-« rednat

Real-time KVM from the ground up

KVM Forum 2015

Rik van Riel
Red Hat

Real-time KVM

 What is real time?

 Hardware pitfalls

* Realtime preempt Linux kernel patch set
« KVM & gemu pitfalls

« KVM configuration

e Scheduling latency performance numbers
« Conclusions

What is real time?

Real time is about determinism, not speed
Maximum latency matters most

Minimum / average / maximum
Used for workloads where missing deadlines is bad

Telco switching (voice breaking up)

Stock trading (financial liability?)

Vehicle control / avionics (exploding rocket!)
Applications may have thousands of deadlines a second
Acceptable max response times vary

For telco & stock cases, a few dozen microseconds

Very large fraction of responses must happen within
that time frame (eg. 99.99%)

RHEL7.x Real-time Scheduler Latency Jitter Plot

cyclictest -m -n -N -q -v -p95 -h60 -i 200 -D 1lh
140 | | I I I I + |

RHEL 7.2 (259) ——
RHEL-RT 7.2 (237) ——
RHEL-RT 7.2 (237+KVM) ——
120 -

100 -

80 -

60 - -

latency (microseconds)

40 | 1

20 -

0 le+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 le+07

cycle

#redhat #Hrhsummit 1 O ‘ redhat

Hardware pitfalls

Biggest problems: BIOS, BIOS, and BIOS
System Management Mode (SMM) & Interrupt (SMI)
Used to emulate or manage things, eg:
USB mouse PS/2 emulation
System management console
SMM runs below the operating system
SMI traps to SMM, runs firmware code
SMIs can take milliseconds to run in extreme cases
OS and real time applications interrupted by SMi
Realtime may require BIOS settings changes
Some systems not fixable
Buy real time capable hardware
Test with hwlatdetect & monitor SMI count MSR

Realtime preempt Linux kernel

Normal Linux has similar latency issues as BIOS SMI
Non-preemptible critical sections: interrupts, spinlocks, etc

Higher priority program can only be scheduled after the
critical section is over

Real time kernel code has existed for years
Some of it got merged upstream
CONFIG_PREEMPT
Some patches in a separate tree
CONFIG_PREEMPT_RT
https://rt.wiki.kernel.org/
https://osadl.org/RT/

https://rt.wiki.kernel.org/
https://osadl.org/RT/

Realtime kernel overview

Realtime project created a LOT of kernel changes
Too many to keep in separate patches
Already merged upstream
Deterministic real time scheduler
Kernel preemption support
Priority Inheritance mutexes
High-resolution timer
Preemptive Read-Copy Update
IRQ threads
Raw spinlock annotation
NO_HZ FULL mode
Not yet upstream
Full realtime preemption

PREEMPT _RT kernel changes

Goal: make every part of the Linux kernel preemptible
or very short duration

Highest priority task gets to preempt everything else
Lower priority tasks
Kernel code holding spinlocks
Interrupts

How does it do that?

PREEMPT _RT internals

Most spinlocks turned into priority inherited mutexes
“spinlock” sections can be preempted
Much higher locking overhead
Very little code runs with raw spinlocks
Priority inheritance
Task A (prio 0), task B (prio 1), task C (prio 2)
Task A holds lock, task B running
Task C wakes up, wants lock
Task A inherits task C's priority, until lock is released
IRQ threads
Each interrupt runs in a thread, schedulable
RCU tracks tasks in grace periods, not CPUs
Much, much more...

KVM & gemu pitfalls

Real time is hard
Real time virtualization is much harder

Priority of tasks inside a VM are not visible to the host
The host cannot identify the VCPU with the highest
priority program

Host kernel housekeeping tasks extra expensive
Guest exit & re-entry
Timers, RCU, workgqueues, ...

Lock holders inside a guest not visible to the host
No priority inheritance possible

Tasks on VCPU not always preemptible due to emulation
In gemu

Real time KVM kernel changes

Extended RCU quiescent state in guest mode
Add parameter to disable periodic kvmclock sync

Applying host ntp adjustments into guest causes
latency

Guest can run ntpd and keep its own adjustment
Disable scheduler tick when running a SCHED _FIFO task
Not rescheduling? Don't run the scheduler tick
Add parameter to advance tscdeadline hrtime parameter

Makes timer interrupt happen “early” to compensate
for virt overhead

Various isolcpus= and workqueue enhancements
Keep more housekeeping tasks away from RT CPUs

Priority inversion & starvation

Host & guest separated by clean(ish) abstraction layer
VCPU thread needs a high real time priority on the host
Guarantee that real time app runs when it wants

VCPU thread has same high real time host priority when
running unimportant things...

Guest could be run with idle=poll
VCPU uses 100% host CPU time, even when idle

Higher priority things on the same CPU on the host are
generally unacceptable — could interfere with real time task

Lower priority things on the same CPU on the host could
starve forever — could lead to system deadlock

KVM real time virtualization host partitioning

Avoid host/guest starvation
Run VCPU threads on dedicated CPUs

No host housekeeping on those CPUs, except
ksoftirgd for IPI & VCPU IRQ delivery

Boot host with isolcpus and nohz_full arguments
Run KVM guest VCPUs on isolated CPUs
Run host housekeeping tasks on other CPUs

KVM real time virtualization host partitioning

Run VCPUSs on dedicated host CPUs
Keep everything else out of the way
Even host kernel tasks

System CPUs isolcpus=4-15 nohz_full=4-15

RT Guest #1 VCPUs
System

CPUs 0-3 CPUs 4-15

KVM real time virtualization guest partitioning

Partitioning the host is not enough

Tasks on guest can do things that require emulation

Worst case: emulation by gemu userspace on host
Poking 1/O ports

Block I/O
Video card access

Emulation can take hundreds of microseconds
Context switch to other gemu thread
Potentially wait for gemu lock

Guest blocked from switching to higher priority task
Guest needs partitioning, too!

KVM real time virtualization guest partitioning

Guest booted with isolcpus
Real time tasks run on isolated CPUs
Everything else runs on system CPUs

System VCPUs isolcpus=2-7

System Real time

VCPUs 0-1 VCPUS 2-7

Real time KVM performance numbers

Dedicated resources are ok
Modern CPUs have many cores
People often disable hyperthreading
Scheduling latencies with cyclictest
Real time test tool
Measured scheduling latencies inside KVM guest
Minimum: 5us
Average: 6us
Maximum: 14us

RHEL7.x Scheduler Latency (cyclictest)

Intel Ivy Bridge 2.4 Ghz, 128 GB mem

g Cyclictest Latency
S
O 140 H Min |
® 90 = Mean - |
3 99.9% ol Remove maxes to zoom in
= 40 <
£ Stddev S Cyclictest Latency
> 10 » & EMax » 8
c & q,(l-“ o 6 B Min
% < Q/}'\‘ 2 4 B Mean
i & £ , 99.9%
>
S o y o Stddev
c
D ,\‘1, 4@
© & &
< AV
— ng;g
&

#redhat #rhsummit ﬂ redhat

“Doctor, it hurts when | ...”

All kinds of system operations can cause high latencies

CPU frequency change

CPU hotplug

Loading & unloading kernel modules

Task migration between isolated and system CPUs
TLB flush IPI may get queued behind a slow op
Keep real time and system tasks separated

Host clocksource change from TSC to ITSC
Use hardware with stable TSC

Page faults or swapping
Run with enough memory

Use of slow devices (eg. disk, video, or sound)
Only use fast devices from realtime programs
Slow devices can be used from helper programs

Cache Allocation Technology

Single CPU can have many CPU cores, sharing L3 cache
Cannot load lots of things from RAM in 14us
~60ns for a single DRAM access

Uncached context switch + TLB loads + more could
add up to >50us

Low latencies depend on things being in CPU cache
Latest Intel CPUs have Cache Allocation Technology
CPU cache “quotas”
Per application group, cgroups interface
Available on some Haswell CPUs

Prevents one workload from evicting another workload
from the cache

Helps improve the guarantee of really low latencies

Conclusions

Real time KVM is actually possible
Achieved largely through system partitioning
Overcommit is not an option

Latencies low enough for various real time applications
14 microseconds max latency with cyclictest

Real time apps must avoid high latency operations

Virtualization helps with isolation, manageabillity, hardware
compatibility, ...
Requires very careful configuration

Can be automated with libvirt, openstack, etc

Jan Kiszka's presentation explains how

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

