
Copyright © Siemens AG 2009. All rights reserved.

Corporate Technology

KVM in Embedded
Requirements, Experiences,
Open Challenges

Jan Kiszka, Siemens AG
Corporate Competence Center Embedded Linux

jan.kiszka@siemens.com

Corporate Technology

Slide 2 2010-08-10 © Siemens AG, Corporate TechnologyJan Kiszka

Agenda

 Embedded virtualization
 What does it mean?
 Why using KVM?

 Use case: KVM-hosted enterprise communication
 Setup & requirements
 Virtualization stack experiences

 KVM and real-time
 Host & guest-side RT
 Possible enhancements

 Conclusion

Slide 3 2010-08-10 © Siemens AG, Corporate TechnologyJan Kiszka

Embedded Systems, Embedded Virtualization

“Embedded” means
 Small?
 Limited resources?
 No display?
 Hard real-time?
 ...?

More generic definition
 Designed to perform specific,

dedicated tasks
 Integrated part of a larger device
 Not recognizable as individual

computer system

Embedded Virtualization
 System uses virtualization transparently
 May involve adaptions to system's task

Slide 4 2010-08-10 © Siemens AG, Corporate TechnologyJan Kiszka

Legacy system migration
 Avoid “divorce” of application and legacy OS
 Single-core software stacks on multicore hosts
 Emulation of discontinued hardware

Embedded Virtualization Benefits

Consolidation (keeping isolation)
 RTOS aside standard OS
 Multiple virtual boards (or root filesystems) on single silicon

Development environment
 Hardware/software co-development
 Debugging environment
 Virtualization allows speed-up (compared to pure emulation)

Slide 5 2010-08-10 © Siemens AG, Corporate TechnologyJan Kiszka

Top Requirements on Embedded Hypervisors

 Hardware support
 CPU architecture
 Board
 Virtualization extensions (CPU, I/O)

 Guest OS support

 Isolation
 Spatial (license barrier, IPR protection, rarely data security)
 Temporal (provide real-time guarantees)

 Customizability

 Footprint (volume markets)

Slide 6 2010-08-10 © Siemens AG, Corporate TechnologyJan Kiszka

Linux Windows $OSRTOS

Hypervisor

“We just need a tiny hypervisor to fully exploit this multicore CPU”
 “A few thousand” lines of hypervisor code
 Minimal hardware emulation
 “A bit” paravirtualization
 Devices are passed through

From Enterprise to Embedded Virtualization –
Why using KVM?

 over-commit resources
 manage power
 freeze / migrate guests
 use advanced HA features
 ...

 over-commit resources
 manage power
 freeze / migrate guests
 use advanced HA features
 ...

“But it would be nice to...”
 share some devices
 run upstream Linux

and latest Windows

Hypervisor

 over-commit resources
 manage power

Hypervisor backup / migrate guests
 use advanced HA features
 ...

Hypervisor

Core 1 Core 2 Core 3 Core n

Slide 7 2010-08-10 © Siemens AG, Corporate TechnologyJan Kiszka

Requirements Match

Requirement KVM support

Architecture support
 x86 
 PowerPC  (Book E&S, no ISA 2.06 yet)
 ARM early stage
 Others ?

Board support  (Linux...)
Guest OS support  (broad test bed, virtio drivers, ...)
Customizability 
Footprint depends on use case
Isolation
 Spatial  (for most use cases)
 Temporal improvable

Future requirements well prepared

Slide 8 2010-08-10 © Siemens AG, Corporate TechnologyJan Kiszka

Use Case Example

KVM-hosted Enterprise Communication

Slide 9 2010-08-10 © Siemens AG, Corporate TechnologyJan Kiszka

Use Case:
KVM-hosted Enterprise Communication

The user
Siemens Enterprise Communication (SEN)

The mission
Move proprietary RTOS and application stack
from custom hardware to standard x86

Requirements
 Low impact on guest
 Preserve (soft) real-time qualities
 Prefer mainline open source technology

Evaluation ruled out
 Invasive paravirtualization (e.g. Xen's PV mode)
 Pure emulation
 Projects with too small communities

Slide 10 2010-08-10 © Siemens AG, Corporate TechnologyJan Kiszka

Use Case:
KVM-hosted Enterprise Communication (2)

The choice: QEMU/KVM
 Early proof of concept using QEMU
 ~2500 LoC for custom hardware bits
 KVM acceleration nicely integrates on top
 Upstreamed generic fixes/enhancements since day 1

The new platform:
 QEMU/KVM hosts...
 proprietary RTOS (multiple instances)
 formerly stand-alone application stacks (virtual Linux appliances)

 libvirt as hypervisor interface
 Includes high availability stack

Two possible deployments
 Pre-installed on rack system => virtualization is embedded
 On customer server => virtual appliances

Slide 11 2010-08-10 © Siemens AG, Corporate TechnologyJan Kiszka

SEN Project Experiences

Segmented x86 guests
 16-bit mode works quite well (despite uncommon use case)
 Task switching required most patching (few issues may remain)

Soft real-time is achievable
 mlockall() + renice -20
 Most latencies were I/O-related
 Decoupled logging and chardev outputs

Board model maintenance
 Out-of-tree enables flexible customizations
 ...but requires custom qemu-kvm package
 Upstream merge appears unrealistic
 3rd way?
 Open-Source-only machine plug-ins?
 Stable API per stable series?

Slide 12 2010-08-10 © Siemens AG, Corporate TechnologyJan Kiszka

SEN Project Experiences (2)

Libvirt
 Feature gap required latest & greatest
 Faced few stability issues (resource management...)
 Suboptimal: QEMU wrapper script workaround
 All in all: benefits outweigh current drawbacks

Current open topic: live backup / snapshot
 Block live migration (yet?) too slow
 QEMU snapshots: longer downtime, qcow2-only
 libvirt-managed file-system / block layer snapshots?

Slide 13 2010-08-10 © Siemens AG, Corporate TechnologyJan Kiszka

Improving KVM

KVM and Real-Time

Slide 14 2010-08-10 © Siemens AG, Corporate TechnologyJan Kiszka

KVM and Real-Time –
Meeting Host Requirements

Requirement:
Guests must not defer host RT applications

Preemptible KVM
 Problem mostly solved
 The key: preemption notifiers (arch-agnostic concept)
 Keep an eye on preempt/IRQ-disabled paths!
 Known pitfall: wbinvd latencies (x86)

KVM on PREEMPT_RT
 Long supported, but quality varying
 Current 2.6.33.x-rt is fine
 Adoption of raw spinlocks reduced maintenance
 Risk of regressions remain => include in autotest?

Slide 15 2010-08-10 © Siemens AG, Corporate TechnologyJan Kiszka

KVM and Real-Time –
Meeting Guest Requirements

Requirement:
Fulfill guest tasks in a timely manner

Precondition
Sufficient host real-time qualities
(PREEMPT_NONE → PREEMPT → PREEMPT_RT)

Already achievable
 Soft real-time
 Moderate guest reaction times
 Example for <1 ms peak latency:

Host timer IRQ →in-kernel APIC model →guest RTOS →guest task

Feasible goals
 Standard KVM architecture: < 200 µs (x86)
 “Dedicated” KVM mode: close to hardware limits (<< 50 µs on x86)

Slide 16 2010-08-10 © Siemens AG, Corporate TechnologyJan Kiszka

What Kills Guest Real-Time?

KVM's MMU emulation
 Can contribute several milliseconds guest latency
 EPT/NPT resolves the issue
 Legacy RTOSes may also run MMU-less

I/O-related priority inversions
 Threaded AIO completions can accumulate long work queues

=> use Linux AIO or lower AIO thread priority
 QCOW2 (contains synchronous write calls)
 SDL graphic output
 Heavy traffic on chardev backends (e.g. virtual serial port)

RT-aware device emulation required
 We already heard about threading it... (→ Anthony's talk)
 No costly synchronous host services in VCPU context!
 Per-device locking will help to avoid priority inversions
 Also relevant for SMP scalability

Slide 17 2010-08-10 © Siemens AG, Corporate TechnologyJan Kiszka

Managing Priorities

Priority

Guest AGuest A

RT task

Time-sharing
task

Guest B

Time-sharing
task

Black-Box
VM Scheduling

Guest A Guest B

Time-sharing
task

RT task

Time-sharing
task

Paravirtual
Scheduling

Slide 18 2010-08-10 © Siemens AG, Corporate TechnologyJan Kiszka

Towards Minimal-Latency KVM

WindowsLegacy
RTOS

 Linux

Core 1 Core n

nano KVM

Full KVM

Linux
Appl.

Legacy
RTOS

nano KVM

Core 1 Core n

 Linux

Enable migrationKVM as fixed partition
hypervisor

Slide 19 2010-08-10 © Siemens AG, Corporate TechnologyJan Kiszka

Conclusion

 Embedded Virtualization is a broad domain,
today focused on multi-core partitioning

 KVM already meets many of its key requirements

 Well set up for bringing enterprise features to embedded

 More work required

 Reduce prio-inversions in hypervisor

 Temporal isolation of guests

 Paravirtualized scheduling

 Non-x86 architectures

KVM may never fit all embedded use case, but a significant share

Slide 20 2010-08-10 © Siemens AG, Corporate TechnologyJan Kiszka

Thank You!

Any Questions?

Slide 21 2010-08-10 © Siemens AG, Corporate TechnologyJan Kiszka

Paravirtualized Scheduling

Execution model
 Use POSIX scheduling policies
 Per-VCPU policy/priority
 Map guest on VCPU thread priorities:

 Boost to maximum priority during interrupt
 Nested boosts for NMI support

Host-guest Interface
 Two hypercalls
 Set Scheduling Parameters (CPU-ID, policy, priority)
 Interrupt Done

KVM prototype “just” requires rebase and upstream posting

Slide 22 2010-08-10 © Siemens AG, Corporate TechnologyJan Kiszka

Towards Minimal-Latency KVM (2)

Step 1: Advanced CPU isolation
 Single task shall dominate CPU
 Many proposals brought up, none mainline compatible
 Requires iterative approach
 Migrate timers, disable sched tick
 Move housekeeping work
 Exclude CPU from RCU
 Reduce IPI reasons

 Many folks interested, but no one working on it ATM

Reduce RT-unrelated “noise”

Step 2: Run KVM VCPUs on isolated CPUs
 Goals (guest in operation mode):
 Zero user space VMM exits
 Zero host task switches

 In-kernel non-threaded IRQ (re-)injection
 Adopt guest to avoid user space device emulations

	Folie 1
	Agenda
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22

