
Real-time KVM from the ground up

KVM Forum 2015

Rik van Riel
Red Hat



Real-time KVM
● What is real time? 
● Hardware pitfalls
● Realtime preempt Linux kernel patch set
● KVM & qemu pitfalls
● KVM configuration
● Scheduling latency performance numbers
● Conclusions



What is real time?
 Real time is about determinism, not speed
 Maximum latency matters most

● Minimum / average / maximum
 Used for workloads where missing deadlines is bad

● Telco switching (voice breaking up)
● Stock trading (financial liability?)
● Vehicle control / avionics (exploding rocket!)

 Applications may have thousands of deadlines a second
 Acceptable max response times vary

● For telco & stock cases, a few dozen microseconds
● Very large fraction of responses must happen within 

that time frame (eg. 99.99%)



   

RHEL7.x Real-time Scheduler Latency Jitter Plot

10 
Million 
Sample
s



Hardware pitfalls
 Biggest problems: BIOS, BIOS, and BIOS
 System Management Mode (SMM) & Interrupt (SMI)

● Used to emulate or manage things, eg:
● USB mouse PS/2 emulation
● System management console

 SMM runs below the operating system
● SMI traps to SMM, runs firmware code

 SMIs can take milliseconds to run in extreme cases
● OS and real time applications interrupted by SMI

 Realtime may require BIOS settings changes
● Some systems not fixable
● Buy real time capable hardware

 Test with hwlatdetect & monitor SMI count MSR



Realtime preempt Linux kernel
 Normal Linux has similar latency issues as BIOS SMI
 Non-preemptible critical sections: interrupts, spinlocks, etc
 Higher priority program can only be scheduled after the 

critical section is over
 Real time kernel code has existed for years

● Some of it got merged upstream
● CONFIG_PREEMPT

● Some patches in a separate tree
● CONFIG_PREEMPT_RT

 https://rt.wiki.kernel.org/
 https://osadl.org/RT/

https://rt.wiki.kernel.org/
https://osadl.org/RT/


Realtime kernel overview
 Realtime project created a LOT of kernel changes

● Too many to keep in separate patches
 Already merged upstream

● Deterministic real time scheduler
● Kernel preemption support
● Priority Inheritance mutexes
● High-resolution timer
● Preemptive Read-Copy Update
● IRQ threads
● Raw spinlock annotation
● NO_HZ_FULL mode

 Not yet upstream
● Full realtime preemption



PREEMPT_RT kernel changes
 Goal: make every part of the Linux kernel preemptible

● or very short duration
 Highest priority task gets to preempt everything else

● Lower priority tasks
● Kernel code holding spinlocks
● Interrupts

 How does it do that?



PREEMPT_RT internals
 Most spinlocks turned into priority inherited mutexes

● “spinlock” sections can be preempted
● Much higher locking overhead

 Very little code runs with raw spinlocks
 Priority inheritance

● Task A (prio 0), task B (prio 1), task C (prio 2)
● Task A holds lock, task B running
● Task C wakes up, wants lock
● Task A inherits task C's priority, until lock is released

 IRQ threads
● Each interrupt runs in a thread, schedulable

 RCU tracks tasks in grace periods, not CPUs
 Much, much more...



KVM & qemu pitfalls
 Real time is hard
 Real time virtualization is much harder

 Priority of tasks inside a VM are not visible to the host
● The host cannot identify the VCPU with the highest 

priority program
 Host kernel housekeeping tasks extra expensive

● Guest exit & re-entry
● Timers, RCU, workqueues, …

 Lock holders inside a guest not visible to the host
● No priority inheritance possible

 Tasks on VCPU not always preemptible due to emulation 
in qemu



Real time KVM kernel changes
 Extended RCU quiescent state in guest mode
 Add parameter to disable periodic kvmclock sync

● Applying host ntp adjustments into guest causes 
latency

● Guest can run ntpd and keep its own adjustment
 Disable scheduler tick when running a SCHED_FIFO task

● Not rescheduling? Don't run the scheduler tick
 Add parameter to advance tscdeadline hrtime parameter

● Makes timer interrupt happen “early” to compensate 
for virt overhead

 Various isolcpus= and workqueue enhancements
● Keep more housekeeping tasks away from RT CPUs



Priority inversion & starvation
 Host & guest separated by clean(ish) abstraction layer
 VCPU thread needs a high real time priority on the host

● Guarantee that real time app runs when it wants
 VCPU thread has same high real time host priority when 

running unimportant things...
 Guest could be run with idle=poll

● VCPU uses 100% host CPU time, even when idle
 Higher priority things on the same CPU on the host are 

generally unacceptable – could interfere with real time task
 Lower priority things on the same CPU on the host could 

starve forever – could lead to system deadlock



KVM real time virtualization host partitioning
 Avoid host/guest starvation

● Run VCPU threads on dedicated CPUs
● No host housekeeping on those CPUs, except 

ksoftirqd for IPI & VCPU IRQ delivery
 Boot host with isolcpus and nohz_full arguments
 Run KVM guest VCPUs on isolated CPUs
 Run host housekeeping tasks on other CPUs



KVM real time virtualization host partitioning
 Run VCPUs on dedicated host CPUs
 Keep everything else out of the way

● Even host kernel tasks

System
tasks

isolcpus=4­15 nohz_full=4­15System CPUs

RT Guest #1 VCPUs

RT Guest #2 VCPUs

CPUs 0­3 CPUs 4­15



KVM real time virtualization guest partitioning
 Partitioning the host is not enough
 Tasks on guest can do things that require emulation

● Worst case: emulation by qemu userspace on host
● Poking I/O ports
● Block I/O
● Video card access
● ...

 Emulation can take hundreds of microseconds
● Context switch to other qemu thread
● Potentially wait for qemu lock
● Guest blocked from switching to higher priority task

 Guest needs partitioning, too!



KVM real time virtualization guest partitioning
 Guest booted with isolcpus
 Real time tasks run on isolated CPUs
 Everything else runs on system CPUs

System
tasks

System VCPUs isolcpus=2­7

VCPUs 0­1 VCPUS 2­7

Real time 
tasks



Real time KVM performance numbers
 Dedicated resources are ok

● Modern CPUs have many cores
● People often disable hyperthreading

 Scheduling latencies with cyclictest
● Real time test tool

 Measured scheduling latencies inside KVM guest
● Minimum: 5us
● Average: 6us
● Maximum: 14us



   

0

2

4

6

8

Cyclictest Latency

Min
Mean
99.9%
Stddev

L
a

te
n

c
y

 (
m

ic
ro

s
e

c
o

n
d

s
)

-10

40

90

140

Cyclictest Latency

Min
Mean
99.9%
Stddev
Max

L
a

te
n

c
y

 (
m

ic
ro

s
e

c
o

n
d

s
)

Remove maxes to zoom in

RHEL7.x Scheduler Latency (cyclictest)

Intel Ivy Bridge 2.4 Ghz, 128 GB mem



“Doctor, it hurts when I ...”

All kinds of system operations can cause high latencies
 CPU frequency change
 CPU hotplug
 Loading & unloading kernel modules
 Task migration between isolated and system CPUs

● TLB flush IPI may get queued behind a slow op
● Keep real time and system tasks separated

 Host clocksource change from TSC to !TSC
● Use hardware with stable TSC

 Page faults or swapping
● Run with enough memory

 Use of slow devices (eg. disk, video, or sound)
● Only use fast devices from realtime programs
● Slow devices can be used from helper programs



Cache Allocation Technology
 Single CPU can have many CPU cores, sharing L3 cache
 Cannot load lots of things from RAM in 14us

● ~60ns for a single DRAM access
● Uncached context switch + TLB loads + more could 

add up to >50us
 Low latencies depend on things being in CPU cache
 Latest Intel CPUs have Cache Allocation Technology

● CPU cache “quotas”
● Per application group, cgroups interface
● Available on some Haswell CPUs

 Prevents one workload from evicting another workload 
from the cache

 Helps improve the guarantee of really low latencies



Conclusions
 Real time KVM is actually possible

● Achieved largely through system partitioning
● Overcommit is not an option

 Latencies low enough for various real time applications
● 14 microseconds max latency with cyclictest

 Real time apps must avoid high latency operations
 Virtualization helps with isolation, manageability, hardware 

compatibility, …
 Requires very careful configuration

● Can be automated with libvirt, openstack, etc
 Jan Kiszka's presentation explains how


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

