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Abstract

Progress in estimating visual memorability has been lim-
ited by the small scale and lack of variety of benchmark
data. Here, we introduce a novel experimental procedure
to objectively measure human memory, allowing us to build
LaMem, the largest annotated image memorability dataset
to date (containing 60,000 images from diverse sources).
Using Convolutional Neural Networks (CNNs), we show
that fine-tuned deep features outperform all other features
by a large margin, reaching a rank correlation of 0.64, near
human consistency (0.68). Analysis of the responses of the
high-level CNN layers shows which objects and regions are
positively, and negatively, correlated with memorability, al-
lowing us to create memorability maps for each image and
provide a concrete method to perform image memorability
manipulation. This work demonstrates that one can now ro-
bustly estimate the memorability of images from many dif-
ferent classes, positioning memorability and deep memora-
bility features as prime candidates to estimate the utility of
information for cognitive systems. Our model and data are
available at: http://memorability.csail.mit.edu

1. Introduction

One hallmark of human cognition is our massive capac-
ity for remembering lots of different images [2, 20], many
in great detail, and after only a single view. Interestingly,
we also tend to remember and forget the same pictures and
faces as each other [, 13]. This suggests that despite dif-
ferent personal experiences, people naturally encode and
discard the same types of information. For example, pic-
tures with people, salient actions and events, or central ob-
jects are more memorable to all of us than natural land-
scapes. Images that are consistently forgotten seem to lack
distinctiveness and a fine-grained representation in human
memory [2, 20]. These results suggest that memorable and
forgettable images have different intrinsic visual features,
making some information easier to remember than others.
Indeed, computer vision works [12, 18, 15, 7] have been
able to reliably estimate the memorability ranks of novel
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pictures, or faces, accounting for half of the variance in hu-
man consistency. However, to date, experiments and mod-
els for predicting visual memorability have been limited to
very small datasets and specific image domains.

Intuitively, the question of an artificial system success-
fully predicting human visual memory seems out of reach.
Unlike visual classification, images that are memorable, or
forgettable, do not even look alike: an elephant, a kitchen,
an abstract painting, a face and a billboard can all share
the same level of memorability, but no visual recognition
algorithms would cluster these images together. What are
the common visual features of memorable, or forgettable,
images? How far we can we go in predicting with high ac-
curacy which images people will remember, or not?

In this work, we demonstrate that a deep network trained
to represent the diversity of human visual experience can
reach astonishing performance in predicting visual memo-
rability, at a near-human level, and for a large variety of im-
ages. Combining the versatility of many benchmarks and a
novel experimental method for efficiently collecting human
memory scores (about one-tenth the cost of [13]), we in-
troduce the LaMem dataset, containing 60,000 images with
memorability scores from human observers (about 27 times
larger than the previous dataset [13]).

By fine-tuning Hybrid-CNN [37], a convolutional neu-
ral network (CNN) [23, 21] trained to classify more than
a thousand categories of objects and scenes, we show that
our model, MemNet, achieves a rank correlation of 0.64 on
novel images, reaching near human consistency rank corre-
lation (0.68) for memorability. By visualizing the learned
representation of the layers of MemNet, we discover the
emergent representations, or diagnostic objects, that explain
what makes an image memorable or forgettable. We then
apply MemNet to overlapping image regions to produce a
memorability map. We propose a simple technique based
on non-photorealistic rendering to evaluate these memora-
bility maps. We find a causal effect of this manipulation on
human memory performance, demonstrating that our deep
memorability network has been able to isolate the correct
components of visual memorability.

Altogether, this work stands as the first near-human per-
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Figure 1. Sample images from LaMem arranged by their memorability score (decreasing from left to right). LaMem contains a very large

variety of images ranging from object-centric to scene-centric images, and objects from unconventional viewpoints.

formance benchmark of human visual memory, offering an
understanding and a concrete algorithm for predicting the
memorability of an image and its regions. We envision that
many applications can be developed out of deep memorabil-
ity features, akin to the recent astonishing impact that deep
networks have had on object and scene classification tasks.
Our work shows that predicting human cognitive abilities is
within reach for the field of computer vision.

2. LaMem: Large-scale Memorability Dataset

Here, we introduce an optimized protocol of the memory
game introduced by [!3] to collect human memory scores.
In this game, images are presented successively, and some
are repeated. Observers must press a key when they recog-
nize an image seen before. This allows us to collect ground
truth scores on how memorable images are. The basic idea
of our novel procedure is to allow the second occurrence of
an image to occur at variable time intervals. This procedure
is based on the finding that the memorability ranks of im-
ages are time-independent [13]. We propose an algorithm
to account for this varied time interval allowing us to obtain
high consistency with the existing benchmark [13]. Fur-
thermore, using this new experimental setting, we build a
novel massive memorability dataset, with scores on 60, 000
images (~ 27 times the previous largest benchmark), while
keeping a low cost. Our dataset contains significantly more
variety in the types of images (see Fig. 1), while still main-
taining a high human consistency on memorability.

First, in Sec. 2.1, we briefly describe the sources of im-
ages used for building the dataset to demonstrate its variety
as compared to existing datasets. Then, in Sec. 2.2, we de-
scribe the efficient visual memory game for obtaining large-
scale memorability annotations. Last, in Sec. 2.3, we pro-
vide experimental validation of the proposed method.

2.1. Collecting images

To create a varied dataset, we sampled images from
a number of existing datasets such as MIR Flickr [11],
AVA dataset [27], affective images dataset [25] (consist-
ing of Art and Abstract datasets), image saliency datasets
(MIT1003 [14] and NUSEF [28]), SUN [34], image popu-
larity dataset [ 16], Abnormal Objects dataset [3 ] and aPas-
cal dataset [9]. Thus, our dataset contains scene-centric im-
ages, object-centric images and other types such as images
of art, images evoking certain emotions, and other user-
generated images such as ‘selfies’. We explore the correla-
tion between a variety of these attributes and memorability
in Sec. 3.2.

2.2. Efficient Visual Memory Game

Our experimental procedure consists of showing target
repeats (the second occurrence of an image) at variable time
intervals. For example, some targets may be repeated af-
ter just 30 images, while others are repeated after 100. As
shown in [13], memorability scores change predictably as a
function of the time interval between repeats, while memo-
rability ranks are largely conserved i.e., if the time between
the showing of a target and its repeat is increased, the mem-
orability scores of all images decrease by a similar amount,
thereby preserving the rank ordering. In our method, we use
this information to propose a method based on coordinate
descent that explicitly accounts for the difference in interval
lengths. This allowed us to collect ground truth memorabil-
ity scores for a large number of images (here 60, 000), in a
short amount of time, and at a very reasonable cost.

Model: We first describe one possible interpretation of
the memorability score computation proposed by [13], and
extend that to our setting. Let us define m(?) as the mem-
orability of image 7. For image i, we have some n(*) ob-
servations given by x;z) € {0,1} and tg-l) where z; = 1
implies that the image repeat was correctly detected when



a8
target

target repeat

target repeat

s
2

1S
S

o o
N oo

Spearman’s Rank Correlation

o <

4
vigilance repeat _I ‘
SRS time % 20 40 60 80

Mean number of scores per image

(a) The efficient visual memory game. Each image is shown for 600ms, separated by a blank fixation of 800ms. The worker (b) Human consistency.

can press a key anytime during this 1.4s.

Figure 2. Illustration of the efficient visual memory game (left), and the resulting human consistency averaged over 25 random splits (right)

obtained using the proposed method on the LaMem dataset.

it was shown after time ;. The memorability score pro-
posed by [13] is the average hit rate per image, which
can also be seen as the value that mlnlmlzes the ¢5 error
>, ||x Dom®))2 = m® = M :z: . In this case,
the dlfferent times of repeat presentatlon tJ, are not taken
into account explicitly as all repeats are shown at about the
same delay to all participants. Next, we modify the above
model to suit our new scenario with variable delays.
Memorability follows a log-linear relationship with time
delay between images [13]. Let us assume that the memo-
rability of image ¢ is mg) when the time interval between
repeated displays is 7. Thus, we can write the memorabil-
ity of image i as mY = alog(T) + ¢, where ¢V is the
base memorability for the given image and « is the decay
factor of memorability over time. Similarly, for some other
time ¢, we can write the memorability of the same image as

mgi) = alog(t) 4 ¢'9). Thus, we obtain the relationship:

mgi) - m¥) = alog(t) — alog(T) (1)
O _ ) 1
= my’ =my +alog T 2

As before we have some n observations for image ¢
given by x € {0,1} and t( ") where x; = 1 implies that
the image repeat was correctly detected when it was shown
after time ¢;. For /N images, we can now write the overall
{5 error, F, as:
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Note that we write the combined error (as compared to in-
dividual errors per image) as the decay factor « is shared
across all images. Our goal is to find m( " and « that min-
imize F. By adjusting the value of 7', we can adjust the
time delay at which we want to find the memorability score.

Also, by finding all scores at a fixed delay 7', the scores for
all images become comparable, as is the case in the model
proposed by [13].

Optimization: We observe that we can find the global

minima of E with respect to mg) if we fix the value of a,
and similarly, we can find « if we fix the value of mg).
Thus, we can minimize E by iteratively updating «, fol-
lowed by mgf) and so on. By differentiating ' with respect
to each of the variables, and setting it to 0, we can find the

update equations:
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As the update equations find the global optima of F
when keeping the other fixed, we ensure that the error is al-
ways decreasing, guaranteeing convergence. In practice, we
initialize m( Y to the mean hit rate ignoring time delay, and
find that approx1mately 10 iterations are enough for conver-
gence. Note that our model has no hyperparameters.

and

(6)

2.3. Dataset experiments

In this section, we describe in detail the experimental
setup of our efficient visual memory game, and conduct
several experiments comparing the results of the proposed
methodology with [13]. Further, we demonstrate that the
proposed model can increase human consistency by ac-
counting for variable time delays between repeats and it re-
sults in a consistent decay factor, «, across splits.

Experimental setup: The efficient visual memory game
is summarized in Fig. 2(a). We conducted memorability
experiments using Amazon’s Mechanical Turk (AMT) on
the 60, 000 target images obtained by sampling the various
datasets mentioned in Sec. 2.1. Each task lasted about 4.5
minutes consisting of a total of 186 images divided into 66



targets, 30 fillers, and 12 vigilance repeats. Targets were re-
peated after at least 35 images, and at most 150 images.
Vigilance repeats were shown within 7 images from the
first showing. The vigilance repeats ensured that workers
were paying attention leading to a higher quality of results.
Workers who failed more than 25% of the vigilance repeats
were blocked, and all their results discarded. Further, we
used a qualification test to ensure the workers understood
the task well. We obtained 80 scores per image on average,
resulting in a total of about 5 million data points. Similar
to [13], we use rank correlation to measure consistency.

Comparison with [13]: Before describing the results on
our new dataset, we first compare the performance of our
method to the one proposed by Isola et al [13] on the SUN
memorability dataset to ensure that our modifications are
valid. We randomly selected 500 images from their dataset,
and collected 80 scores per image. After applying our al-
gorithm to correct the memorability scores, we obtained
a within-dataset human rank correlation of 0.77 (averaged
over 25 random splits), as compared to 0.75 using the data
provided by [13]. Further, we obtain a rank correlation
of 0.76 when comparing the independently obtained scores
from the two methods. This shows that our method is well
suited for collecting memorability scores.

Results on LaMem: Fig. 2(b) shows the human con-
sistency as the number of number of human annotations
per image increases. At 80 scores per image, we obtain a
human rank correlation of 0.67 (averaged over 25 random
splits) if we simply take the average of the correct responses
ignoring the difference in time delays (i.e., same formula
as [13]) which increases to 0.68 after applying our method.
Note that the impact of using our method is small in this
case as the range of average delays of each image is rela-
tively small, ranging only from 62 to 101 intervening im-
ages. While our method can rectify the errors caused by
variable delays, the error here is rather insignificant.

To further verify our algorithm, we created adversarial
splits of the data where the responses for each image are di-
vided based on the delays i.e., all the responses when delays
are low go into one split, and all the responses when delays
are high go into the other split. We randomly assign the
low and high delay split of each image to different overall
splits. Using the method of [13] (i.e., simple averaging) in
this case significantly reduces the human rank correlation to
0.61, which can be restored to 0.67 using our method. This
demonstrates the importance of applying our method when
the interval distribution is more diverse.

Interestingly, we find that the decay factor, «, found
by our method is largely consistent across various splits
of data, having a standard deviation of less than 1% from
the mean. This further verifies the finding made by [13]
that memorability decays consistently over time, and our
method provides a robust way to estimate this decay factor.

1
An{At|C |FFIM|P|S
0. /
An
L.
8 At
207
3 C
S o6 — Abnormal (An)
2 — Popularity (P) FF
S s MIRFlickr (M)
=" COCO (C) M
Abstract (At)
04 — Fixation Flickr (FF) =
—SUN(S)
0 0.2 0.4 0.6 0.8 1
Image index S
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Figure 3. (a) Memorability scores of images from different
datasets. For each dataset, the memorability scores of the images
are independently sorted from low to high i.e., image index O to 1.
Note that the image index ranges from O to 1 (instead of 1 to V) as
each dataset has a different number of images. (b) Matrix indicat-
ing if the differences in the mean memorability scores of different
datasets are statistically significant at the 5% level of significance.
Blue indicates no difference, red indicates col>row, while
indicates row>col.

Overall, the high human consistency obtained on
LaMem despite the large variety of images strengthens the
importance of the concept of memorability and shows that
it is a universal and intrinsic property of each image.

3. Understanding Memorability

As described in Sec. 2.1, LaMem is composed of a vari-
ety of other datasets that contain additional annotation such
as aesthetics, popularity, image emotions, objects, and so
on. In this section, we explore the relationship of some of
these image attributes to memorability.

3.1. Differences across datasets

In Fig. 3(a), we plot the memorability scores of some of
the datasets contained in LaMem'. We find that the distribu-
tion of memorability scores for the different datasets tends
to look rather different. While images from the Abnor-
mal Objects dataset [31] and image popularity dataset [16]
tend to be extremely memorable, those from the SUN
dataset [34] tend to be rather forgettable. In Fig. 3(b) we
evaluate whether these perceived differences are statisti-
cally significant using a one-sided t-test. We find that most
of the differences are significant at the 5% level.

3.2. Image attributes

In this section, we explore how some of the image at-
tributes, such as popularity, saliency, emotions and aes-
thetics, affect the memorability of images and vice-versa.
We would like to highlight that the significant diversity
of LaMem allows for this exploration at a large-scale.

IFor clarity, we only show the plots for a subset of the datasets. The
full set of plots are provided in the supplemental material.
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Figure 4. Plots showing the relationship of memorability and var-
ious image attributes. For each curve, the images are sorted inde-
pendently using ground-truth memorability scores. As each curve
may contain a different number of images, the image index above
has been normalized to be from O to 1.

Popularity: In [16], popularity is defined as the log-
normalized view-count of an image on Flickr. Using the
5000 images from this dataset contained in LaMem, in
Fig. 4(a), we plot the popularity scores of the images di-
vided into quartiles based on their ground-truth memora-
bility scores. We find that the popularity scores of the most
memorable images (1st quartile) are statistically higher than
those of the other quartiles>. On the other hand, when the
memorability scores are low-medium, there is little differ-
ence in the popularity scores. This could be an insightful
finding for people attempting to design images that become
popular. Note that even though these images are popular
on Flickr, we do not expect the AMT workers to have seen
them before in general as the most popular image had fewer
than 100k views. Furthermore, if they had seen the image
before, they would have generated a false alarm on the first
presentation of the image resulting in a lower memorability
score for the image.

Saliency: Using images from the Fixation Flickr [14]
dataset, we explore the relationship between human fixa-
tions and memorability. As shown in Fig. 4(b), we find that
images that are more memorable tend to have more con-

2The same holds if we plot the memorability scores of the 25% most
and least popular images. This is included in the supplemental material.

sistent human fixations. In fact, we find that human fixa-
tion consistency and memorability have a reasonable rank
correlation of 0.24. A high human consistency on saliency
often occurs when humans have one or a few specific ob-
jects to fixate on, which would tend to imply that the image
contains more close-ups or larger objects. Essentially, this
suggests that when humans have a specific point of focus in
an image, they are better able to remember it and vice versa.
These findings are similar to those of [26] and [3].
Emotions: In Fig. 4(c), we plot the memorability scores
of images portraying various emotions from the affective
images dataset [25]. We find that images that evoke disgust
are statistically more memorable than images showing most
other emotions, except for amusement. Further, images por-
traying emotions like awe and contentment tend to be the
least memorable. This is similar to the findings in [12]
where they show attributes like ‘peaceful” are strongly neg-
atively correlated with memorability. Overall, we find that
images that evoke negative emotions such as anger and fear
tend to be more memorable than those portraying positive
ones. The analysis on the statistical differences between the
memorability of emotions is in the supplemental material.
Aesthetics: Fig. 4(d) shows the aesthetic scores of the
25% most and least memorable images from the AVA
dataset [27]. Asin[], 13], we find that the aesthetic score of
an image and its memorability have little to no correlation.

4. Predicting Memorability

In this section, we focus on predicting image memora-
bility using deep networks. In Sec. 4.1, we describe the
experimental setup and our approach, MemNet, for predict-
ing memorability. Then, in Sec. 4.2 and 4.3, we apply the
proposed algorithms to the SUN memorability dataset and
our new LaMem dataset respectively. Last, in Sec. 4.4 we
provide additional analysis such as visualizing the internal
representation learned by MemNet.

4.1. MemNet: CNN for Memorability

Given the recent success of convolutional neural net-
works (CNN) in various visual recognition tasks [10, 21,

, 35,32, 37], we use them here for memorability predic-
tion. As memorability depends on both scenes and objects,
we initialize the training using the pre-trained Hybrid-CNN
from [37], trained on both ILSVRC 2012 [30] and Places
dataset [37]. Memorability is a single real-valued output, so
we use a Euclidean loss layer to fine-tune the Hybrid-CNN.
We call our final network MemNet.

Setup and baseline: We followed the same experimen-
tal procedure as [13] where we distribute the data into ran-
dom train and test splits: the train split is scored by one half
of the workers, and the test split by the other half. For the
SUN Memorability dataset, we repeat the experiment for



Test set: Train set: SUN Memorability Train set: LaMem
fc6 fc7 fc8 | fine-tune | HOG2x2 | fc6 fc7 fc8 | MemNet | HOG2x2
SUN Mem no FA 0.57 | 0.60 | 0.58 0.51 0.45 0.56 | 0.59 | 0.57 0.59 0.47
with FA | 0.61 | 0.63 | 0.62 0.53 0.48 0.57 | 0.59 | 0.58 0.61 0.48
LaMem n.o FA 0.46 | 0.48 | 0.46 0.43 0.35 0.54 | 0.55 | 0.53 0.57 0.40
with FA | 0.52 | 0.54 | 0.55 0.47 0.43 0.61 | 0.61 | 0.60 0.64 0.47
Table 1. Rank correlation of training and testing on both LaMem and SUN Memorability datasets. The reported performance is averaged

over various train/test splits of the data. For cross-dataset evaluation, we use the full dataset for training and evaluate on the same test splits

to ensure results are comparable. ‘fc6’, ‘fc7’ and ‘fc8’ refer to the different layers of the Hybrid-CNN [

Please refer to Sec. 4.1 for additional details.

25 splits, but for LaMem, we use 5 splits due to the com-
putationally expensive fine-tuning step. As the baseline, we
report performance when using HOG2x2 features that are
extracted in a similar manner to [ 18] i.e., we densely sample
HOG [4] in a regular grid and use locality-constrained lin-
ear coding [33] to assign descriptors to a dictionary of size
256. Then, we combine features in a spatial pyramid [22]
resulting in a feature of dimension 5376. This is the best
performing feature for predicting memorability as reported
by various previous works [15, 18, 13]. For both HOG2x2
and features from CNNs, we train a linear Support Vector
Regression machine [8, 6] to predict memorability. We used
validation data to find the best B and C hyperparameters®.

As proposed in [15], we evaluate two notions of memo-
rability - one that does not account for false alarms (no FA),
and one that does (with FA). It can be important to account
for false alarms to reduce the noise in the signal as people
may remember some images simply because they are famil-
iar, but not memorable. Indeed, we find that this greatly
improves the prediction rank correlation despite using the
same features. In our experiments, we evaluate performance
using both metrics. Note that the models for ‘no FA’ and
‘with FA’ as mentioned in Tbl. 1 are trained independently.

4.2. SUN Memorability dataset

Tbl. 1 (left) shows the results of training on the SUN
Memorability dataset and testing on both datasets. We ob-
serve that deep features significantly outperform the ex-
isting state-of-the-art by about 0.15 (0.63 vs 0.48 with
FA, and 0.60 vs 0.45 no FA). This demonstrates the
strength of the deep features as shown by a variety of other
works. Similar to [15], we observe that the performance
increases significantly when accounting for false alarms.
Apart from high performance on the SUN Memorability
dataset, the features learned by CNN’s generalize well to the
larger LaMem dataset. Despite having significantly less va-
riety in the type of images, the representational power of the
features allow the model to perform well.

Fine-tuning has been shown to be important for improv-
ing performance [29], but we find that it reduces perfor-

3Note that, since Liblinear [8] regularizes the bias term, B, we found
that it was important to vary it to maximize performance.

], and ‘FA’ refers to false alarms.

mance when using the SUN Memorability dataset. This is
due to the limited size of the data, and the large number
of network parameters, leading to severe overfitting of the
training data. While the rank correlation of the training ex-
amples increases over backpropagation iterations, the vali-
dation performance remains constant or decreases slightly.
This shows the importance of having a large-scale dataset
for training a robust model of memorability.

Note that Tbl. 1 only compares against having the single
best feature (HOG2x2), but even with multiple features the
best reported performance [18] is 0.50 (no FA), which we
outperform significantly. Interestingly, our method also out-
performs [13] (0.54, no FA) and [19] (0.58, no FA) which
use various ground truth annotations such as objects, scenes
and attributes.

4.3. LaMem dataset

Tbl. 1 (right) shows the results of training on
the LaMem dataset, and testing on both datasets. In this
case, we split the data to 45k examples for training, 4k ex-
amples for validation and 10k examples for testing. We ran-
domly split the data 5 times and average the results. Overall,
we obtain the best rank correlation of 0.64 using MemNet.
This is remarkably high given the human rank correlation
of 0.68 for LaMem. Importantly, with a large-scale dataset,
we are able to successfully fine-tune deep networks with-
out overfitting severely to the training data, and preserving
generalization ability in the process.

Additionally, we find that the learned models generalize
well to the SUN Memorability dataset achieving a compa-
rable performance to training on the original dataset (0.61
vs 0.63, with FA). Further, similar to the SUN Memorabil-
ity dataset, we find that higher performances can be attained
when accounting for the observed false alarms.

4.4. Analysis

In this section, we investigate the internal representation
learned by MemNet. Fig. 5 shows the average of images
that maximally activate the neurons in two layers near the
output of MemNet, ordered by their correlation to mem-
orability. We see that many units near the top of conv5
look like close-ups of humans, faces and objects while units
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Figure 5. Visualizing the CNN features after fine-tuning, arranged
in the order of their correlation to memorability from highest (top)
to lowest (bottom). The visualization is obtained by computing a
weighted average of the top 30 scoring image regions (for conv5,
this corresponds to its theoretical receptive field size of 163 * 163,
while for fc7 it corresponds to the full image) for each neuron in
the two layers. From top to bottom, we find the neurons could be
specializing for the following: people, busy images (lots of gra-
dients), specific objects, buildings, and finally open scenes. This
matches our intuition of what objects might make an image mem-
orable. Note that fc7 consists of 4096 units, and we only visualize
arandom subset of those here.

near the bottom (so associated with more forgettable ob-
jects) look more like open and natural scenes, landscapes
and textured surfaces. A similar trend has been observed
in previous studies [13]. Additionally, to better understand
the internal representations of the units, in Fig. 6, we apply
the methodology from [36] to visualize the segmentation
produced by five neurons from conv5 that are strongly cor-
related with memorability (both positively and negatively).
We observe that the neurons with the highest positive corre-
lation correspond to body parts and faces, while those with
a strong negative correlation correspond to snapshots of nat-
ural scenes. Interestingly, these units emerge automatically
in MemNet without any explicit training to identify these
particular categories.

5. Applications

In this section, we investigate whether our model can be
applied to understanding the contribution of image regions
to memorability [18]. Predicting the memorability of im-
age regions could allow us to build tools for automatically
modifying the memorability of images [17], which could
have far-reaching applications in various domains ranging
from advertising and gaming to education and social net-
working. First, we describe the method of obtaining mem-
orability maps, and then propose a method to evaluate them
using human experiments. Overall, using MemNet, we can
accurately predict the memorability of image regions.

strong positive

strong negative

Figure 6. The segmentations produced by neurons in conv5 that are
strongly correlated, either positively or negatively, with memora-
bility. Each row corresponds to a different neuron. The segmen-
tations are obtained using the data-driven receptive field method
proposed in [36].

To generate memorability maps, we simply scale up the
image and apply MemNet to overlapping regions of the im-
age. We do this for multiple scales of the image and av-
erage the resulting memorability maps. To make this pro-
cess computationally efficient, we use an approach similar
to [24]: we convert the fully-connected layers, fc6 and
fc7 to convolutional layers of size 1 * 1, making the net-
work fully-convolutional. This fully-convolutional network
can now be applied to images of arbitrary sizes to gener-
ate different sized memorability maps e.g., an image of size
451 x 451 would generate an output of size 8 x 8. We do this
for several different image sizes and average the outputs to
generate the final memorability map (takes ~1s on a typical
GPU). The second column of Fig. 7 shows some of the re-
sulting memorability maps. As expected, the memorability
maps tend to capture cognitively salient regions that contain
meaningful objects such as people, animals or text.

While the maps appear semantically meaningful, we still
need to evaluate whether the highlighted regions are truly
the ones leading to the high/low memorability scores of the
images. Given the difficulty of generating photorealistic
renderings of varying details, we use non-realistic photo-
renderings or cartoonization [5] to emphasize/de-emphasize
different parts of an image based on the memorability maps,
and evaluate its impact on the memorability of an image.
Specifically, given an image and a heatmap, we investigate
the difference in human memory for the following scenar-
ios: (1) high — emphasizing regions of high memorability
and de-emphasizing regions of low memorability (Fig. 7 col
3), (2) medium — having an average emphasis across the
entire image (Fig. 7 col 4), and (3) low — emphasizing re-
gions of low memorability and de-emphasizing regions of
high memorability (Fig. 7 col 5). If our algorithm is identi-



fying the correct memorability of image regions, we would
expect the memorability of the images from the above three
scenarios to rank as high > medium > low.

Following the above procedure, we generate three car-
toonized versions of 250 randomly sampled images based
on the memorability maps generated by our algorithm. We
use our efficient visual memory game (Sec. 2) to collect
memorability scores of the cartoonized images on AMT. We
ensure that a specific worker can see exactly one modifica-
tion of each image. Further, we also cartoonize the filler
and vigilance images to ensure that our target images do
not stand out. We collect 80 scores per image, on average.
The results of this experiment are summarized in Fig. 8.
Interestingly, we find that our algorithm is able to reliably
identify the memorability of image regions. All pairwise
relationships, low<medium, low<high and medium<high
are statistically significant (5% level). This shows that the
memorability maps produced with our method are reliable
estimates of what makes an image memorable or forget-
table, serving as a building block for future applications.
We also observe that the memorability of all cartoonized
versions of an image tends to be lower than the original
image, even though the high version emphasizes the more
memorable regions. We expect that this is because even the
high version of the image loses significant details of objects
as compared to the original photograph. This might make
it harder for people to distinguish between images and/or
identify the objects.

6. Conclusion

Using deep learning and LaMem, a novel diverse
dataset, we show unprecedented performance at estimat-
ing the memorability ranks of images, and introduce a
novel method to evaluate memorability maps. We envision
that many applications can be developed out of this work.
For instance, for visual understanding systems, leveraging
memorability would be an efficient way to concisely repre-
sent or alter information while skipping over irrelevant (for-
gettable) information. Understanding why certain things are
memorable could lead to making systems and devices that
preferentially encode or seek out this kind of information,
or that store the important information that humans will cer-
tainly forget. For learning and education, new visual mate-
rials could be enhanced using the memorability maps ap-
proach, to reinforce forgettable aspects of an image while
also maintaining memorable ones. In general, consistently
identifying which images and which parts of an image are
memorable or forgettable could be used as a proxy for iden-
tifying visual data useful for people, concisely representing
information, and allowing people to consume information
more efficiently.

original image memorability map high medium low

Figure 7. The memorability maps for several images. The mem-
orability maps are shown in the jet color scheme where the color
ranges from blue to red (lowest to highest). Note that the mem-
orability maps are independently normalized to lie from O to 1.
The last three columns show the same image modified using [5]
based on the predicted memorability map: high image — regions
of high memorability are emphasized while those of low memora-
bility are de-emphasized e.g., in the first image text is visible but
leaves are indistinguishable, medium image — half the image is
emphasized at random while the other half is de-emphasized e.g.,
some text and some leaves are visible for the first image, and low
image — regions of low memorability are emphasized while those
of high memorability are de-emphasized e.g., text is not visible in
first image but leaves have high detail. The numbers in white are
the resulting memorability scores of the corresponding images.
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Figure 8. Memorability scores of the cartoonized images for the
three settings shown in Fig. 7. Note that the scores for low, medium
and high are independently sorted. Additional results are provided
in the supplemental material.
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