (Sutskever et al., 2014), but the same approach alds\fmrevaluating short python programs
(Zaremba & Sutskever, 2014). In this work, we use the same tfprecurrent neural net, called
Long Short-Term Memory (Hochreiter & Schmidhuber, 1997TM3. The LSTM model directly
maps a variable-length input sequence to a large but fixastisiector, which is then mapped to a
variable-length output. It can therefore be used as a geheretion learning mechanism: Given
example inputs: and corresponding outputsof any serializable type, to learn a functignsuch
that f (x) = y, just serialize each andy and apply the sequence-to-sequence learning model.

The procedure described above will not work for arbitranydtionsf, as the sequence-to-sequence
network has inherent limitations: it uses a memory of cartsd&e and runs in linear time. It does,
however, achieve high performance on a large scale maafzsinslation task (Luong et al., 2014).
In this paper we show that it also works well for syntactic stitaency parsing, even though this
task requires modeling complex relations between inputi&and producing trees as the output.

Our main results are as follows: We train a deep LSTM modeh ®¢M parameters on a dataset
consisting of 90K sentences obtained from various treebankl 7M sentences from the web that
are automatically parsed with the BerkeleyParser (Petral/,£2006). This model achieves an F1
score of 90.5 on section 23 of the Penn Treebank. For congpatise BerkeleyParser achieves an
F1 score of 90.2 when trained on the same treebank data. Almaadbination of 10 such LSTMs
achieves an F1 score of 91.6.

As we will demonstrate in the experimental section, the matiically parsed data is crucial for our
model. Since the LSTM lacks prior task-specific knowledgeeieds many examples to learn to
parse accurately. However, in the presence of sufficieinifiguexamples, it is able to automatically
learn the complex syntactic relationships between thetiapd output pairs, which are typically
manually engineered into parsing models. In particularjwaot binarize the parse trees and do not
need any special handling for unary productions or unknowrdg; which are simply mapped to a
single unknown word token. Despite the simplicity of our aggzeh, our final results are competitive
and close to the state of the art.

A common criticism of the sequence-to-sequence approashtskever et al. (2014) is that it is fun-
damentally incapable of dealing with long inputs and owpdtie to its need to store the entire input
sequence in its short-term memory. Despite this potentiatern, the deep LSTM model (which
in our experiments used a 4,000-dimensional state) héaltlittuble with fairly long sequences. In-
deed, the average sentence in the dataset has 22 words avthge parse tree annotation has 66
symbols, which did not pose a challenge to our sequencedoesice LSTM model.

*Equal contribution
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Figure 1: A schematic outline of the sequence-to-sequence model tsk&er et al. (2014). A deep input
LSTM reads the input sequenchk , A2, A3 one token at a time and encodes it as its final hidden statervect
Then another deep LSTM starts from that hidden state ventbs@chastically decodes it to produce the output
sequence3, Bs. Every sequence must terminate with a special end-of-segueken.

2 LSTM PARSING MODEL

Let us first recall the sequence-to-sequence LSTM model. Lbimg Short-Term Memory model
of Hochreiter & Schmidhuber (1997) is defined as follows. Lgth,, andm, be the input, control

state, and memory state at timesteplhen, given a sequence of inpyts, ..., zr), the LSTM
computes thé-sequencéhy, ..., hr) and them-sequencém,, ..., mr) as follows
iy = sigm(Whiay + Wahi_q)
iy = tanh(Wszy + Wahi—1)
fi = sigm(Wsx, + Wehy—1)
o = sigm(Wrzy + Wghi_1)
me = my_1 0 fr i O
hi = my®o;

The operatoro denotes element-wise multiplication, the matri¢€s, . .., Ws and the vectoh,
are the parameters of the model, and all the nonlinearitees@mputed element-wise. Note that the
LSTM these equations and their derivatives need to be imghéed only once.

In a deep LSTM, each subsequent layer useshtisequence of the previous layer for its input
sequence. The deep LSTM defines a distribution over output sequeniges @n input sequence:

T
P(B|A) = [[P(BiAs,..., Az, By,...,Bi 1)
t=1

T
= H softmax(W, - ht,HTA)T(SBt

t=1
The above equation assumes a deep LSTM whose input sequencer i =
(Ay,...,Ar,,B1,...,Brg), soh, denotest-th element of theh-sequence of topmost LSTM,
which is a function of A4, ..., Ap,, By, ..., B,—r,). The matrixiW, consists of the vector repre-
sentations of each output symbol and the syndhad a Kronecker delta with a dimension for each
output symbol, seoftmax(W, - hs_1.7,) B, is precisely theB,'th element of the distribution
defined by the softmax. Every output sequence terminatés aviipecial end-of-sequence token
which is necessary in order to define a distribution over sages of variable lengths. We may
sometimes use two different sets of LSTM parameters, onthéomput sequence and one for the
output sequence, as shown in Figure 1. When we use two se&Idfllparameters, we say that the
parameters anentied Otherwise, whef.STM;,, = LSTM,, we say that they atged. Stochastic
gradient descent is used to maximize the training objeethieh is the average over the training
set of the log probability of the correct output sequenceigithe input sequence.

2.1 ADAPTATIONS FORPARSING

To apply the model described above to parsing, we need tgrlesi invertible way of converting
the parse tree into a sequence (linearization). We expatadavith two ways of using the network
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Figure 2: Example parsing task, a basic linearization, arevath stack control symbols.

which both rely on linearizing the tree in a very simple walldeing a depth-first traversal order,
as depicted in Figure 2.

The most basic way of using the above model for parsing woskilows. First, the network
consumes the full sentence in a linear left-to-right sweeeating a vector in memory. Then, it
outputs the linearized parse tree using only the informaitiothis memory vector. We call this
“basic encoding” in the remainder of the paper. An exampteafithis model on the sentence “Go.”
with a 2-layer network looks as follows.

(S (VP VB )vp . )s END
1 * 0 + T B i)
LSTM2, LSTMZ ¢
T T T T T T T T T
LSTML LSTMgy
T T T T T T T T T
Go . END (S (VP VB )vp . )s

While the above method is the most straightforward appboadf the translation model, we ex-
perimented with ways of improving the input format for thewerk. Inspired by shift-reduce
transition-based parsers (Nivre, 2008; Zhu et al., 2018)jntroduce a stack where the words are
provided to the LSTM as additional inputs during decoding.

First, as before, the network consumes the full sentencdimear left-to-right sweep, creating a
vector in memory. Then, while outputing the linearized parge, we maintain a stack of words.
The word on the top of the stack is provided to the network adalitional feature at each time step.
When the network produces the symhbglwe pop a word from the stack. We train the network to
pop words after reaching the common ancestor of the prewdndsiext word in the depth-first tree
traversal (cf. Figure 2). Note that since we do not employ glemtransition strategies our model
only has access to the linear ordering of the words. Furtbezmwve provide only the current word
as an input. We call this “stack encoding” in the remaindethef paper. An example run of this
model on the sentence “Go.” looks as follows.

(S (VP VB vp 1 - )s 1 END
T T T t T T T 0 T
LSTM?H —> LSTM?}ut
T T T T T i T T T T T
LSTML  |— LSTML,,

x * * * + * x T * T *
(Go) () (Golenp)(Go|(S) (GO[(VPNGOVB)(GO)ve) (L) ([)  (Ds) (L)
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3 EXPERIMENTS

We performed a number of experiments with both the basicdingand the stack encoding model,
as described above. We experimented with tied and untied anpd output LSTMs and measured
the influence of using pre-trained word embeddings and finex on in-domain data.

3.1 TRAINING DATA

In our experiments we focus on English, but the model cousilyehe applied to other languages.
Our goal is to build a robust and domain-independent pattsatrcan be used to process text from
various genres. To this end, we train and evaluate on thenwfia number of publicly available
treebanks. We use the OntoNotes corpus version 5 (Hovy,2@06), the English Web Tree-
bank (Petrov & McDonald, 2012) and the updated and corre@iagstion Treebank (Judge et al.,
2006)! Note that the popular Wall Street Journal section of the PEneebank (Marcus et al.,
1993) as part of the OntoNotes corpus. In total, we trair~@DK sentences and evaluate on
~13K sentences. We term the 90K set the Treebank union. Weedhassetup since it allows
us to train and evaluate on a more diverse set of sententher than overfitting the WSJ evalu-
ation set which has been in use for 20 years and is not repadisenfor text encountered on the
web (Petrov & McDonald, 2012). To compare to an establishesklne parser, we also train and
test the publicly available BerkeleyParser (Petrov eR&I06) on the Treebank union.

Additionally, we use a corpus of7 million unlabeled sentences sampled from the web. These
sentences are parsed with an in-house reimplementatidre @d¢rkeleyParser trained on the Tree-
bank union. We include our reimplementation as an additioaseline, and also add a self-training
experiment where it is trained on its own output, similar teadg & Harper (2009). These auto-
matically parsed sentences are used as additional tradaiiagn our experiments and result in large
performance gains (see Table 1). We will release this ddeciiitate replication of our experiments.

We use EVALB for evaluation and report F1 scores on three skt (1) WSJ 22: section 22 of
the Penn Treebank, (2) Questions: 1000 sentences from tbstiQu Treebank, (3) Web: the first
half of each domain from Web Treebank. We also test our bestehun section 23 of the Penn
Treebank. More details on the experimental setup can balfuthe Appendix.

We do not apply any special preprocessing to the data. licpkat, we do not binarize the parse
trees or handle unaries in any specific way. We also treatamknvords in a naive way: we map
all words beyond our 50K vocabulary to a single UNK token. sTitentially underestimates our
final results, but keeps our framework task-independent.

3.2 MODELS AND PARAMETERS

In our experiments we used a deep LSTM model with either J$awyéth 640 units, or 4 layers with
512 units per layer. All our architectures have about 4000ediisions for representing the input
sentence dimensions. The LSTM has an input vocabulary ofd&iKan output vocabulary of 100
symbols, which results in 34M parameters. The exact arcthite and optimization parameters are
further discussed in the Appendix. We used a beam of size &0gddecoding, but a beam size of 2
achieved almost identical results (see below). We alsoddtmseful to reverse the input sentences
but not their parse trees, similarly to Sutskever et al. £20dnd we did it in all of our experiments.
Not reversing the input had a negative impact on our devetopiset of up to 2% absolute F1.

A basic encoding LSTM produces malformed trees in 10% of &ésé ¢ases. However, a simple
change to the decoder, in which we do not consider outputsithaot consume all the input words,
eliminates all the malformed trees. The stack encoding L&fplicitly enforces the consumption
of all the input words, so no further modification of the deeod needed. In the few cases where
the LSTM outputs a malformed tree, we simply add bracketsth@ethe beginning or the end of
the tree in order to make it balanced.

Table 1 presents some baseline numbers for the BerkeleyReand our reimplementation, as well as
several LSTM versions. The main observation is that, despé lack of prior knowledge encoded

L All treebanks are available through the Linguistic Data €@wtium (LDC): OntoNotes (LDC2013T19),
English Web Treebank (LDC2012T13) and Question TreebaBiC2012R121).
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| Method | WSJ 22 | Questions | Web |
[ LSTM stack encoding, 3x640, tied, Treebank unionohly 76.6 | 91.7 [ 69.9 |
LSTM basic encoding, 4x512, tied 89.3 95.2 79.8
LSTM basic encoding, 4x512, untied 91.1 95.7 81.2
LSTM stack encoding, 3x640, tied, fine-tuned 91.3 95.7 82.2
| Ensemble of 10 basic encoding LSTM [ 921 | 960 [ 834]
| BerkeleyParser Treebank union only [ 911 | 959 [ 841]
In-house BerkeleyParser Treebank union only 915 96.2 84.4
In-house BerkeleyParser self-trained 91.2 96.2 84.8

Table 1: F1 scores of various models on our three evaluagitsn See text for discussion.
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Figure 3: Effect of sentence length on the F1 score on Neweswir

in the model, both LSTM with basic encoding and stack enapgierform as well as the Berke-
leyParser on WSJ section 22 (which was used as a developetgnas well as in the questions
dataset. On the more challenging web data, the basic engedifers — likely as a result of early
mistakes propagating forward through the left to right eadecoder. Using stack encoding, these
early mistakes are likely less of an issue. We trained a gtackding LSTM only on Treebank data
as well. This model (cf. first line of Table 1) does not achigeed results, so a large dataset parsed
with BerkeleyParser is indeed crucial for this method. Vé® akport an ensemble of 10 basic en-
coding LSTMs, which is an effective way to improve the penfance of neural networks. Indeed,
all the scores substantially improve over the in-house 8egParser — used to generate the training
set —on WSJ 22 and questions, and closes most of the gap orethdataset. Lastly, untying the
parameters was effective for the basic encoding schemenngcessary with stack encoding.

3.3 BEFFECT OFSENTENCELENGTH AND BEAM SIZE

An important concern with the sequence-to-sequence LSTMiist may not be able to handle long
sentences well. We determine the extent of this problem bitipaing the validation set by length,
and evaluating the LSTM and the BerkeleyParser on sentericzzch length. The results, which
are presented in Figure 3, clearly show that the LSTM’s perémce does not deteriorate on long
sentences, as compared to the performance of the BerkeseyPa

As for the effects of beam size in the decoder, using no beamtiseat all (i.e., beam size of 1)
lowers the score significantly. The numbers below show thedetes on WSJ 22 for different beam
sizes for the stack encoding 3x640 tied and fine-tuned model.

Beam size 1 2 3 6 9 20
Flscore | 90.7| 91.0] 91.0| 91.1] 91.2| 91.3

3.4 BFFECT OFPRE-TRAINING AND FINE-TUNING

In addition to the results above, where we train only on tlirg jget of 7M+90K sentences and with
a vocabulary of size 50K, we experimented with two additimaaiations.

For one, instead of feeding the network with tokens from a %0Kabulary and learning an em-
bedding for them, we tried to provide the network with alnpachbedded words. These skip-gram
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Experimentsfrom this paper F1 Experimentsfrom other work F1
LSTM basic encoding, 4x512, untied| 90.5 Petrov et al. (2006) WSJ only 90.4
Ensemble of 10 basic encoding LSTMs 91.6 Petrov (2010) WSJ only ensemble 91.8
Petrov et al. (2006) Treebank union onfy90.4 Huang & Harper (2009) semi-supervised 91.3

Huang et al. (2010) semi-supervised ensempbl@2.4
Zhu et al. (2013) WSJ only 90.4
Zhu et al. (2013) semi-supervised 91.3

Table 2: F1 scores on Section 23 from the Penn Treebank.

embeddings of size 512 were pre-trained using word2vec ket al., 2013) on a 10B-word
corpus, and kept fix while training the other parameters eintwork.

In addition to pre-training, we also experimented with ftnaing the model only on the 40K set
of WSJ training sentences. This gives the network a chancertect certain errors, but it must be
stopped early to prevent overfitting.

We measured the influence of these factors on a stack-drieeelwith 3 LSTM layers of size 640.
The version with no pre-training but with fine-tuning copends to a row in the table above. The
influence of pre-training and fine-tuning on the F1 score ardemelopment set (section 22 of WSJ)
is summarized below. We write PT to stand for “pre-trainiagt FT to stand for “fine-tuning”.

Model | NoPT,NoFT | PT,NoFT | NoPT,FT | PT,FT
F1 score 90.9 90.5 91.3 91.2

One can see that fine-tuning brings moderate gains whilérpireng has almost no influence. lItis
worth noting that pre-training significantly reduces themoer of trainable parameters of the model.

3.5 HNAL RESULTS

It is difficult to directly compare our results to those regdrin previous work since our training
setup differs. To compare to a publicly available statéhefart parser, we trained the Berkeley-
Parser (Petrov et al., 2006) on our experimental setup.eTatlshows performance on section 23
from the Penn Treebank when training on our setup on thedeétresults from other papers on the
right. Additionally, we compare to variants of the BerkdPayser that use self-training on unlabeled
data (Huang & Harper, 2009), or built an ensemble of multpdesers (Petrov, 2010), or combine
both techniques. It is interesting to see that additioredlinnk data does not help much on Section
23 of WSJ, but it helps a lot for parsing out-of-domain texhafy, we include the best linear-time
parser in the literature, the transition-based parser ofettal. (2013).

It is encouraging to see that our LSTM models are competititie these highly optimized parsers
that have received a lot of task specific tuning. Moreoveemtunning on GPUs the LSTM model
has a significant speed advantage. Using batches of 128iseaten a generic, unoptimized decoder
on a GPU we decode about 160 sentences from WSJ per seconslis Hétter than the speed
reported in Figure 4 of (Hall et al., 2014) even though we rarsentences of all lengths (not only
under 40), our model achieves better accuracy, and theg isduighly optimized.

4 ANALYSIS

To shed some light on what the LSTM is learning, we examin@desof the induced latent repre-
sentations. We looked at individual words, non-terminbéla and also entire sentences.

Table 3 shows some selected examples that exhibit integeptitterns for words and their clos-
est neighbors by cosine similarity. The table contains theest three neighbors for the embed-
dings learnt by the LSTM and contrasts them to the embeddé@ayst by a skip-gram model by
Mikolov et al. (2013). It is interesting to observe that theghbors differ quite significantly be-
tween the two methods. While the skip-gram neighbors angtegical and semantic in nature, the
LSTM neighbors are a lot more syntactic. For example, thghi®irs ofgive andwait are different
forms of the same verbs for the skip-grams, but are diffeveribs that take the same number of
arguments for the LSTM. Similarljgookis grouped with other words that can be both nouns and
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word LSTM neighbors skipgram neighbors

give bring, send, tell giving, gave, gives

wait stay, fly, walk waited, waiting, waits

book deal, bank, film boks, memoir, autobiography
Turkey Congress, Europe, Spain Ankara, Turkish, Azerbaijan
Angeles| York, Jersey, Francisco Los, LA, Seattle

he she, they, we his, He, she

further better, faster, harder review, edits, No

do did, does, Do should, not, modify
Monday | Tuesday, Thursday, Fridaly Thursday, Tuesday, Wednesday

Table 3: Selected words and their three closest neighbocedigie similarity.

verbs by the LSTM, while the skip-gram embedded it with itsmgynonyms. It is also interesting
to see thaAngeless grouped with the second part of other noun noun compoupeaimes by the
LSTM, but with LA andLosby the skip-gram.

Since the non-terminals of the parse trees are also embeadeledn examine their neighbors as
well. In general, the distance between the various nonitaitabels is much larger than between
different words. Only a few non-terminals are close to eatier for exampléSis close to(SQ
(SINVand(SBARQbut most others are pretty far apart. For the part of spesgd) bnlyNNP has
close neighbors, namelyN, NNPS andCD.

Finally, we can examine full sentence embeddings and treghibors. For the sentences in the
development set, we find that the LSTM groups sentences dlfasitangths. Furthermore there
is some syntactic and semantic resemblance, but since titenses are quite diverse there are
few interesting neighbors. We therefore supplemented #veldpment set with a few manually
generated sentences. In particular, we generated seatgithédentical syntactic structure and only
lexical differences, e.d.have a{brother, siste}, who has & brother, sistef. The LSTM grouped
these sentences in close proximity and there was very dlitference due to the different lexical
choices. Some of the other manually generated sentendadéudicprepositional phrase attachment
ambiguities:| ate the pasta with th¢tomatoes, cheese, pesto, fork, sppdhwas exciting to see
that the sentences where the prepositional phrase modiéasounpastawere grouped closer to
each other than the ones where the prepositional phrasdiesotiiie verbate Unfortunately, the
predicted parse trees all had the prepositional phrasehatalow and modifying the noun.

To see how well the LSTM can handle embedded clauses anddr&sbetures, we tried parsing
sentences of the forinhave a (brother who has &)brother. The LSTM can parse such sentences
for n up to 12 without forgetting to close all clauses, which suggests ithlaas learned to model
context-free structures for a reasonably deep stack. Thtkdr confirms the finding that LSTMs
are capable of handling long and complex sentences in atrolys

5 RELATED WORK

The task of syntactic constituency parsing has receiveghagndous amount of attention in the last
20 years. Traditional approaches to constituency parshygan probabilistic context-free gram-

mars (CFGs). The focus in these approaches is on devising@gte smoothing techniques for

highly lexicalized and thus rare events (Collins, 1997) arefully crafting the model structure

(Klein & Manning, 2003). Petrov et al. (2006) partially aliate the heavy reliance on manual mod-
eling of linguistic structure by using latent variables ¢éadn a more articulated model. However,
their model still depends on a CFG backbone and is therelgnfiatly restricted in its capacity.

Early neural network approaches to parsing, for example bgddrson (2003; 2004) also relied
on strong linguistic insights. Titov & Henderson (2007) ahehderson & Titov (2010) introduced
Incremental Sigmoid Belief Networks for syntactic parsiByg constructing the model structure in-
crementally, they are able to avoid making strong indepeoelassumptions but inference becomes
intractable. To avoid complex inference methods, Collb11) propose a recurrent neural net-
work where parse trees are decomposed into a stack of indepefevels. Unfortunately, this
decomposition breaks for long sentences and their accoratynger sentences falls quite signifi-
cantly behind the state of the art. Socher et al. (2011) usesksstructured neural network to score
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candidate parse trees. Their model however relies agaiheFG assumption and furthermore
can only be used to score candidate trees rather than fonfetence.

Our LSTM model significantly differs from all these models,ibBmakes no assumptions about the
task. As a sequence-to-sequence prediction model it iswbateelated to the incremental parsing
models, pioneered by Ratnaparkhi (1997) and extended byn€& Roark (2004). Such linear
time parsers however typically need some task-specifictcints and might build up the parse in
multiple passes. Relatedly, Zhu et al. (2013) present gbarsing results with a single left-to-
right pass, but require a stack to explicitly delay makingisiens and a parsing-specific transition
strategy in order to achieve good parsing accuracies. TH&VLEB contrast uses its short term
memory to model the complex underlying structure that cotaihe input-output pairs.

LSTMs might not be the only models capable of such modelingceRtly, researchers have de-
veloped a number of neural network models that can be apfiiggneral sequence-to-sequence
problems. Graves (2013) was the first to propose a diffaablgtiattention mechanism for the
general problem of handwritten text synthesis, althoughalpiproach assumed a monotonic align-
ment between the input and the output sequences. Later,aBabctal. (2014) introduced a
more general attention model that does not assume a monaatighment, and applied it to
machine translation, and Chorowski et al. (2014) appliedghme model to speech recognition.
Kalchbrenner & Blunsom (2013) used a convolutional neustivork to encode a variable-sized
input sentence into a vector of a fixed dimension and used & RNbroduce the output sentence.
Essentially the same model has been used by Vinyals et dl4f20 successfully learn to generate
image captions. Even though most of these models could Hedpp parsing, we chose the model
of Sutskever et al. (2014) because it is the simplest awthite that can solve general sequence-to-
sequence problems and because it achieves the best parfiroraa large scale machine translation
task (Luong et al., 2014). Itis also able to embed entiressgms in a continuous vector space. Fi-
nally, Ghahramani (1990) applied a similar recurrent nenefwork to the problem of syntactic
parsing 20 years ago.

6 CONCLUSIONS

In this work, we have shown that the generic sequence-toesexg approach of Sutskever et al.
(2014) can achieve competitive results on syntactic ctugstt parsing with relatively little effort or
tuning. Our results highlight the importance of large detsisvhen using large deep neural networks
that do not contain domain-specific, hand-engineered keagd. Lacking prior knowledge, our
system was unable to learn an accurate parser from the tdeaheon alone (cf. firstline of Table 1).
Fortunately, there is a very simple way to benefit from thedhangineering that goes into more
conventional parsers: We use these parsers to createcaddiitraining data. This allows us to
benefit from the prior knowledge in other parsing system$iout putting any constraints on the
form of the internal representations used by the LSTM. Tleetfzat the LSTM was able to match
and even outperform the BerkeleyParser that was used tdataribe 7M sentences suggests that
this simple way of stealing prior knowledge is very effeetithough computationally expensive.
In the long run, however, generic learning algorithms foegmlescurrent neural networks would be
much more useful if they could learn from smaller datasets.
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Corpus Train Dev Test
OntoNotes WSJ Section 2-21 Section 22 Section 23
OntoNotes BN, MZ, NW, WB 1-8/10 Sentences 9/10 Sentences 10/10 Sentences
Question Treebank Sentences 1-1000, Sentences 1000-1500{ Sentences 1500-2000,
Sentences 2000-3000 Sentences 3000-3500| Sentences 3500-4000
Web Treebank Second 50% of each genieFirst 50% of each genre -

Table 4: Details regarding the experimental setup. Dataisétalics were not used.

APPENDIX

7 DETAILED EXPERIMENTAL SETUP

In this section we present details regarding our experialesgttup. We use the OntoNotes cor-
pus version 5 (Hovy et al., 2006), the English Web Treebarér{® & McDonald, 2012) and
the updated and corrected Question Treebank (Judge eD86).2 All treebanks are available
through the Linguistic Data Consortium (LDC): OntoNote®€2013T19), English Web Treebank
(LDC2012T13) and Question Treebank (LDC2012R121). Talpeesents the splits into training,
development and test data that we used for each treebankol\WWedd standard splits whenever
possible, but had to devise also our own splits when no ppbitrwas established. This was the
case for the non-WSJ portions of the OntoNotes corpus, whedivided the data into shards of 10
sentences and selected the first 8 for training, while résgithe 9th for development and the 10th
for test (neither of which we used in our experiments).

We trained a deep LSTM model with Stochastic Gradient Desgeithout momentum). We ini-
tialize all the weights following a random uniform distriilmn between -0.08 and 0.08, and use a
learning rate of 0.4 with an exponential decay which dropddhrning rate by half every 1.5 epochs,
and learning typically stops after 5 epochs. We also coinstiar gradients by clipping them to be
inside a sphere of radius 5. Our model has 512 cells, and k sfatLSTMs, which with a 50K
input vocabulary, and 100 output softmax, yields 34M patansevhen the parameters of the en-
coder and decoder have tied parameters, and 42M when thepiied. We also experimented with
a different architecture (which was used for the stack emgpdSTM model), which has 640 cells
and a stack of 3 LSTMs. The two architectures make no differémterms of performance.

For evaluation we used EVALB with new.prm as the configurafar the WSJ and Question Tree-
bank. For the Web Treebank we followed the SANCL shared taakiation and used sancl.prm,
which removes some of the special handling around punctuatirt-of-speech tags.
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