KB — Neural Data Mining with Python sources
© Roberto Bello (March 2013)

Introduction

The aim of this work is to present and describe in detail the algorithms to extract the
knowledge hidden inside data using Python language, which allows us to read and
easily understand the nature and the characteristics of the rules of the computing
utilized, as opposed to what happens in commercial applications, which are
available only in the form of running codes, which remain impossible to modify.

The algorithms of computing contained within the work, are minutely described,
documented and available in the Python source format, and serve to extract the
hidden knowledge within the data whether they are textual or numerical kinds.
There are also various examples of usage, underlining the characteristics, method
of execution and providing comments on the obtained results.

The KB application consists of three programs of computing:

« KB_CAT: for the extraction of knowledge from the data and the cataloging of
records in homogeneous groups within them

« KB_STA: for the statistical analysis of the homogeneity of the groups
between them and in the groups within them in order to identify the groups
most significant and the most important variables that characterize each
group

« KB_CLA: for the almost instantaneous classification of new records in
catalogued groups before found by the program KB_CAT

The programs have been written in Python language using the most easily
understood commands, instructions and functions, and those most similar to those
of other languages (e.g. C, C++, PHP, Java, Ruby); however, the programs are full
of comments and explanations.

The KB application to acquire hidden knowledge in data is the result of almost five
years of study, programming and testing, also of other languages (Clipper, Fortran,

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 1 di 112

Ruby, C e C++).

The cost of the book is low considering the importance of the included algorithms of
computing and the hard work in its programming and in the subsequent repeated
and thorough testing of the input data of files containing thousands of records; the
files used arrived from various sectors of interest (medicine, pharmacology, food
industry, political polls, sport performances, market researches, etc.).

The author has chosen to use simple forms of communication, avoiding
complicated mathematical formulas, observing that the important concepts can be
expressed in an easy but not simplistic way.

Albert Einstein said: Do things in the easiest way possible, but without simplifying.
The author hopes to give a small contribution to encouraging young people to
regain a love for maths, but above all hopes they will regain the desire to run
programs on their computers, and therefore avoid using them just to consume their
fingers surfing facebook or downloading music and films from Internet.

In his professional experience, firstly in computer fields and then as an industrial
manager, he has repeatedly realized programs with mathematical contents,
statistics and operations research which have considerably contributed to the
economic results and good management of the companies that have seen him as a
significant protagonist in important projects.

Business Intelligence and the bad use of statistics

Statistics are often wrong, or rather, the people who use them make mistakes.
They make mistakes when they apply statistical aggregation instruments to pieces
of information from sources coming from completely different objects or situations.
First of all they cut, then mix and finally put them together. And to finish off they
expect to pass judgement on this.

In this way the researcher in political trends break up the opinions of the people
interviewed, mixing the single answers, joining them, crossing them and finally
passing judgement with certainties that can only be attributed to virtual people
interviewed that they have created, subjects that do not exist in real life and
certainly are not traceable to individual people or to homogeneous groups of people
who have been interviewed.

Similarly the Business Intelligence makes available the tools of data analysis that
are able to cut the data and then reassembling them into multidimensional
structures in which the peculiarities of information starting positions were destroyed.
So Business Intelligence mixes companies from different sectors with turnovers not
compatible, with very different sizes, belonging to different markets, etc., thereby
abusing the will to change from time to time variables for data mining.

Which decisions on subjects (or situations) could be applied to, having destroyed
the global informative world of the original subjects (or situations)?

To give an example, if we had a file of mammals where men and primates were
included, we could obtain, as a result, that mammals, on average, have three legs.
Where can | find a mammal that has an average of three legs?

To have real statistics we need to conserve, as much as possible, intact the
informative property of the starting data of the subject or the situation .

Techniques derived from neural networks use an analysis approach to data which
respect the informative properties of the starting data.

In fact they do not ask the user to define the variables to cross, and therefore do
not allow to occur absurd crossed values.

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 2 di 112

Quite simply they require that the maximum number of groups that the algorithm
has to create is inserted

The original informative contents are not destroyed, the subject's data are
processed in relationship to the data of other subjects (or situations).

Retain all the information attributable to the subject and create the categories of
membership of the subjects (or situations) in which the subjects (or situations) will
be similar to each other.

Other techniques are able to point out what are the significant variables of
aggregation and aggregate values which are important for each group created.

Also indicate what are the variables that are not influential in cataloging.

More sophisticated techniques can process any kind of data set highlighting if there
is information in the file or if they contain only numbers or characters not related to
each other by internal relations: the model must follow the data and not vice versa
(JB Benzecri).

Learning by induction and the neural networks

Induction is a very important method of learning for living creatures.

One of the first philosophers to resort to this concept was Aristotle, who attributed
the merit of having discovered it to Socrates, who maintained that induction was in
fact, “the process of the particular that leads to the universal” (Top., I, 12, 105 a 11).
Still according to Aristotle it is neither the senses through induction nor rationality
through deduction that gives a guarantee of truth, but only intellectual intuition: this
allows to collect the essence of reality, forming valid and universal principles, from
which syllogistic reasoning will draw coherent conclusions with premises.

Learning, life and evolution are linked together.

In fact life is evolution and evolution is learning what is necessary for survival.
Learning is the capacity to elaborate information with critical intelligence. Therefore,
critical elaboration of information is life. (Roberto Bello).

A simple example can illustrate how one learns by induction.

Let's imagine a person who had never seen containers such as glasses, bottles,
jars, cups, vases, boxes, flagons, jugs, chalices, tetra pack and so on.

Without saying anything | will show him real examples of objects that belong to the
above mentioned categories.

The person can look at, smell, touch and weigh the objects shown to him.

After having examined a sufficient number of objects the person will easily be able
to put the objects into categories containing the objects which on the whole are
similar to each other, favouring some characteristics rather than others which are
not considered relevant.

When the learning has taken place, | could show another object in the shape of a
glass, which is of a different colour, made of a different material and of a different
weight, still obtaining the cataloging of the object in the category of glasses.

With the help of induction, the person in training could make two categories of
glasses: one with handles (beer mugs) and the other without handles.

Learning has allowed the person to recognize the distinctive aspects of the object
to go from the specific to the universal ignoring the non relevant aspects.

The algorithms based on the neural networks, and in particular referring to the map
of Kohonen (SOM Self Organizing Map), are based on the principals which have
just been illustrated in this example.

Such a model of neural networks demonstrates in an important way the biological

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 3 di 112

mechanisms of the central nervous system; many studies have demonstrated that
precise zones exist on the surface of the cranial cortex, each of which respond to a
precise sensory or muscular function.

Each neuron specializes in responding to precise stimulus through a continual
interaction with the neighbouring neurons.

We have zones reserved for hearing, sight, muscular activity etc., and the spacial
demarcation between the different groups is so clear that we talk of the formation
of bubbles of activity.

The neural networks model presented by Kohonen imitates the behaviour
described above.

The architecture is quite simple; the network is formed by a rectangular grate, also
known as Kohonen’s layer, made up of neurons from the output level, each one
occupying a precise position and connected to all the entry units.

The weight of the connections between the input and output levels are kept up to
date thanks to the process of learning, where the connections between the neurons
of the output level have weights which produce excitement among the surrounding
neurons and inhibition in distant ones.

INPUT 1
INPUT 2

INPUT 3
‘, OUTPUT 1

INPUT 4 e
i) outrur2

INPUT &

~) outrurs
INPUT &

EEEBE R RE B PRE

INPUT 7

eoeoeoooQOPO®

Diagram of a neural network

The SOM networks are applied to many practical problems; they are able to
discover important properties autonomously in input data and therefore they are
especially useful in the process of Data Mining, above all for problems of
cataloging.

The algorithms of learning of the Kohonen network begin from the start-up phase of
the synapse weights, which must have casual values in space (0.0 — 0.99999) and
be different for each neuron.

Subsequently the weights are presented to the network as input values and the
algorithm allows the network to self-organize and correct the weights after each
data input, until a state of equilibrium is reached. Kohonen’s network is also known
as a competitive network since it is based on the principle of competition between
neurons to win and to remain active; only the weight of the active units are updated.
The winning unit i* is that which possesses the potential for major activation; the
more a unit is active for a certain pattern of input data, the more the vector of the

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 4 di 112

synapse weight is similar inside the pattern.

On the basis of this idea it is possible to find the winning unit by calculating the
euclidean distance between the input vector and the relevant vector of synapse
weight. At this point is selected the neuron i* that corresponds to the minimum
distance.

Once the winning neuron has been determined, is carried out an automatic learning
of the weight of the neuron itself and of those which are part of its neighbourhood ,
based on a rule of hebbian type.

In particular, a formula of modification of the weights which derives from the original
rule of Hebb is used; considering that this would increase the weight to infinity, so
is introduced a factor of forgetfulness, pushing the weights toward the input vectors
to which the unit responds more.

In this way a relative map of the characteristics of input is created where the
neighbouring units respond to precise stimulus of admission thanks to the similarity
of the synapse weights.

For this aim it is also necessary to introduce the concept of the function of proximity,
that determines the area of size raround /* where the units are active.

The less the dimension of the proximity, the lower the number of the units of the
layer of Kohonen whose weights are modified significantly, therefore the higher the
capacity of the neurons to differentiate and to acquire details but also to increase
the complexity of the system of learning.

According to Kohonen the size of the function of proximity must be varied, initially
choosing it to cover all of the units of the layer and gradually reducing it.

In this way you will go from learning the main features up to learning the details of
the specialized areas in responding to particular stimuli.

OCCOCOCOCOO0
olc 6 © colo
o|c|oc © clo|o
oloc|oc 6 clo|o
oloc|oc © clo|o
Olo oo O C|o
O O |0 O O

Representation of the gradual reduction of proximity

Once the learning phase has been completed the network is able to supply
answers in relation to the new input presented. The property of generalization
derives from the fact that even the neurons near to those selected are modified.
The network must therefore self-organize in areas that are composed of a large set
of values around the input from which the algorithm learns, this will ensure that if
there is an input never seen before, but with similar characteristics, the network will
be able to classify properly.

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 5 di 112

Besides this, compared to supervised algorithms, the self-organized processes of
learning (SOM) result to be efficient even if are used incomplete or incorrect input
data, a characteristic that makes this neural network particularly suitable to be used
in the process of Data Mining.

In fact Kohonen algorithms, at the end of the phase of non supervised training,
produces a three-dimensional matrix that can be used to classify new records in
groups with the most similar characteristics.

While the training phase can require a lot of time to run, that of classifying new
records in the groups with the most similarities is almost instantaneous, making this
function especially useful for processes with real time reactions (e.g. quality control,
productions in a continuous cycle, automation in industrial processes, control
systems, monitoring the messages on the Net, etc.).

The algorithms of the neural networks have, as a common aspect, the inability to
explain the characteristics of the groups obtained.

It is possible, using the information contained in the training matrix and resorting to
other technical statistics, to provide information on the characteristics of every
group helping the researcher to deepen the analysis of the results to gather better
results of their research.

It is also possible to determine if the overall view of the records used in the training
phase has knowledge contents or, on the contrary, it is made up of data which have
little connection between them and therefore not suitable for the use of research: in
fact it is possible to compute the global index of homogeneity of the groups on the
whole (Knowledge Index), informing the researcher of the suitability of the output
files to achieve the expected goals.

KB

Python for KB

The Python program language is a language that can be freely downloaded from
Internet.
Python is compatible with Windows, Linux/Unix, Mac OS X, OS/2, Amiga and
Smart-phones /Tablets.
Python is distributed on license Open-Source: its use is free of charge also for
commercial products.
The site from where the Python language can be downloaded is
www.python.org/download, choosing the compatible version for your computer.
Installing Python in Windows involves choosing the extended file msi to download
from Internet.
To install Python in Linux (and in particular in Linux Ubuntu) use the Software
Manager of the Linux distribution, which automatically connects to the official site
(repository) , downloading what is necessary for a safe, complete and automatic
installation; Linux distributions usually already contain the Python language pre-
installed.
Whatever the operating system for the installation of Python may be, the programs
can only be used in command mode option by opening the file containing the
Python program (for example: program.py), typing python program.py:

* in a DOS window (with execute) in Windows

« in a terminal window in Linux

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 6 di 112

Details

The KB application is a system which extracts knowledge from data based on
algorithms of the map of Kohonen revised and modified by the author.
KB can elaborate any table of numeric data and/or text, tables where the first line of
the table is destined to the description of the columns / variables and the first
column of the table is destined to the codes (arbitrary) of identification of the
record / case.
In KB, functions are included with the aim of:
» normalizing the numeric data comparing it to the standard deviation or to the
maximum value of the variable / column according to the user’s choice
« transforming the alphanumeric data into numeric data conveniently returned
equidistant between them
» inserting statistical functions able to judge the quality of the results of the
cataloging for each group and globally
« writing different output files:
* records / cases arranged by group code according to the chosen
category
» synthetic statistical information on the characteristics of the different
groups also in relation to statistical indexes with reference to entire
populations of records / cases
 the final training matrix having the minimum error

The neural networks have the known defect of being black boxes in that they are
able to catalog but don'’t explain:
« what the characteristics of each group are
» what the columns/variables are important in each group for the cataloging
« what the most homogeneous groups are on the inside
» if, in its global sense , the input table contains information in relation between
the variables or if the table is purely a group of numbers and letters without
any inductive value.

Appendixes contain the programs written in Python KB_CAT (for the cataloging),
KB_STA (for the analysis of the results) and KB_CLA (for the classification).

They have to be converted into file in text form using cut and paste; the programs
have to be stored with names:

* Kkb_cat.py
« kb_sta.py
* kb _cla.py

The name of the programs can also be different from kb_cat, kb_sta, kb_cla, as
long as the extension is “.py” to allow the Python language to recognize the
programs and run them.

Some of the test files are also reproduced and the results obtained are shown in
the DOS window (Windows) or in the Terminal Window (Linux), results are
contained in files in text format.

Collecting and arranging input data

The use of programs based on the algorithms of Kohonen require data to be
KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 7 di 112

prepared and normalized.
To begin with it is important to carefully choose the data to be analysed.
Information from which the user intends to extract knowledge must be contained in
tables that have the following characteristics:
» the format must be text (txt, csv)
» the fields must be separated by tabulation (tab)
 the first column is destined to identify each line with the identification code of
every record (e.g. Client’s code, product name, production lot, etc.)
« the first line must contain the descriptions of the columns separated by the
tabulation (tab)
« values are contained in the cells from the second column to the last column
and from the second line to the last line
« all the values of all the columns and all the lines must be separated by
tabulation (tab)
« empty fields or those not containing anything cannot exist
* a column which contain numerical data cannot contain data with text
To convert tables into text you can resort to programs x/s (Excel) or OpenOfficeCalc
(ods) which are able to read the input formats and convert them into (csv) format,
choosing the tabulation field (tab) and space (empty) to delimit the text.
For the quality of the results, the famous saying garbage in, garbage out is always
valid; it is fundamental to collect good quality data that allows the research to be
described and explained in the most complete way possible.
You also need to decide what size of the data is to be used as an input file (see the
following suggestions).
The neural networks give the same weight to all of the variables inserted; if a
variable oscillates in an interval (1000 - 10000) and the other in an interval (0 - 1),
the variations of the first tend to reduce the importance of the second, even if the
latter could be more significant in determining the results of the classification.
To do this transformation techniques exist which make the variables compatible
among them, making them fall inside a certain interval (range).
The KB_CAT program can apply different techniques of normalization of the
numeric values and text data.
Numeric values can be normalized through two methods:
* Normalization with the maximum: the new values of the column are obtained
dividing the original values for the maximum value of the column, in this way
the new values vary between zero and 1
« Standardization: the new values are obtained subtracting from the original
value the mean of the column and dividing the result of the difference for the
Standard deviation of the column.

From the columns containing strings of characters are extracted the value of those
containing different strings, they are sorted, counted and then are used to
determine the attribution step of a numeric value between 0 and 1.

The KB_CAT program does not foresee the automatic transformation of the date or
the time The date must be transformed by the user in pseudo continue numeric
variables assigning the value 0 to the most remote date and increasing by a unit
every subsequent date, or expressing the 365 days of the year in thousandths,
according to the formula: 0,9999* days a year/365.

The year could also be indicated using another variable. The pair of variables

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 8 di 112

should preferably be expressed as a ratio, through a single value which will offer
information which is clearer and more immediate; in this way the derived variables
can be calculated starting from the input variables.

Let us imagine that two variables are present: the weight and height of a person.
Considered separately they have little meaning, it would be better to obtain the
coefficient of the body mass which is definitely a good synthetic index of obesity
(body weight expressed in kilogrammes divided by height in meters squared).
Another important step in preliminary elaboration of data is to try and simplify the
problem you want to resolve.

To do this it may be useful to reorganize the space of the input values, space which
grows essentially as grows the size of data.

A technique to reduce the number of variables and improve the ability of learning of
the neural networks, which is often used, is the principal component analysis, that
try to identify a sub-space m size which is the most significant possible in respect to
the input space n size.

The m final variables are called principal components and are linear combinations
of n initial variables.

Other methods used to reduce the size of the problem to resolve are the elimination
of the variables which are strongly linked between them and not useful to achieve
the desired result.

In the first case it is important to consider that the connection does not always imply
a causel/effect relationship, therefore eliminating some variables must be done with
extreme care by the user.

It is very common to reorganize file of input data that needs to be cataloged by
examining the results of the first processing runs which often indicate that certain
variables/columns are worthless: their elimination in subsequent processing often
contribute to improve the cataloging having put an end to the noise of the useless
variables/columns.

In the processing of data relating to clinical trials, it was verified that the personal
data of gender, nationality, residence, education, etc., not giving in those cases no
contribution to cataloging, could be omitted improving the quality of new learning.

A very important aspect to consider is related to the number of records contained in
an input file to catalog.

Often better results are obtained with smaller files which are able to generalize
better and produce training matrices which are more predictive.

On the contrary, a file containing a large number of records could produce an
invalid training of overfitting causing a photographic effect which can only classify
new records which are almost identical to those used in the phase of cataloging.

As scientists at Cern have already discovered, it's more important to properly
analyse the fraction of the data that is important (“of interest”) than to process all
the data. TomHCAnderson

In statistics we talk about overfitting (excessive adaptation) when a statistics model
fits the observed data (the sample) using an excessive number of parameters.

An absurd and wrong model converges perfectly if it is complex enough to adapt to
the quantity of data available.

It is impossible to prove at first glance the best number of records to be contained
in a file to catalog: too much depends on the number of variables and the
informative contents of the variables for all of the records present in the file.

The best suggestion is to carry out distinct runs with the original file and with other

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 9 di 112

files obtained with a lesser number of records

To obtain a smaller sized file you can extract records from the original file by
random choice, you can use the small program KB_RND which is present in
appendix 4.

AR R RS EEEE R EE

KB_RND KNOWLEDGE DISCOVERY IN DATA MINING (RANDOM FILE SIZE REDUCE)
by ROBERTO BELLO (COPYRIGHT MARCH 2011 ALL RIGHTS RESERVED)
Language used: PYTHON
FHARRHHARHEAHHSA B A AR B H AR A H AR AT A H AR HH AR A H AR A A AR A A A R R R R R
InputFile : cancer.txt

OutputFile : cancer_rnd.txt

Out number of cells (<= 90000) : 10000

Nun. Records Input 65535

Elapsed time (microseconds) : 235804

Indicate in InputFile the file from which you want to extract the smaller sized output
file (OutputFile).

Indicate in Out number of cells the number of cells (lines x columns) of the output
file.

Other times it is convenient to remove from the initial input file, the records which
clearly contain values contradictory, absurd or missing: in so doing you reduce the
size of the file and improve the quality by reducing the noise.

General warnings for using the KB programs

It is important that the files that are in input and output, while processing the three
programs kb_cat, kb_sta, kb_cla are not open in other windows for reading or
writing: if this happens kb_cat, kb_sta, kb_cla would go into error.

Processing the three programs can be interrupted by pressing ctrl and the c keys.

KB_CAT Knowledge Data Mining and cataloging into homogeneous
groups

Generality, aims and functions

KB_CAT is the first of the three programs to use and it is the most important.
Its purpose is to analyse any kind of textual file structured in two-dimensional table
containing numeric values and/or text data.
KB_CAT:
» controls that the table to process does not contain errors of format
* normalizes the numeric values and the text data
» starts the training phase searching for the minimum error which decreases
during the processing until it reaches the minimum value of the alpha chosen
by the user.
Once the processing has been completed, the program will write the output file
containing the results which can also be used by the other two programs KB_STA
and KB_CLA.

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 10 di 112

Source of KB_CAT (see attachment 1)

Test Input file (copy and paste then save with name vessels.txt); fields
separated by tabulation

Description Shape material |height colour weight |haft |plug
glass_1 cut_cone pewter 10 pewter 20 no no
glass_2 cut_cone plastic 9 white 4 no no
glass_3 cut_cone terracotta |8 grey 20 no no
beer_jug cut_cone porcelain |18 severals 25 no no
dessert_glass cut_cone glass 17 transparent |17 no no
wine_glass cut_cone glass 15 transparent |15 no no
jug cylinder terracotta |25 white 40 yes |no
bottle_1 cylinder_cone |glass 40 green 120 no cork
bottle 2 cylinder_cone |glass 40 transparent |125 no cork
bottle 3 cylinder_cone |glass 45 opaque 125 no plastic
bottle_4 cylinder_cone |glass 35 green 125 no metal
magnum_bottle | cylinder_cone |glass 50 green 170 no metal
carboy ball_cone glass 80 green 15000 |no cork
ancient_bottle ball_cone glass 40 green 150 no cork
champagne_glass |cut_cone crystal 17 transparent |17 no no
cup_1 cut_cone ceramic |10 white 30 yes |no
milk_cup cut_cone terracotta |15 blue 35 yes |no
tea_cup cut_cone terracotta |7 white 30 yes |no
cup 2 cut_cone glass 20 transparent |35 yes |no
coffee_cup cut_cone ceramic |6 white 20 yes |no
tetrapack1 parallelepiped | mixed 40 severals 20 no plastic
tetrapack2 parallelepiped | plastic 40 severals 21 no plastic
tetrapack3 parallelepiped | millboard {40 severals 22 no no
cleaning_1 parall_cone |plastic 30 white 50 yes |plastic
cleaning_2 cylinder_cone |plastic 30 blue 60 yes |plastic

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 11 di 112

Description Shape material |height colour weight |haft | plug
tuna_can cylinder metal 10 severals 10 no no
tuna_tube cylinder plastic 15 severals 7 no plastic
perfume parallelepiped |glass 7 transparent |15 no plastic
cleaning_3 Cone plastic 100 severals 110 yes |plastic
visage cream cylinder metal 15 white 7 no no

cd parallelepiped | plastic 1 transparent |4 no no
trousse cylinder plastic 1 silver 7 no yes
watering_can Irreqular plastic 50 green 400 yes |no
umbrella_stand cylinder metal 100 grey 3000 no no
pot_1 cylinder metal 40 grey 500 two |yes
pot 2 cut_cone metal 7 grey 200 yes |yes
toothpaste cylinder plastic 15 severals 7 no plastic
pyrex parallelepiped |glass 10 transparent | 300 two |glass
plant_pot cut_cone terracotta |30 brown 200 no no
pasta_case parallelepiped |glass 35 transparent | 150 no metal
How to run

Being positioned in the file containing kb_cat.py and the input file to process, start

KB_CAT typing in

Terminal of Linux), the command:
python kb_cat.py

python runs the program (with python language) kb_cat.py.

The program will start subsequently asking

Input File = vessels.txt

the commands window of DOS Windows (or in the

vessels.txt is the file in format txt containing the table of the records / cases to
catalog, shown above.
If you want to give more importance to one particular variable/column, all you have
to do is to duplicate the value, one or more times, in additional variables/columns:
if you want to make the variable important for three times its original weight, create
another two variables/columns calling them for example shape? and shape2 with

values which are identical to the original variable.

Number of Groups (3-20)= 3

The value 3 is the square root of the maximum number of groups to catalog (in this
KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 12 di 112

case 9); since the training matrix has a cube form base; the maximum number of
training groups can only be the square of the value that has been entered.

There are no useful rules for fixing the best number of the parameter Number of
Groups: it is advisable to initially try with low values and gradually carry out other
processing with higher values if are obtained groups containing too many records,
and on the other hand, reduce the value of the parameter Number of Groups if are
obtained groups containing few records.

Sometimes though, the researcher is interested in analysing groups with few
numbers of records but with rare and singular characteristics: in this case groups
containing few records are welcome.

Normalization (Max, Std, None) =m

The value m (M) indicates the request to normalize numerical data dividing them
by the maximum value of the column / variable.

The value s (S) indicates the request to normalize numerical data subtracting from
each input value the average of the variable / column and dividing the result by the
standard deviation of the variable / column.

It is not advisable to insert the value N (None) above all in the presence of
variables which are very different among them with a large difference between the
minimum and maximum value (range).

Start Value of alpha (from 1.8 to 0.9) = 0.9

KB_CAT, like all algorithms of the neural networks, runs cycles making loops
which consider all the input.

In these loops the alpha parameter plays an important role from its initial value
(Start Value) to its final value (End Value) also considering the value of the
decreasing step.

Occasionally an excessive length of time for the processing can be noted having
chosen a large number of groups for a file containing a lot of records and with
distant start and end values of alpha and with a very small decreasing step of
alpha; usually in these cases you will notice the minimum error remains the same
in many loops.

It is advisable to stop the processing, by pressing the two keys ctrl e ¢, together
and repeat it using more suitable parameter values.

End Value of alpha (from 0.5 to 0.0001) = 0.001

The alpha parameter used by the KB_CAT to refine the cataloging of records into
different groups: a low alpha value involves a longer cycle time of the computing
with the possibility of obtain a lower final minimum error but also a hypothetical
greater chance of over fitting (photo effect).

Decreasing step of alpha (from 0.1 to 0.001) = 0.001

Choose the value of the step of decreasing alpha to be applied to each loop.

Forced shut down of processing
In the case of wanting to shut down the processing while it is running, you just

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 13 di 112

need to press the two keys ctrl and ¢ at the same time.
Obviously the files that were in writing will not be valid.

KB_CAT produce the following output:

In the window DOS Windows (or the Terminal Linux)

AR RS EEEEEE

KB_CAT KNOWLEDGE DISCOVERY IN DATA MINING (CATALOG PROGRAM)
by ROBERTO BELLO (COPYRIGHT MARCH 2011 ALL RIGHTS RESERVED)

Language used: PYTHON

#
#
#

FHERHFHA A HARA AR R AR AR A R R R R R R R R R

InputFile

Number of Groups (3 - 20)

Normalization(Max,

Std, None)

Start value of alpha (1.8 - 0.9)
End value of alpha (0.5 - 0.0001)

Decreasing step of alpha (0.1 - 0.001)

Record 40 Columns 7

*k k%

kk

*k k%

*k k%

kk

*k k%

*k k%

kk

*k k%

*k k%

kk

*k k%

*k k%

kk

*k k%

*k k%

kk

*k k%

*k k%

kk

*k k%

*k k%

kk

*k k%

*k k%

Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 14 di 112

15
39
41
44
46
48
50
52
54
56
58
60
62
64
66
68
70
72
74
76
78
80
82
84
86

WITH
WITH
WITH
WITH
WITH
WITH
WITH
WITH
WITH
WITH
WITH
WITH
WITH
WITH
WITH
WITH
WITH
WITH
WITH
WITH
WITH
WITH
WITH
WITH
WITH

MIN
MIN
MIN
MIN
MIN
MIN
MIN
MIN
MIN
MIN
MIN
MIN
MIN
MIN
MIN
MIN
MIN
MIN
MIN
MIN
MIN
MIN
MIN
MIN
MIN

ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR

3.
.612
.608
.460
.456
.451
.447
.443
.439
.435
.431
.426
.422
.418
.414
.410
.371
.366
.362
.358
.353
.349
.345
.341
3.

W W W W W W W W W W W W W wWw w w w w w w w w w

.001
.001

616

336

: vessels.txt

alpha
alpha
alpha
alpha
alpha
alpha
alpha
alpha
alpha
alpha
alpha
alpha
alpha
alpha
alpha
alpha
alpha
alpha
alpha
alpha
alpha
alpha
alpha
alpha
alpha

O O O O O O O O O O O O O O O o o o o o o o o o o

.88650
.86490
.86310
.86040
.85860
.85680
.85500
.85320
.85140
.84960
.84780
.84600
.84420
.84240
.84060
.83880
.83700
.83520
.83340
.83160
.82980
.82800
.82620
.82440
.82260

**%%% Epoch 88 WITH MIN ERROR 3.332 alpha 0.82080
**%%* Epoch 90 WITH MIN ERROR 3.328 alpha 0.81900
%% Epoch 92 WITH MIN ERROR 3.324 alpha 0.81720
***%* Epoch 94 WITH MIN ERROR 3.320 alpha 0.81540
***%%* Epoch 96 WITH MIN ERROR 3.316 alpha 0.81360
%% Epoch 98 WITH MIN ERROR 3.311 alpha 0.81180
**%%* Epoch 102 WITH MIN ERROR 3.229 alpha 0.80820
**%%* Epoch 107 WITH MIN ERROR 3.229 alpha 0.80370
%%* Epoch 109 WITH MIN ERROR 3.225 alpha 0.80190
**%%%* Epoch 111 WITH MIN ERROR 3.222 alpha 0.80010
**%% Epoch 113 WITH MIN ERROR 3.218 alpha 0.79830
Epoch 125 min err 3.21823 min epoch 113 alpha 0.78840
**%%* Epoch 126 WITH MIN ERROR 3.218 alpha 0.78660
**%%* Epoch 128 WITH MIN ERROR 3.214 alpha 0.78480
%% Epoch 130 WITH MIN ERROR 3.211 alpha 0.78300
%%*%* Epoch 133 WITH MIN ERROR 3.206 alpha 0.78030
**%%* Epoch 136 WITH MIN ERROR 3.201 alpha 0.77760
%%* Epoch 139 WITH MIN ERROR 3.196 alpha 0.77490
**%%* Epoch 142 WITH MIN ERROR 3.191 alpha 0.77220
**%%* Epoch 146 WITH MIN ERROR 3.065 alpha 0.76860
%% Epoch 149 WITH MIN ERROR 3.060 alpha 0.76590
**%%* Epoch 165 WITH MIN ERROR 3.024 alpha 0.75150
**%%* Epoch 167 WITH MIN ERROR 3.008 alpha 0.74970
%% Epoch 169 WITH MIN ERROR 3.004 alpha 0.74790
**%%%* Epoch 171 WITH MIN ERROR 3.000 alpha 0.74610
**%%* Epoch 173 WITH MIN ERROR 2.996 alpha 0.74430
**%%* Epoch 175 WITH MIN ERROR 2.993 alpha 0.74250
%%% Epoch 177 WITH MIN ERROR 2.989 alpha 0.74070
**%%* Epoch 179 WITH MIN ERROR 2.985 alpha 0.73890
%% Epoch 181 WITH MIN ERROR 2.982 alpha 0.73710
**%%* Epoch 183 WITH MIN ERROR 2.978 alpha 0.73530
**%%* Epoch 185 WITH MIN ERROR 2.974 alpha 0.73350
**%*%* Epoch 187 WITH MIN ERROR 2.971 alpha 0.73170
*%%x% Epoch 189 WITH MIN ERROR 2.967 alpha 0.72990
**%%* Epoch 191 WITH MIN ERROR 2.964 alpha 0.72810
%% Epoch 193 WITH MIN ERROR 2.960 alpha 0.72630
**%*%* Epoch 195 WITH MIN ERROR 2.957 alpha 0.72450
**%%* Epoch 197 WITH MIN ERROR 2.953 alpha 0.72270
%%* Epoch 199 WITH MIN ERROR 2.950 alpha 0.72090
**%%* Epoch 201 WITH MIN ERROR 2.946 alpha 0.71910
**%%* Epoch 203 WITH MIN ERROR 2.943 alpha 0.71730
**%*%* Epoch 205 WITH MIN ERROR 2.940 alpha 0.71550

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 15 di 112

**%*%* Epoch 207 WITH MIN ERROR 2.936 alpha 0.71370
**%*%* Epoch 209 WITH MIN ERROR 2.933 alpha 0.71190
**%*% Epoch 211 WITH MIN ERROR 2.921 alpha 0.71010
%%%* Epoch 213 WITH MIN ERROR 2.918 alpha 0.70830
**%*%* Epoch 215 WITH MIN ERROR 2.915 alpha 0.70650
**%% Epoch 217 WITH MIN ERROR 2.912 alpha 0.70470
**%%x% Epoch 219 WITH MIN ERROR 2.909 alpha 0.70290
**%%* Epoch 221 WITH MIN ERROR 2.906 alpha 0.70110
**%% Epoch 223 WITH MIN ERROR 2.903 alpha 0.69930
**%*%* Epoch 225 WITH MIN ERROR 2.863 alpha 0.69750
**%*%* Epoch 227 WITH MIN ERROR 2.861 alpha 0.69570
**%% Epoch 229 WITH MIN ERROR 2.858 alpha 0.69390
**%%x% Epoch 231 WITH MIN ERROR 2.855 alpha 0.69210
**%*%* Epoch 233 WITH MIN ERROR 2.852 alpha 0.69030
**%% Epoch 235 WITH MIN ERROR 2.849 alpha 0.68850
**%%* Epoch 241 WITH MIN ERROR 2.843 alpha 0.68310
**%%* Epoch 243 WITH MIN ERROR 2.840 alpha 0.68130
Epoch 250 min err 2.83977 min epoch 243 alpha 0.67590
**%*%* Epoch 281 WITH MIN ERROR 2.783 alpha 0.64710
**%*%* Epoch 283 WITH MIN ERROR 2.780 alpha 0.64530
**%*%* Epoch 285 WITH MIN ERROR 2.777 alpha 0.64350
**%*%* Epoch 287 WITH MIN ERROR 2.774 alpha 0.64170
**%%* Epoch 289 WITH MIN ERROR 2.772 alpha 0.63990
**%% Epoch 291 WITH MIN ERROR 2.769 alpha 0.63810
**%*%* Epoch 293 WITH MIN ERROR 2.766 alpha 0.63630
**%*%* Epoch 295 WITH MIN ERROR 2.764 alpha 0.63450
**%% Epoch 297 WITH MIN ERROR 2.761 alpha 0.63270
**%*%* Epoch 299 WITH MIN ERROR 2.758 alpha 0.63090
**%%* Epoch 301 WITH MIN ERROR 2.756 alpha 0.62910
**%*% Epoch 303 WITH MIN ERROR 2.753 alpha 0.62730
**%*%* Epoch 305 WITH MIN ERROR 2.751 alpha 0.62550
**%%* Epoch 307 WITH MIN ERROR 2.748 alpha 0.62370
**%*% Epoch 309 WITH MIN ERROR 2.746 alpha 0.62190
**%%x% Epoch 311 WITH MIN ERROR 2.687 alpha 0.62010
**%*%* Epoch 320 WITH MIN ERROR 2.636 alpha 0.61200
**%*% Epoch 323 WITH MIN ERROR 2.632 alpha 0.60930
**%*%* Epoch 326 WITH MIN ERROR 2.628 alpha 0.60660
Epoch 375 min err 2.62765 min epoch 326 alpha 0.56340
**%*%* Epoch 485 WITH MIN ERROR 2.558 alpha 0.46350
Epoch 500 min err 2.55849 min epoch 485 alpha 0.45090
**%%* Epoch 539 WITH MIN ERROR 2.554 alpha 0.41490
**%% Epoch 551 WITH MIN ERROR 2.394 alpha 0.40410

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 16 di 112

*%%% Epoch 621 WITH MIN ERROR 2.362 alpha 0.34110

Epoch 625 min err 2.36245 min epoch 621 alpha 0.33840
**%% Epoch 702 WITH MIN ERROR 2.186 alpha 0.26820
**%*%* Epoch 744 WITH MIN ERROR 2.160 alpha 0.23040
Epoch 750 min err 2.15974 min epoch 744 alpha 0.22590
Epoch 875 min err 2.15974 min epoch 744 alpha 0.11340
**%*%* Epoch 941 WITH MIN ERROR 1.859 alpha 0.05310
Epoch 1000 min err 1.85912 min epoch 941 alpha 0.00100

Min alpha reached

AR RS E SR EEEEEEEEEEEEEEE

KB _CAT KNOWLEDGE DISCOVERY IN DATA MINING (CATALOG PROGRAM)
by ROBERTO BELLO (COPYRIGHT MARCH 2011 ALL RIGHTS RESERVED)
Language used: PYTHON
FHARHHHARHEAHHEAHH A A H AR A H AR AR A AR R A A R R A R R R R R
EPOCH 941 WITH MIN ERROR 1.859 starting alpha 0.90000 ending

alpha

0.00100 Iterations 39960 Total Epochs 999

Output File Catalog.original vessels M g3 out.txt

Output File Catalog.sort vessels M g3 _outsrt.txt
Output File Summary sort vessels M g3 _sort.txt
Output File Matrix Catal. vessels M g3 catal.txt

Output File Means, STD, CV. vessels M g3 medsd.txt

Output File CV of the Groups vessels M g3 cv.txt

Output File Training Grid vessels M g3 grid.txt

Output File Run Parameters vessels M g3 _log.txt

Elapsed time (seconds) : 15

KIndex 0.8438

As you can see, during the processing, the minimum error decreases from 3.616
(epoch 15) to 1.859 epoch 941).

The processing was completed at the epoch 1000, when the parameter value alpha
reaches a minimum value of 0.001.

References to output files are also listed:

Catalog.original = input file cataloged, NOT in order of groups and
with original values (NOT normalized)

Catalog.sort = input file cataloged, IN ORDER of groups and with original
values (NOT normalized)

Summary.sort = input file cataloged, IN ORDER of groups and with
NORMALIZED values.

Matrix Catal. = files with three columns (progressive number of records,
group codes and subgroup codes)

Means, STD, CV = files with a column for every variable and with three lines
(mean, standard deviation and coefficient of variation)
CV of the Groups = files of the coefficient of variations of the groups and

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 17 di 112

of the variables / columns with totals of the records classified into groups
» Training Grid = files containing the values of the training matrix with
minimum error
* Run Parameters = files containing references to input files, parameters of
computing and output files
+ Kindex (Knowledge Index) is a KB index that measures how much
knowledge is contained in the cataloged groups: if Kindex reached its
maximum value of 1, every group would be made up of records with constant
values in all variables / columns and each group would different from the
other groups.
Kindex is calculated using means of CV of the variables / columns of the groups of
input files before cataloging: see the source program KB _CAT for the computing
details.
In the case under examination, the Kindex value, not particularly high (0.8438),
suggests to run a new processing increasing, for example, the number of groups
from 3 to 4 obtaining a certain improvement of Kindex.

File - Output/Catalog.original (vessels_M_g3_out.txt)

It is identical to the input file with the addition of the column for the input of the code
of the group it belongs to.

The Output/Catalog.sort file is more interesting, in that it shows the classified
records that each group belong to.

File of Output/Catalog.sort (vessels_M_g3 outsrt.txt)

This is identical to the previous file but the records / cases are
the code of the group it belongs to.

in order according to

Group |description shape material height |colour weight |haft |plug
G_00_00 |ancient_bottle ball cone glass 40 Green 150 no cork
G_00_00 |bottle 1 cylinder_ cone glass 40 Green 120 no cork
G_00_00 |bottle_4 cylinder cone glass 35 Green 125 no metal
G_00_00 |carboy ball cone glass 80 Green 15000 no cork
G_00_00 |magnum bottle cylinder cone glass 50 Green 170 no metal
G_00_00 |plant_pot cut_cone terracotta |30 Brown 200 no no
G_00_00 |umbrella stand cylinder metal 100 Grey 3000 no no
G_00_01 |pot_1 cylinder metal 40 Grey 500 two yes

G 00_02 |coffee_cup cut_cone ceramic 6 White 20 yes no
G_00_02 |cup_1 cut_cone ceramic 10 White 30 yes no
G_00_02 |cup_2 cut_cone glass 20 transparent |35 yes no
G_00_02 |pot_2 cut_cone metal 7 Grey 200 yes yes
G_01_00 |beer_ jug cut_cone porcelain 18 severals 25 no no
G_01_00 |bottle 2 cylinder_ cone glass 40 transparent |125 no cork
G_01_00 |bottle_3 cylinder_ cone glass 45 opaque 125 no plastic
G_01 00 |glass_1 cut_cone pewter 10 pewter 20 no no
G_01_00 |glass_3 cut_cone terracotta |8 Grey 20 no no
G_01_00 |tuna_can cylinder metal 10 severals 10 no no
G_02_00 |cd parallelepiped |plastic 1 transparent |4 no no
G_02_00 |champagne_glass |cut_cone crystal 17 transparent |17 no no

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 18 di 112

Group |description shape material height |colour weight |haft |plug
G_02_00 |dessert_glass cut_cone glass 17 transparent |17 no no
G_02_00 |glass_2 cut_cone plastic 9 White 4 no no
G_02_00 |pasta_case parallelepiped |glass 35 transparent |150 no metal
G_02_00 |perfume parallelepiped |glass 7 transparent |15 no plastic
G_02_00 |tetrapackl parallelepiped |mixed 40 severals 20 no plastic
G_02_00 |tetrapack2 parallelepiped |plastic 40 severals 21 no plastic
G_02_00 |tetrapack3 parallelepiped |millboard 40 severals 22 no no
G_02_00 |toothpaste cylinder plastic 15 severals 7 no plastic
G_02_00 |trousse cylinder plastic 1 silver 7 no yes
G_02_00 |tuna_tube cylinder plastic 15 severals 7 no plastic
G_02_00 |visage_cream cylinder metal 15 White 7 no no
G_02_00 |wine_glass cut_cone glass 15 transparent |15 no no
G_02_01 |pyrex parallelepiped |glass 10 transparent |300 two glass

G 02 02 |cleaning_1 parall cone plastic 30 White 50 yes plastic
G 02 02 |cleaning_2 cylinder cone plastic 30 Blue 60 yes plastic
G 02 02 |cleaning_ 3 cone plastic 100 severals 110 yes plastic
G 02 02 |jug cylinder terracotta |25 White 40 yes no

G 02 02 milk cup cut_cone terracotta |15 Blue 35 yes no
G_02_02 |tea_cup cut_cone terracotta |7 White 30 yes no

G 02 02 |watering_can irregular plastic 50 Green 400 yes no

On first sight you can see that the program KB_CAT is able to catalog records in
homogeneous groups for content.
It is important to note that the vessels.txt files are formed by just 40 records which
are all quite different.
For example:
+ the group G_00_00 is characterised by objects that are primarily of a green
colour, and with haft
« the group G_00 02 is primarily formed by objects of a cut_cone shape, with
haft and without a plug
+ the group G_02 00 is characterised by objects that are parallelepiped /
cylinder / cut_cone shape and without haft
+ the group G_02_02 is made up of plastic and terracotta objects with haft
If the processed input file had been formed with numerous records and with many
variables / columns, it would not have been so easy to draw conclusions on the
results of the cataloging only visually examining the files.
The KB_STA program is dedicated to resolving the problem which has just been
highlighted.

Output/Means, Std, CV (vessels_M_g3_medsd.txt)

File containing the Means, the Maximums, the Std and the CV with normalized
values of the whole population.

Low values of the CV (coefficient of variation) indicate that the values of the
variables / columns are not dispersed.

shape material |height colour weight haft plug

Meanl Mean?2 Mean3 Meand Mean5 Meanb6 Mean?7

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 19 di 112

shape material |height colour weight haft plug
0.4892 0.5000 28.075 0.6222 530.32 0.3000 0.5900
Maxl Max2 Max3 Max4 Max5 Max6 Max7
1.0000 1.0000 100.0 1.0000 15000. 1.0000 1.0000
Stdil Std2 Std3 Std4 Std5 Stdé std7
0.7371 0.8164 60.592 0.8210 6103.1 1.1474 0.6526
cv_1 Cv_2 Cv_3 cv_4 CV_5 CV_6 cv_7
1.5066 1.6329 2.1582 1.3194 11.508 3.8248 1.1062

Output/CV files (vessels_M_g3_cv.txt)

Groups |shape material height colour | weight haft |plug Means |N_recs
G 00 _00|0.69 |0.77 0.45 0.27 1.91 0 0.91 0.71 7
G 00 010 0 0 0 0 0 0 0 1
G_00_0210 1.04 0.52 0.34 1.05 0 0.25 0.46 4
G 01 00/0.32 |0.57 0.69 0.30 0.93 0 0.47 0.47 6
G_02 00|0.51 |0.52 0.71 0.15 1.61 0 0.21 0.53 14
G 02 010 0 0 0 0 0 0 0 1
G 02 02/0.51 (0.13 0.78 0.79 1.19 0 0.14 0.51 7
Means |0.44 |0.53 0.62 0.32 1.35 0 0.35 0.51 40
Total|1.51 |1.63 2.16 1.32 11.51 |3.82 |1.11 3.29 40

The file contains information relevant for measuring the quality of the cataloging.
The value contained in every cell represents the importance of the values of the
variables / columns in the group: the more the value is close to zero, the more the
variable / column is important in the cataloging.

If the value is equal to zero, the variable / column in that group will have an identical
value: for example all groups have identical values in the variable haft.

The values in the cells of the penultimate column (Means) indicate if the groups are
internally homogeneous considering all the variables / columns: the higher the
value is close to zero, the greater the similarity of the record / cases to each other
within the group under consideration.

The groups G_00 02 and G_01_00 are homogeneous, while the group G_00_00
is not, due to the important CV values of the variables weight and plug.

It is also important to compare the values contained in every line / column with the
value contained in the last two lines: *Means® and *Total* (referring to the all
records before the cataloging).

Output/Training Grid (vessels_M_g3 grid.txf)

The file contains the values of the three-dimensional training matrix with minimum
error; this matrix is used by the KB_CLA program used to classify new records /

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 20 di 112

cases that can be recognised and classified according to what has previously been
learnt by the program KB_CAT.

Group SubGroup |Variable/Column |Values

0,3976159
0,4249143
0,4221095
0,3706712
0,1070639
0,0721792
0,4288610
0,3760895
0,3555886
0,3351283
0,4836650
0,0767009
0,3319249
0,5141450
0,3522021
0,1886213
0,1638941
0,6998640
0,0115530
0,8734927
0,7434203
0,5722823
0,4691723
0,2864130
0,6216960
0,0428225
0,0569301
0,5809196
0,5466298
0,5135355
0,2899887
0,6104640

P PP P PRI, P RPP OO O OO0 OO OO O O|O|l0O O|]O|O|OO|OC|0O| O
P PP PO O OjlOCOjCjO| MDD MDD DNNIPIPIPIPIPIRP|IP OO O OClO|O| O
WM P O OB WD RPRIOOO ULl WIDRLP O OVOIHIbd W DR O OO WM | O

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 21 di 112

Group SubGroup |Variable/Column Values

1 1 4 0,0296109
1 1 5 0,3230673
1 1 6 0,6348858
1 2 0 0,4737209
1 2 1 0,5358513
1 2 2 0,2805610
1 2 3 0,6148486
1 2 4 0,0108941
1 2 5 0,9004934
1 2 6 0,6831299
2 0 0 0,6283160
2 0 1 0,4785080
2 0 2 0,2024570
2 0 3 0,7459708
2 0 4 0,0055453
2 0 5 0,0683992
2 0 6 0,6433004
2 1 0 0,6078937
2 1 1 0,5633861
2 1 2 0,2537548
2 1 3 0,6914334
2 1 4 0,0067944
2 1 5 0,2961828
2 1 6 0,6576649
2 2 0 0,5420435
2 2 1 0,7055653
2 2 2 0,3505488
2 2 3 0,5606647
2 2 4 0,0126543
2 2 5 0,8661729
2 2 6 0,6630445

Statistical analysis of the results of the cataloging

The file contains the results of the processing of KB_CAT statistically analysed
running the program KB_STA, using the parameters below listed.

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 22 di 112

FHEFHFEAHHHHA RS R A AR R R R R A R R R R R R R R

KB _STA KNOWLEDGE DISCOVERY IN DATA MINING (STATISTICAL PROGRAM)
by ROBERTO BELLO (COPYRIGHT MARCH 2011 ALL RIGHTS RESERVED)
Language used: PYTHON

HHEFHHFE A AR A A SR A A AR A A AR R A A R R R R
INPUT - Catalogued Records File (_outsrt.txt) ->

vessels_M g3 outsrt.txt INPUT - Groups / CV File (_cv.txt) ->
vessels M g3_cv.txt

Group Consistency (% from 0 to 100) -> 0

Variable Consistency (% from 0 to 100) -> 0

Select groups containing records >= -> 4

Select groups containing records <= -> 1000

Summary / Detail report (S / D) -> D

Display Input Records (Y / N) -> Y
=========================QUTPUT=== i
Report File -> vessels M g3 sta.txt
KB_STA - Statistical Analysis from: vessels M g3 outsrt.txt

and from: vessels M g3 cv.txt

Min Perc. of group Consistency: 0 Min Perc. of variable Consistency: 0
Min Number of records: 4 Max Number of records: 1000

by ROBERTO BELLO (COPYRIGHT MARCH 2011 ALL RIGHTS RESERVED)

G 00 00 Consistency 0.7140 %Consistency 0.0 Records 7 %Records 17.50
*** shape Consistency 0.6910 %Consistency 3.22

G_00_00 ID record ancient bottle Value ball cone

G_00_00 ID record bottle_1 Value cylinder_ cone

G_00_00 ID record bottle 4 Value cylinder_ cone

G_00_00 ID record carboy Value ball cone

G_00_00 ID record magnum _bottle Value cylinder_cone

G_00_00 ID record plant pot Value cut_cone

G_00_00 ID record umbrella stand Value cylinder

Value cylinder cone Frequency 3 Percentage 42.00

Value ball cone Frequency 2 Percentage 28.00

Value cylinder Frequency 1 Percentage 14.00

Value cut _cone Frequency 1 Percentage 14.00

*** material Consistency 0.7687 $Consistency 0.00
G_00_00 ID record ancient bottle Value glass

G_00_00 ID record bottle_1 Value glass

G_00_00 ID record bottle 4 Value glass

G_00_00 ID record carboy Value glass

G_00_00 ID record magnum_bottle Value glass

G_00_00 ID record plant pot Value terracotta

G_00_00 ID record umbrella stand Value metal

Value glass Frequency 5 Percentage 71.00

Value terracotta Frequency 1 Percentage 14.00

Value metal Frequency 1 Percentage 14.00

**% height Consistency 0.4537 $Consistency 36.46
G_00_00 ID record ancient_bottle Value 40.0

G_00_00 ID record bottle 1 Value 40.0

G_00_00 ID record bottle 4 Value 35.0

G_00_00 ID record carboy Value 80.0

G_00_00 ID record magnum_bottle Value 50.0

G_00_00 ID record plant pot Value 30.0

G_00_00 ID record umbrella stand Value 100.0

Min 30.00 Max 100.00 Step 17.50

First Quartile (end) 47.50 Frequency % 57.14

Second Quartile (end) 65.00 Frequency % 14.29

Third Quartile (end) 82.50 Frequency % 14.29

Fourth Quartile (end) 100.00 Frequency % 14.29

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 23 di 112

*** colour Consistency 0.2673 $Consistency 62.56

G_00_00 ID record ancient bottle Value green

G_00_00 ID record bottle_1 Value green

G_00_00 ID record bottle 4 Value green

G_00_00 ID record carboy Value green

G_00_00 ID record magnum bottle Value green

G_00_00 ID record plant pot Value brown

G_00_00 ID record umbrella stand Value grey

Value green Frequency 5 Percentage 71.00
Value grey Frequency 1 Percentage 14.00
Value brown Frequency 1 Percentage 14.00

*** weight Consistency 1.9116 $Consistency 0.00
G_00_00 ID record ancient_bottle Value 150.0

G_00_00 ID record bottle 1 Value 120.0

G_00_00 ID record bottle 4 Value 125.0

G_00_00 ID record carboy Value 15000.0

G_00_00 ID record magnum_bottle Value 170.0

G_00_00 ID record plant pot Value 200.0

G_00_00 ID record umbrella stand Value 3000.0

Min 120.00 Max 15000.00 Step 3720.00

First Quartile (end) 3840.00 Frequency $% 85.71

Fourth Quartile (end) 15000.00 Frequency % 14.29

**% haft Consistency 0.0000 %Consistency 100.00
G_00_00 ID record ancient bottle Value no

G_00_00 ID record bottle_ 1 Value no

G_00_00 ID record bottle 4 Value no

G_00_00 ID record carboy Value no

G_00_00 ID record magnum_bottle Value no

G_00_00 ID record plant_pot Value no

G_00_00 ID record umbrella stand Value no

Value no Frequency 7 Percentage 100.00

**% plug Consistency 0.9055 $Consistency 0.00
G_00_00 ID record ancient bottle Value cork

G_00_00 ID record bottle 1 Value cork

G_00_00 ID record bottle 4 Value metal

G_00_00 ID record carboy Value cork

G_00_00 ID record magnum bottle Value metal

G_00_00 ID record plant pot Value no

G_00_00 ID record umbrella stand Value no

Value cork Frequency 3 Percentage 42.00
Value no Frequency 2 Percentage 28.00
Value metal Frequency 2 Percentage 28.00

G _00_02 Consistency 0.4559 %Consistency 12 Records 4 %Records 10.00
**% shape Consistency 0.0000 $Consistency 100.00
G_00_02 ID record coffee cup Value cut_cone

G_00_02 ID record cup 1 Value cut_cone

G_00_02 ID record cup 2 Value cut_ cone

G_00_02 ID record pot 2 Value cut_ cone

Value cut cone Frequency 4 Percentage 100.00

*** material Consistency 1.0392 %Consistency 0.00
G_00_02 ID record coffee_cup Value ceramic

G_00_02 ID record cup_1 Value ceramic

G_00_02 ID record cup_ 2 Value glass

G_00_02 ID record pot_2 Value metal

Value ceramic Frequency 2 Percentage 50.00
Value metal Frequency 1 Percentage 25.00
Value glass Frequency 1 Percentage 25.00

**%* height Consistency 0.5153 %Consistency 0.00
G_00_02 ID record coffee cup Value 6.0

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 24 di 112

G_00_02 ID record cup_1 Value 10.0

G_00_02 ID record cup_2 Value 20.0

G_00_02 ID record pot_2 Value 7.0

Min 6.00 Max 20.00 Step 3.50

First OQuartile (end) 9.50 Frequency % 50.00

Second Quartile (end) 13.00 Frequency $% 25.00

Fourth Quartile (end) 20.00 Frequency % 25.00

*** colour Consistency 0.3431 %Consistency 24.74
G_00_02 ID record coffee cup Value white

G_00_02 ID record cup 1 Value white

G_00_02 ID record cup 2 Value transparent

G_00_02 ID record pot 2 Value grey

Value white Frequency 2 Percentage 50.00
Value transparent Frequency 1 Percentage 25.00
Value grey Frequency 1 Percentage 25.00

*** weight Consistency 1.0460 $Consistency 0.00
G_00_02 ID record coffee_cup Value 20.0

G_00_02 ID record cup 1 Value 30.0

G_00_02 ID record cup_2 Value 35.0

G_00_02 ID record pot_2 Value 200.0

Min 20.00 Max 200.00 Step 45.00

First Quartile (end) 65.00 Frequency % 75.00

Fourth Quartile (end) 200.00 Frequency % 25.00

**x% haft Consistency 0.0000 $Consistency 100.00
G_00_02 ID record coffee_cup Value yes

G_00_02 ID record cup 1 Value yes

G_00_02 ID record cup_2 Value yes

G_00_02 ID record pot_2 Value yes

Value yes Frequency 4 Percentage 100.00

**% plug Consistency 0.2474 $Consistency 45.73
G_00_02 ID record coffee cup Value no

G_00_02 ID record cup 1 Value no

G_00_02 ID record cup 2 Value no

G_00_02 ID record pot_2 Value yes

Value no Frequency 3 Percentage 75.00
Value yes Frequency 1 Percentage 25.00

G 01 00 Consistency 0.4666 %Consistency 10 Records 6 $Records 15.00
**%* shape Consistency 0.3168 gConsistency 32.10
G_01_00 ID record beer jug Value cut_cone

G_01_00 ID record bottle 2 Value cylinder_ cone

G_01_00 ID record bottle 3 Value cylinder_ cone

G_01_00 ID record glass_1 Value cut_cone

G_01_00 ID record glass_3 Value cut_cone

G_01_00 ID record tuna_can Value cylinder

Value cut_cone Frequency 3 Percentage 50.00
Value cylinder_ cone Frequency 2 Percentage 33.00
Value cylinder Frequency 1 Percentage 16.00

*** material Consistency 0.5657 %Consistency 0.00
G 01 00 ID record beer jug Value porcelain

G_01_00 ID record bottle 2 Value glass

G_01_00 ID record bottle_3 Value glass

G_01_00 ID record glass_1 Value pewter

G_01_00 ID record glass_3 Value terracotta

G_01_00 ID record tuna_can Value metal

Value glass Frequency 2 Percentage 33.00
Value terracotta Frequency 1 Percentage 16.00
Value porcelain Frequency 1 Percentage 16.00
Value pewter Frequency 1 Percentage 16.00
Value metal Frequency 1 Percentage 16.00

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 25 di 112

**x* height Consistency 0.6877 $Consistency 0.00
G_01 00 ID record beer jug Value 18.0

G_01_00 ID record bottle 2 Value 40.0

G_01_00 ID record bottle_3 Value 45.0

G_01_00 ID record glass_1 Value 10.0

G_01_00 ID record glass_3 Value 8.0

G_01_00 ID record tuna_can Value 10.0

Min 8.00 Max 45.00 Step 9.25

First Quartile (end) 17.25 Frequency % 50.00

Second Quartile (end) 26.50 Frequency % 16.67

Fourth Quartile (end) 45.00 Frequency % 33.33

*** colour Consistency 0.2997 $Consistency 35.77
G_01_00 ID record beer jug Value severals

G_01 00 ID record bottle 2 Value transparent

G_01_00 ID record bottle_3 Value opaque

G_01_00 ID record glass_1 Value pewter

G_01_00 ID record glass_3 Value grey

G_01_00 ID record tuna_can Value severals

Value severals Frequency 2 Percentage 33.00
Value transparent Frequency 1 Percentage 16.00
Value pewter Frequency 1 Percentage 16.00
Value opaque Frequency 1 Percentage 16.00
Value grey Frequency 1 Percentage 16.00

*** weight Consistency 0.9283 $Consistency 0.00
G_01_00 ID record beer jug Value 25.0

G_01 00 ID record bottle 2 Value 125.0

G_01_00 ID record bottle_3 Value 125.0

G_01_00 ID record glass_1 Value 20.0

G_01_00 ID record glass_3 Value 20.0

G_01_00 ID record tuna_can Value 10.0

Min 10.00 Max 125.00 Step 28.75

First Quartile (end) 38.75 Frequency % 66.67

Fourth Quartile (end) 125.00 Frequency % 33.33

**%* haft Consistency 0.0000 %Consistency 100.00
G _01_00 ID record beer jug Value no

G 01 00 ID record bottle 2 Value no

G_01_00 ID record bottle_3 Value no

G_01 00 ID record glass 1 Value no

G_01_00 ID record glass_3 Value no

G_01_00 ID record tuna_can Value no

Value no Frequency 6 Percentage 100.00

**% plug Consistency 0.4677 $Consistency 0.00
G_01_00 ID record beer jug Value no

G_01_00 ID record bottle 2 Value cork

G_01_00 ID record bottle_3 Value plastic

G_01 00 ID record glass_1 Value no

G_01 00 ID record glass_3 Value no

G 01 00 ID record tuna_can Value no

Value no Frequency 4 Percentage 66.00
Value plastic Frequency 1 Percentage 16.00
Value cork Frequency 1 Percentage 16.00
G_02_00 Consistency 0.5300 %Consistency 0.0 Records 14 %Records 35.00
**% ghape Consistency 0.5100 %Consistency 3.77
G_02_00 ID record cd Value parallelepiped

G_02_00 ID record champagne_glass Value cut_cone

G_02 00 ID record dessert_glass Value cut_cone

G_02 00 ID record glass_2 Value cut_cone

G_02 00 ID record pasta case Value parallelepiped

G 02 00 ID record perfume Value parallelepiped

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 26 di 112

G 02 00 ID record tetrapackl Value parallelepiped
G_02 00 ID record tetrapack2 Value parallelepiped
G_02_00 ID record tetrapack3 Value parallelepiped
G_02_00 ID record toothpaste Value cylinder

G_02_00 ID record trousse Value cylinder

G_02_00 ID record tuna_tube Value cylinder

G_02_00 ID record visage cream Value cylinder

G_02_00 ID record wine glass Value cut_cone

Value parallelepiped Frequency 6 Percentage 42.00
Value cylinder Frequency 4 Percentage 28.00
Value cut_cone Frequency 4 Percentage 28.00
*** material Consistency 0.5228 $Consistency
G_02_00 ID record cd Value plastic

G_02 00 ID record champagne glass Value crystal

G_02_00 ID record dessert_glass Value glass

G_02_00 ID record glass_2 Value plastic

G_02_00 ID record pasta_case Value glass

G_02_00 ID record perfume Value glass

G_02_00 ID record tetrapackl Value mixed

G_02_00 ID record tetrapack? Value plastic

G_02 00 ID record tetrapack3 Value millboard

G_02 00 ID record toothpaste Value plastic

G_02 00 ID record trousse Value plastic

G 02 00 ID record tuna_tube Value plastic

G_02_00 ID record visage_cream Value metal

G_02 00 ID record wine glass Value glass

Value plastic Frequency 6 Percentage 42.00
Value glass Frequency 4 Percentage 28.00
Value mixed Frequency 1 Percentage 7.00
Value millboard Frequency 1 Percentage 7.00
Value metal Frequency 1 Percentage 7.00
Value crystal Frequency 1 Percentage 7.00
**% height Consistency 0.7067 $Consistency
G_02 00 ID record cd Value 1.0

G_02 00 ID record champagne _glass Value 17.0

G 02 00 ID record dessert glass Value 17.0

G_02_00 ID record glass_2 Value 9.0

G_02 00 ID record pasta case Value 35.0

G_02_00 ID record perfume Value 7.0

G_02_00 ID record tetrapackl Value 40.0

G_02_00 ID record tetrapack2 Value 40.0

G_02_00 ID record tetrapack3 Value 40.0

G_02_00 ID record toothpaste Value 15.0

G_02_00 ID record trousse Value 1.0

G_02_00 ID record tuna_tube Value 15.0

G_02 00 ID record visage_ cream Value 15.0

G 02 00 ID record wine_glass Value 15.0

Min 1.00 Max 40.00 Step 9.75

First Quartile (end) 10.75 Frequency % 28.57
Second Quartile (end) 20.50 Frequency % 42.86
Fourth Quartile (end) 40.00 Frequency % 28.57
**%* colour Consistency 0.1507 $Consistency
G_02_00 ID record cd Value transparent
G_02_00 ID record champagne_glass Value transparent
G_02_00 ID record dessert_glass Value transparent

G _02_00 ID record glass_2 Value white

G_02 00 ID record pasta_case Value transparent

G_02 00 ID record perfume Value transparent

G_02 00 ID record tetrapackl Value severals

G 02 00 ID record tetrapack? Value severals

0.00

71.57

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 27 di 112

G_02_00 ID record tetrapack3 Value severals

G_02 00 ID record toothpaste Value severals

G_02_00 ID record trousse Value silver

G_02_00 ID record tuna_tube Value severals

G_02_00 ID record visage_cream Value white

G_02_00 ID record wine_glass Value transparent

Value transparent Frequency 6 Percentage 42.00
Value severals Frequency 5 Percentage 35.00
Value white Frequency 2 Percentage 14.00
Value silver Frequency 1 Percentage 7.00
**%* weight Consistency 1.6075 %Consistency 0.00
G 02 00 ID record cd Value 4.0

G_02_00 ID record champagne_glass Value 17.0

G_02 00 ID record dessert glass Value 17.0

G_02_00 ID record glass_2 Value 4.0

G_02_00 ID record pasta_case Value 150.0

G_02_00 ID record perfume Value 15.0

G_02_00 ID record tetrapackl Value 20.0

G_02_00 ID record tetrapack? Value 21.0

G_02_00 ID record tetrapacks3 Value 22.0

G_02 00 ID record toothpaste Value 7.0

G_02 00 ID record trousse Value 7.0

G_02 00 ID record tuna_tube Value 7.0

G 02 00 ID record visage cream Value 7.0

G_02_00 ID record wine_glass Value 15.0

Min 4.00 Max 150.00 Step 36.50

First Quartile (end) 40.50 Frequency % 92.86
Fourth Quartile (end) 150.00 Frequency % 7.14

*%x% haft Consistency 0.0000 %Consistency 100.00
G_02_00 ID record cd Value no

G_02_00 ID record champagne_glass Value no

G_02_00 ID record dessert_glass Value no

G_02_00 ID record glass_2 Value no

G_02 00 ID record pasta_case Value no

G_02 00 ID record perfume Value no

G 02 00 ID record tetrapackl Value no

G_02_00 ID record tetrapack2 Value no

G_02 00 ID record tetrapack3 Value no

G_02_00 ID record toothpaste Value no

G_02_00 ID record trousse Value no

G_02_00 ID record tuna_tube Value no

G_02_00 ID record visage cream Value no

G_02_00 ID record wine_glass Value no

Value no Frequency 14 Percentage 100.00
**% plug Consistency 0.2125 $Consistency 59.91
G_02 00 ID record cd Value no

G_02 00 ID record champagne_glass Value no

G 02 00 ID record dessert glass Value no

G_02_00 ID record glass_2 Value no

G_02 00 ID record pasta case Value metal

G_02_00 ID record perfume Value plastic

G_02_00 ID record tetrapackl Value plastic

G_02_00 ID record tetrapack2 Value plastic

G_02_00 ID record tetrapack3 Value no

G_02_00 ID record toothpaste Value plastic

G_02_00 ID record trousse Value yes

G_02 00 ID record tuna_tube Value plastic

G_02 00 ID record visage_ cream Value no

G_02 00 ID record wine_glass Value no

Value no Frequency 7 Percentage 50.00

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 28 di 112

Value plastic Frequency 5 Percentage 35.00
Value yes Frequency 1 Percentage 7.00

Value metal Frequency 1 Percentage 7.00
G_02_02 Consistency 0.5053 %Consistency 2 Records 7 %Records 17.50
**x% shape Consistency 0.5070 %Consistency 0.00
G_02_02 ID record cleaning 1 Value parall cone

G _02_02 ID record cleaning 2 Value cylinder cone

G_02 02 ID record cleaning 3 Value cone

G _02_02 ID record jug Value cylinder

G_02 02 ID record milk cup Value cut_cone

G 02 02 ID record tea cup Value cut_ cone

G_02_02 ID record watering_can Value irregular

Value cut cone Frequency 2 Percentage 28.00
Value parall cone Frequency 1 Percentage 14.00
Value irregular Frequency 1 Percentage 14.00
Value cylinder_cone Frequency 1 Percentage 14.00
Value cylinder Frequency 1 Percentage 14.00
Value cone Frequency 1 Percentage 14.00

**% material Consistency 0.1260 %Consistency 75.06
G_02 02 ID record cleaning 1 Value plastic

G _02_02 ID record cleaning 2 Value plastic

G 02 02 ID record cleaning 3 Value plastic

G 02 02 ID record jug Value terracotta

G 02 02 ID record milk cup Value terracotta

G 02 02 ID record tea cup Value terracotta

G_02_02 ID record watering_can Value plastic

Value plastic Frequency 4 Percentage 57.00
Value terracotta Frequency 3 Percentage 42.00

**% height Consistency 0.7815 %Consistency 0.00
G_02_02 ID record cleaning 1 Value 30.0

G _02_02 ID record cleaning 2 Value 30.0

G 02 02 ID record cleaning 3 Value 100.0

G _02_02 ID record jug Value 25.0

G 02 02 ID record milk cup Value 15.0

G 02 02 ID record tea cup Value 7.0

G_02_02 ID record watering_can Value 50.0

Min 7.00 Max 100.00 Step 23.25

First OQuartile (end) 30.25 Frequency % 71.43

Second Quartile (end) 53.50 Frequency $% 14.29

Fourth Quartile (end) 100.00 Frequency $% 14.29

**% colour Consistency 0.7856 %Consistency 0.00
G _02_02 ID record cleaning 1 Value white

G_02_02 ID record cleaning 2 Value blue

G_02 02 ID record cleaning 3 Value severals

G _02_02 ID record jug Value white

G 02 02 ID record milk cup Value blue

G 02 02 ID record tea cup Value white

G_02_02 ID record watering_can Value green

Value white Frequency 3 Percentage 42.00
Value blue Frequency 2 Percentage 28.00
Value severals Frequency 1 Percentage 14.00
Value green Frequency 1 Percentage 14.00

*** weight Consistency 1.1928 $Consistency 0.00
G_02_02 ID record cleaning 1 Value 50.0

G _02_02 ID record cleaning 2 Value 60.0

G 02 02 ID record cleaning 3 Value 110.0

G _02_02 ID record jug Value 40.0

G 02 02 ID record milk cup Value 35.0

G 02 02 ID record tea cup Value 30.0

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 29 di 112

G 02 02 ID record watering can Value 400.0

Min 30.00 Max 400.00 Step 92.50

First Quartile (end) 122.50 Frequency % 85.71

Fourth Quartile (end) 400.00 Frequency % 14.29

*%x% haft Consistency 0.0000 %Consistency 100.00
G_02_02 ID record cleaning_1 Value yes

G_02_02 ID record cleaning_ 2 Value yes

G_02_02 ID record cleaning 3 Value yes

G 02 02 ID record jug Value yes

G _02_02 ID record milk cup Value yes

G_02 02 ID record tea cup Value yes

G 02 02 ID record watering can Value yes

Value yes Frequency 7 Percentage 100.00

*** plug Consistency 0.1443 %Consistency 71.44
G_02_02 ID record cleaning_1 Value plastic

G_02_02 ID record cleaning_ 2 Value plastic

G_02_02 ID record cleaning_ 3 Value plastic

G_02_02 ID record jug Value no

G_02_02 ID record milk cup Value no

G_02_02 ID record tea_cup Value no

G_02 02 ID record watering can Value no

Value no Frequency 4 Percentage 57.00

Value plastic Frequency 3 Percentage 42.00

Means Consistency 0.5145 %Consistency 0 Records 40 %Records 100.00
*** shape Consistency 0.4357 $Consistency 15.32
*** material Consistency 0.5283 $Consistency 0.00
*%% height Consistency 0.6182 $Consistency 0.00
**% colour Consistency 0.3163 %Consistency 38.52
**x%* weight Consistency 1.3498 %Consistency 0.00
*%x% haft Consistency 0.0000 %Consistency 100.00
*** plug Consistency 0.3530 %Consistency 31.39

Other input files to KB_CAT (animals.txt)

The animals.txt file is formed by 84 records with 15 variables / columns (Fur,
Feather, Eggs, Milk, Flying, Aquatic, Predatory, Teeth, Invertebrate, Lungs,
Poisonous, Flippers, Legs, Tail, Domestic).

ANIMAL FUR FEATHER EGGS MILK FLYING AQUATIC | PREDATORY | TEETH | INVERT. LUNGS |POIS. |FLIP. |LEGS |TAIL |DOM.

SKYLARK 0 1 1 0 1 0 0 0 1 1 0 0 2 1 0

DUCK 0 1 1 0 1 1 0 0 1 1 0 0 2 1 0

ANTELOPE 1 0 0 1 0 0 0 1 1 1 0 0 4 1 0

BEE 1 0 1 0 1 0 0 0 0 1 1 0 6 0 1

LOBSTER 0 0 1 0 0 1 1 0 0 0 0 0 6 0 0

HERRING 0 0 1 0 0 1 1 1 1 0 0 1 0 1 0

FIELD_MOUSE 1 0 0 1 0 0 0 1 1 1 0 0 4 1 0

HAWK 0 1 1 0 1 0 1 0 1 1 0 0 2 1 0

BUFFALO 1 0 0 1 0 0 0 1 1 1 0 0 4 1 0

KANGAROO 1 0 0 1 0 0 0 1 1 1 0 0 2 1 0

GOAT 1 0 0 1 0 0 0 1 1 1 0 0 4 1 1

CARP 0 0 1 0 0 1 0 1 1 0 0 1 0 1 1

CHUB 0 0 1 0 0 1 1 1 1 0 0 1 0 1 0

CAvY 1 0 0 1 0 0 0 1 1 1 0 0 4 0 1

DEER 1 0 0 1 0 0 0 1 1 1 0 0 4 1]

SWAN 0 1 1 0 1 1 0 0 1 1 0 0 2 1 0

BOAR 1 0 0 1 0 0 1 1 1 1 0 0 4 1 0

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 30 di 112

ANIMAL FUR | FEATHER EGGS MILK FLYING AQUATIC | PREDATORY | TEETH | INVERT. LUNGS | POIS. |FLIP. |LEGS | TAIL |DOM.
LADYBIRD 0 0 1 0 1 0 1 0 0 1 0 0 6 0 0
DOVE 0 1 1 0 1 0 0 0 1 1 0 0 2 1 1
CROW 0 1 1 0 1 0 1 0 1 1 0 0 2 1 0
HAMSTER 1 0 0 1 0 0 0 1 1 1 0 0 4 1 1
DOLPHIN 0 0 0 1 0 1 1 1 1 1 0 1 0 1 0
CODFISH 0 0 1 0 0 1 0 1 1 0 0 1 0 1 0
ELEPHANT 1 0 0 1 0 0 0 1 1 1 0 0 4 1 0
PHEASANT 0 1 1 0 1 0 0 0 1 1 0 0 2 1 0
FALCON 0 1 1 0 1 0 1 0 1 1 0 0 2 1 0
MOTH 1 0 1 0 1 0 0 0 0 1 0 0 6 0 [
FLAMINGO 0 1 1 0 1 0 0 0 1 1 0 0 2 1 0
SEAL 1 0 0 1 0 1 1 1 1 1 0 1 0 0 0
GULL 0 1 1 0 1 1 1 0 1 1 0 0 2 1 0
PRAWN 0 0 1 0 0 1 1 0 0 0 0 0 6 0 0
CHEETAH 1 0 0 1 0 0 1 1 1 1 0 0 4 1 0
GIRAFFE 1 0 0 1 0 0 0 1 1 1 0 0 4 1 0
GORILLA 1 0 0 1 0 0 0 1 1 1 0 0 2 0 0
CRAB 0 0 1 0 0 1 1 0 0 0 0 0 4 0 0
SEAHORSE 0 0 1 0 0 1 0 1 1 0 0 1 0 1 0
KIWI 0 1 1 0 0 0 1 0 1 1 0 0 2 1 0
LION 1 0 0 1 0 0 1 1 1 1 0 0 4 1 [
SEA_LION 1 0 0 1 0 1 1 1 1 1 0 1 2 1 0
LEOPARD 1 0 0 1 0 0 1 1 1 1 0 0 4 1 0
HARE 1 0 0 1 0 0 0 1 1 1 0 0 4 1 0
SNAIL 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
LYNX 1 0 0 1 0 0 1 1 1 1 0 0 4 1]
PIKE 0 0 1 0 0 1 1 1 1 0 0 1 0 1 0
WOLF 1 0 0 1 0 0 1 1 1 1 0 0 4 1 0
MONGOOSE 1 0 0 1 0 0 1 1 1 1 0 0 4 1 0
CAT 1 0 0 1 0 0 1 1 1 1 0 0 4 1 1
MOLLUSK 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
FLY 1 0 1 0 1 0 0 0 0 1 0 0 6 0 0
MIDGE 0 0 1 0 1 0 0 0 0 1 0 0 6 0 0
OPOSSUM 1 0 0 1 0 0 1 1 1 1 0 0 4 1 [
DUCKBILL 1 0 1 1 0 1 1 0 1 1 0 0 4 1 0
BEAR 1 0 0 1 0 0 1 1 1 1 0 0 4 0 0
SPARROW 0 1 1 0 1 0 0 0 1 1 0 0 2 1]
STURGEON 0 0 1 0 0 1 1 1 1 0 0 1 0 1 0
PERCH 0 0 1 0 0 1 1 1 1 0 0 1 0 1 0
SHARK 0 0 1 0 0 1 1 1 1 0 0 1 0 1 0
PENGUIN 0 1 1 0 0 1 1 0 1 1 0 0 2 1 0
PIRANHA 0 0 1 0 0 1 1 1 1 0 0 1 0 1 0
POLYP 0 0 1 0 0 1 1 0 0 0 0 0 8 0 0
CHICKEN 0 1 1 0 1 0 0 0 1 1 0 0 2 1 1
PONY 1 0 0 1 0 0 0 1 1 1 0 0 4 1 1
FLEA 0 0 1 0 0 0 0 0 0 1 0 0 6 0 0
PUMA 1 0 0 1 0 0 1 1 1 1 0 0 4 1 0
POLECAT 1 0 0 1 0 0 1 1 1 1 0 0 4 1 0
FROG 0 0 1 0 0 1 1 1 1 1 0 0 4 0 0
REINDEER 1 0 0 1 0 0 0 1 1 1 0 0 4 1 1
TOAD 0 0 1 0 0 1 0 1 1 1 0 0 4 0 0
SQUIRREL 1 0 0 1 0 0 0 1 1 1 0 0 2 1 0
SCORPION 0 0 0 0 0 0 1 0 0 1 1 0 8 1 0

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 31 di 112

ANIMAL FUR | FEATHER EGGS MILK FLYING AQUATIC | PREDATORY | TEETH | INVERT. LUNGS | POIS. |FLIP. |LEGS | TAIL |DOM.
SEA_SNAKE 0 0 0 0 0 1 1 1 1 0 1 0 0 1 0
SOLE 0 0 1 0 0 1 0 1 1 0 0 1 0 1 0
STARFISH 0 0 1 0 0 1 1 0 0 0 0 0 5 0 0
OSTRICH 0 1 1 0 0 0 0 0 1 1 0 0 2 1 0
MOLE 1 0 0 1 0 0 1 1 1 1 0 0 4 1 0
TORTOISE 0 0 1 0 0 0 0 0 1 1 0 0 4 1 0
TERMITE 0 0 1 0 0 0 0 0 0 1 0 0 6 0 0
TUNA 0 0 1 0 0 1 1 1 1 0 0 1 0 1 0
TRITON 0 0 1 0 0 1 1 1 1 1 0 0 4 1 0
VAMPIRE 1 0 0 1 1 0 0 1 1 1 0 0 2 1 0
WORM 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
WASP 1 0 1 0 1 0 0 0 0 1 1 0 6 0 0
MINK 1 0 0 1 0 1 1 1 1 1 0 0 4 1 0
CALF 1 0 0 1 0 0 0 1 1 1 0 0 4 1 1

Processing of animals.txt file with KB_CAT

The animals.txt file has been processed with the following parameters:

Input File -> animals.txt
Number of Groups (3 - 20) -=> 4
Normalization (Max, Std, None) -> M

Start Value of alpha (from 1.8 to 0.9) -> 1.8

End Value of alpha (from 0.5 to 0.0001) -> 0.0001

Decreasing step of alpha (from 0.1 to 0.001) -> 0.001
The processing ended with a Minimum Error of 5.255 at the time 971 producing the
results in the files:

Output File Catalog.original animals_M_g4_out.txt
Output File Catalog.sort animals_M_g4 outsrt.txt
Output File Summary sort animals_M_g4_sort.txt
Output File Matrix Catal. animals_M_g4_catal.txt
Output File Means, STD, CV. animals_M_g4_medsd.txt
Output File CV of the Groups animals_M_g4_cv.txt
Output File Training Grid animals_M_g4_grid.txt
Output File Run Parameters animals_M_g4_log.txt

Output file/Catalog.sort ordered by group using animals.txt

Group | ANIMAL FUR | FEATH. | EGGS | MILK | FLYING | AQUAT. | PRED. | TEETH | VERT. | LUNGS | POIS. | FLIP. | LEGS | TAIL | DOM.

G_00_00 | ANTELOPE

G_00_00 | BUFFALO

G_00_00 | CALF

G_00_00 |CAT

G_00_00 | DEER

G_00_00 | FLD_MOUSE

G_00_00 | GIRAFFE

G_00_00 | GOAT

G_00_00 | HAMSTER

1

1

1

1

1
G_00_00 | ELEPHANT |1
1

1

1

1
G_00_00 | HARE 1
1

o|lo|o|o|o|o|o|o|o|o|o| o
ol o|lo|o/lo|lo| o|lo|o|o| o] o
Rir|pr|r|Rr|R|RIR|R|Rr|R|R
o|lo|o|o|o|o|o|o|o|o|o| o
ol o|lo|o|/lo|lo| o|l]o|o|o| o] oo
o|lo|o|o|o|o|o|o|r|o|o|o
RilRr|Rr|Rr|R[(R[R[R|IR|R|RL|R
[e e I N B B S B B e N G S
[e e I N B B S B B e N G S
o|lo|o|o|o|o|o|o|o|o|o| o
o|lo|o|o|o|o|o|o|o|o|o| o
[IO O O IO IO IO O I S I S I SR S
Rir|pr|r|r|R|RIR[R|R|R|R
olo|r|r|o|o|o|lo|r|r|o|o

G_00_00 | KANGAROO

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 32 di 112

Group | ANIMAL FUR | FEATH. | EGGS | MILK | FLYING | AQUAT. | PRED. | TEETH | VERT. | LUNGS | POIS. | FLIP. | LEGS | TAIL | DOM.
G_00_00 | PONY 1 o 0 1 0 0 0 1 1 1 0 0 4 1 1
G_00_00 |REINDEER |1 |0 0 1 0 0 0 1 1 1 0 0 4 1 1
G_00_00 |SQUIRREL |1 |0 0 1 0 0 0 1 1 1 0 0 2 1 0
G_00_00 |[VAMPIRE |1 |0 0 1 1 0 0 1 1 1 0 0 2 1 0
G_00_01 | CAVY 1 o 0 1 0 0 0 1 1 1 0 0 4 0 1
G _00_01 |GORILLA |1 |0 0 1 0 0 0 1 1 1 0 0 2 0 0
G_00_02 | BEE 1 |o 1 0 1 0 0 0 0 1 1 0 6 0 1
G_00_03 | CRAB o |o 1 0 0 1 1 0 0 0 0 0 4 0 0
G_00_03 | FLY 1 o 1 0 1 0 0 0 0 1 0 0 6 0 0
G_00_03 |LADYBIRD |0 |0 1 0 1 0 1 0 0 1 0 0 6 0 0
G_00_03 |LOBSTER |0 |0 1 0 0 1 1 0 0 0 0 0 6 0 0
G_00_03 | MIDGE 0o |o 1 0 1 0 0 0 0 1 0 0 6 0 0
G _00_03 |[MOLLUSK |0 |0 1 0 0 0 1 0 0 0 0 0 0 0 0
G_00_03 | MOTH 1 o 1 0 1 0 0 0 0 1 0 0 6 0 0
G_00_03 | POLYP 0o |o 1 0 0 1 1 0 0 0 0 0 8 0 0
G_00_03 | PRAWN o |o 1 0 0 1 1 0 0 0 0 0 6 0 0
G_00_03 |STARFISH |0 |0 1 0 0 1 1 0 0 0 0 0 5 0 0
G_00_03 |WASP 1 o 1 0 1 0 0 0 0 1 1 0 6 0 0
G_01_00 | BEAR 1 |o 0 1 0 0 1 1 1 1 0 0 4 0 0
G_01_00 | BOAR 1 o 0 1 0 0 1 1 1 1 0 0 4 1 0
G 01_00 |CHEETAH |1 |0 0 1 0 0 1 1 1 1 0 0 4 1 0
G _01_00 |[LEOPARD |1 |0 0 1 0 0 1 1 1 1 0 0 4 1 0
G_01_00 |LION 1 o 0 1 0 0 1 1 1 1 0 0 4 1 0
G_01_00 | LYNX 1 o 0 1 0 1 1 1 1 0 0 4 1 0
G_01_00 | MINK 1 o 0 1 0 1 1 1 1 1 0 0 4 1 0
G_01_00 |MOLE 1 o 0 1 0 0 1 1 1 1 0 0 4 1 0
G_01_00 |MONGOOSE |1 |0 0 1 0 0 1 1 1 1 0 0 4 1 0
G _01_00 |OPOSSUM |1 |0 0 1 0 0 1 1 1 1 0 0 4 1 0
G _01_00 |POLECAT |1 |0 0 1 0 0 1 1 1 1 0 0 4 1 0
G_01_00 | PUMA 1 o 0 1 0 0 1 1 1 1 0 0 4 1 0
G_01_00 | WOLF 1 |o 0 1 0 0 1 1 1 1 0 0 4 1 0
G_01_02 |SCORPION |0 |0 0 0 0 0 1 0 0 1 1 0 8 1 0
G_01_03 | FLEA o |o 1 0 0 0 0 0 0 1 0 0 6 0 0
G_01_03 | SNAIL o |o 1 0 0 0 0 0 0 1 0 0 0 0 0
G 01_03 |TERMITE |0 |0 1 0 0 0 0 0 0 1 0 0 6 0 0
G_01_03 | WORM o |o 1 0 0 0 0 0 0 1 0 0 0 0 0
G_02_00 |[DOLPHIN |0 |0 0 1 0 1 1 1 1 1 0 1 0 1 0
G_02_00 | SEAL 1 o 0 1 0 1 1 1 1 1 0 1 0 0 0
G_02_00 |SEA LION |1 |0 0 1 0 1 1 1 1 1 0 1 2 1 0
G_02_01 |DUCKBILL |1 |0 1 1 0 1 1 0 1 1 0 0 4 1 0
G_02_02 | TOAD o |o 1 0 0 1 0 1 1 1 0 0 4 0 0
G_02_02 |TORTOISE |0 |0 1 0 0 0 0 0 1 1 0 0 4 1 0
G_03_00 | CARP o |o 1 0 0 1 0 1 1 0 0 1 0 1 1
G_03_00 | CHUB o |o 1 0 0 1 1 1 1 0 0 1 0 1 0
G_03_00 |CODFISH |0 |0 1 0 0 1 0 1 1 0 0 1 0 1 0
G_03_00 |HERRING |0 |0 1 0 0 1 1 1 1 0 0 1 0 1 0
G_03_00 | PERCH o |o 1 0 0 1 1 1 1 0 0 1 0 1 0
G_03_00 | PIKE 0o |o 1 0 0 1 1 1 1 0 0 1 0 1 0
G_03 00 |[PIRANHA |0 |0 1 0 0 1 1 1 1 0 0 1 0 1 0
G_03_00 |SERHORSE |0 |0 1 0 0 1 0 1 1 0 0 1 0 1 0
G_03_00 |SEA SNAKE [0 |0 0 0 0 1 1 1 1 0 1 0 0 1 0
G_03_00 | SHARK o |o 1 0 0 1 1 1 1 0 0 1 0 1 0
G_03_00 | SOLE o |o 1 0 0 1 0 1 1 0 0 1 0 1 0

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 33 di 112

Group | ANIMAL FUR | FEATH. | EGGS | MILK | FLYING | AQUAT. | PRED. | TEETH | VERT. | LUNGS | POIS. | FLIP. | LEGS | TAIL | DOM.
G_03 00 | STURGEON |0 |0 1 0 0 1 1 1 1 0 0 1 0 1 0
G_03_00 | TUNA 0o |o 1 0 0 1 1 1 1 0 0 1 0 1 0
G_03_01 | FROG 0o |o 1 0 0 1 1 1 1 1 0 0 4 0 0
G_03_01 | TRITON 0 0 1 0 0 1 1 1 1 1 0 0 4 1 0
G_03_02 | GULL 0 |1 1 0 1 1 1 0 1 1 0 0 2 1 0
G_03_02 |KIWI 0 |1 1 0 0 0 1 0 1 1 0 0 2 1 0
G_03 02 |PENGUIN |0 |1 1 0 0 1 1 0 1 1 0 0 2 1 0
G_03 03 |CHICKEN |0 |1 1 0 1 0 0 0 1 1 0 0 2 1 1
G_03_03 |CROW 0 |1 1 0 1 0 1 0 1 1 0 0 2 1 0
G_03_03 | DOVE 0 |1 1 0 1 0 0 0 1 1 0 0 2 1 1
G_03_03 |DUCK 0 |1 1 0 1 1 0 0 1 1 0 0 2 1 0
G_03_03 | FALCON 0 |1 1 0 1 0 1 0 1 1 0 0 2 1 0
G_03 03 |FLAMINGO |0 |1 1 0 1 0 0 0 1 1 0 0 2 1 0
G_03_03 | HAWK 0 |1 1 0 1 0 1 0 1 1 0 0 2 1 0
G_03 03 |OSTRICH |0 |1 1 0 0 0 0 0 1 1 0 0 2 1 0
G_03 03 | PHEASANT |0 |1 1 0 1 0 0 0 1 1 0 0 2 1 0
G_03 03 |SKYLARK |0 |1 1 0 1 0 0 0 1 1 0 0 2 1 0
G_03 03 |SPARROW |0 |1 1 0 1 0 0 0 1 1 0 0 2 1 0
G_03_03 | SWAN 0 |1 1 0 1 1 0 0 1 1 0 0 2 1 0

Output file/CV ordered by group using animals.txt

Groups | FUR FEATHER | EGGS | MILK | FLYING | AQUATIC | PRED. | TEETH | VERT. | LUNGS | POIS. | FLIP. | LEGS | TAIL | DOMEST. | *Mean* N _recs
G_00_00 |0 0 0 0 3,87 |0 3,87 |0 0 0 0 0 0,22 |0 1,29 0,62 16
G 0001 |0 0 0 0 0 0 0 0 0 0 0 0 0,33 |0 1 0,09 |2
G 00 02 |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
G 00 03 [1,63 0 0 0 1,1 1,1 0,76 |0 0 1,1 3,16 |0 0,36 |0 0 0,61 11
G 01 00 |0 0 0 0 0 3,46 0 0 0 0 0 0 0 0,29 |0 0,25 13
G 0102 |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
G 0103 |0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0,07 |4
G 02_00 |0,71 |0 0 0 0 0 0 0 0 0 0 0 1,41 (0,71 |0 0,19 |3
G 0201 |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
G 0202 |0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0,2 2
G 0300 |0 0 0,29 |0 0 0 0,67 |0 0 0 3,46 |0,29 |0 0 3,46 0,54 13
G 0301 |0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0,07 |2
G 0302 |0 0 0 0 1,41 |o0,71 0 0 0 0 0 0 0 0 0 0,14 |3
G 0303 |0 0 0 0 0,3 2,24 1,73 |0 0 0 0 0 0 0 2,24 0,43 12
Means [0,24 |0 0,04 |0 0,97 |1,05 1,19 [0,02 |0 0,14 |0,95 |0,04 |0,19 |0,12 1,13 0,41 84
Total 2,69 | 5,25 2,12 |2,9 |4,53 |3,29 2,39 |2,02 |1,23 |1,32 |10,95|5,25 |1,68 1,46 |6,31 3,57 84

In this example you can see the importance of the difference of the CV of the
whole file (CV_Pop 3,57) before the cataloging as opposed to the means of the CV
of the groups (CV_Med 0,41).

The cataloging has produced an improvement of 88,5%.

Further confirmation derives from the presence of many zero values in the cells in
the table, values which indicate that in that variable / column of the group there is
just one value that is constantly repeated: the variable / column (for that constant
value) is certainly important for the cataloging of records in that group.

Verify the validity of a manual cataloging

Sometimes it can be useful to certify the validity of a manual cataloging using
KB_CAT.
In the example described below the variable / column D1 contains the input code of

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 34 di 112

the animal specie (bird, mammal, insect, fish, ...); the variable / column was then
duplicated in another two columns (D2 e D3).
The modification of the original file has two different consequences:
« it reinforces the importance of the code of the animal specie in respect to all
the other variables / columns
« the new structure of the file allows KB _CAT to process the data in a similar
way to algorithms typical of supervised networks with different input variables
/ columns and a variable / column objective (in our case D1, D2, D3
considered globally)

Input file to KB_CAT (animals_d.txt)

FEATHE EGG
ANIMAL FUR R S MILK XXX D1 D2 D3
SKYLARK 0 1 1 0 bird bird Bird
DUCK 0 1 1 0 bird bird Bird
ANTELOPE 1 0 0 1 mammal mammal Mammal
BEE 1 0 1 0 insect insect Insect
LOBSTER 0 0 1 0 shellfish shellfish Shellfish
HERRING 0 0 1 0 fish fish Fish
FIELD MOUS
E 1 0 0 1 mammal mammal Mammal
bird_of pre
HAWK 0 1 1 0 bird_of prey bird_of prey vy
BUFFALO 1 0 0 1 mammal mammal Mammal
KANGAROO 1 0 0 1 mammal mammal Mammal
GOAT 1 0 0 1 mammal mammal Mammal
CARP 0 0 1 0 fish fish Fish
CHUB 0 0 1 0 fish fish Fish
CAVY 1 0 0 1 mammal mammal Mammal
DEER 1 0 0 1 mammal mammal Mammal
SWAN 0 1 1 0 bird bird Bird
BOAR 1 0 0 1 mammal mammal Mammal
LADYBIRD 0 0 1 0 insect insect Insect
DOVE 0 1 1 0 bird bird Bird
CROW 0 1 1 0 bird bird Bird
HAMSTER 1 0 0 1 mammal mammal Mammal
DOLPHIN 0 0 0 1 mammal mammal Mammal
CODFISH 0 0 1 0 fish fish Fish
ELEPHANT 1 0 0 1 mammal mammal Mammal
PHEASANT 0 1 1 0 bird bird Bird
bird_of pre
FALCON 0 1 1 0 bird_of prey bird_of prey vy
MOTH 1 0 1 0 insect insect Insect
FLAMINGO 0 1 1 0 bird bird Bird
SEAL 1 0 0 1 mammal mammal Mammal
GULL 0 1 1 0 bird bird Bird
PRAWN 0 0 1 0 shellfish shellfish Shellfish
CHEETAH 1 0 0 1 mammal mammal Mammal
GIRAFFE 1 0 0 1 mammal mammal Mammal
GORILLA 1 0 0 1 mammal mammal Mammal
CRAB 0 0 1 0 shellfish shellfish Shellfish
SEAHORSE 0 0 1 0 fish fish Fish

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 35 di 112

ANIMAL
KIWI

LION
SEA_LION
LEOPARD
HARE

FUR

SNAIL

LYNX

PIKE

WOLF
MONGOOSE
CAT

MOLLUSK
FLY
MIDGE
OPOSSUM
DUCKBILL
BEAR
SPARROW
STURGEON
PERCH
SHARK
PENGUIN
PIRANHA

POLYP
CHICKEN
PONY
FLEA
PUMA
POLECAT
FROG
REINDEER
TOAD
SQUIRREL
SCORPION
SEA_SNAKE
SOLE

STARFISH
OSTRICH
MOLE
TORTOISE
TERMITE
TUNA
TRITON
VAMPIRE

WORM
WASP
MINK

e e e -]

O o000 —20 =22 0-—+00 OO0 OO0 -+ 2 2 0—=+0 - = 2 O =20

- OO0 OO0 —=+0O0

—_ - O

FEATHE EGG

R S
1 1
0 0
0 0
0 0
0 0
0 1
0 0
0 1
0 0
0 0
0 0
0 1
0 1
0 1
0 0
0 1
0 0
1 1
0 1
0 1
0 1
1 1
0 1
0 1
1 1
0 0
0 1
0 0
0 0
0 1
0 0
0 1
0 0
0 0
0 0
0 1
0 1
1 1
0 0
0 1
0 1
0 1
0 1
0 0
0 1
0 1
0 0

MILK XXX

—_ A A a0

SO oo L0 —+20 -0 —+00 [eNeoNoNolNoNoll g e oo - = 2 0O =0

- OO0 OO —~0O0

o o

1

D1

bird
mammal
mammal
mammal
mammal

invertebrate
mammal
fish
mammal
mammal
mammal

invertebrate
insect
insect
mammal
mammal
mammal
bird

fish

fish

fish

bird

fish

invertebrate
bird
mammal
insect
mammal
mammal
amphibian
mammal
amphibian
mammal
arachinida
reptiles
fish

echinoderm
bird
mammal
reptiles
insect

fish
amphibian
mammal

invertebrate
insect
mammal

D2

bird
mammal
mammal
mammal
mammal

invertebrate
mammal
fish
mammal
mammal
mammal

invertebrate
insect
insect
mammal
mammal
mammal
bird

fish

fish

fish

bird

fish

invertebrate
bird
mammal
insect
mammal
mammal
amphibian
mammal
amphibian
mammal
arachinida
reptiles
fish

echinoderm
bird
mammal
reptiles
insect

fish
amphibian
mammal

invertebrate
insect
mammal

D3

Bird
Mammal
Mammal
Mammal
Mammal
Invertebrat
e

Mammal
Fish
Mammal
Mammal
Mammal
Invertebrat
e

Insect
Insect
Mammal
Mammal
Mammal
Bird

Fish

Fish

Fish

Bird

Fish
Invertebrat
e

Bird
Mammal
Insect
Mammal
Mammal
Amphibian
Mammal
Amphibian
Mammal
Arachinida
Reptiles
Fish
Echinoder
m

Bird
Mammal
Reptiles
Insect
Fish
Amphibian
Mammal
Invertebrat
e

Insect
Mammal

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 36 di 112

FEATHE EGG
ANIMAL FUR R S MILK XXX D1 D2 D3
CALF 1 0 0 1 mammal mammal Mamma

The processing was carried out with the following parameters:

###
KB CAT KNOWLEDGE DISCOVERY IN DATA MINING (CATALOG PROGRAM)
by ROBERTO BELLO (COPYRIGHT MARCH 2011 ALL RIGHTS RESERVED)
Language used: PYTHON
#i

FHedEIHIE

Input File - animals_

Number of Groups (3 - 20) —> 4

Normalization (Max, Std, None) -> M

Start Value of alpha (from 1.8 to 0.9) -> 1.8

End Value of alpha (from 0.5 to 0.001) -> 0.0001

Decreasing step of alpha (from 0.1 to 0.001) -> 0.001
OUTPUT

Output File Catalog.original
Output File Catalog.sort
Output File Summary sort
Output File Matrix Catal.
Output File Means, STD, CV.
Output File CV of the Groups
Output File Training Grid
Output File Run Parameters

animals d M g4 out.txt
animals”d M g4 outsrt.txt
animals”d M g4 sort.txt
animals™d M g4 catal.txt
animals”d M g4 medsd. txt
animals d M g4 cv.txt
animals”d M g4 grid.txt
animals d M g4_log.txt

Results obtained processing animals_d.txt (Output/Catalog.sort)

Group ANIMAL FUR FEATHER EGGS MILK XXX D1 D2 D3
G_00_00 BEE 1.0 0.0 1.0 0.0 insect insect Insect
G_00_00 CRAB 0.0 0.0 1.0 0.0 shellfish shellfish Shellfish
G_00_00 FLY 1.0 0.0 1.0 0.0 insect insect Insect
G_00_00 LADYBIRD 0.0 0.0 1.0 0.0 insect insect Insect
G_00_00 LOBSTER 0.0 0.0 1.0 0.0 shellfish shellfish Shellfish
G_00_00 MIDGE 0.0 0.0 1.0 0.0 insect insect Insect
G_00_00 MOLLUSK 0.0 0.0 1.0 0.0 invertebrate invertebrate Invertebrate
G_00_00 MOTH 1.0 0.0 1.0 0.0 insect insect Insect
G_00_00 POLYP 0.0 0.0 1.0 0.0 invertebrate invertebrate Invertebrate
G_00_00 PRAWN 0.0 0.0 1.0 0.0 shellfish shellfish Shellfish
G_00_00 SNAIL 0.0 0.0 1.0 0.0 invertebrate invertebrate Invertebrate
G_00_00 WASP 1.0 0.0 1.0 0.0 insect insect Insect
G_00_00 WORM 0.0 0.0 1.0 0.0 invertebrate invertebrate Invertebrate
G_00_01 FLEA 0.0 0.0 1.0 0.0 insect insect Insect
G_00_01 STARFISH 0.0 0.0 1.0 0.0 echinoderm echinoderm Echinoderm
G_00_01 TERMITE 0.0 0.0 1.0 0.0 insect insect Insect
G_00_03 CHICKEN 00 1.0 1.0 0.0 bird bird bird
G_00_03 CROW 0.0 1.0 1.0 0.0 bird bird bird
G_00_03 DOVE 00 1.0 1.0 0.0 bird bird bird
G_00_03 DUCK 00 1.0 1.0 0.0 bird bird bird
G_00_03 FALCON 00 1.0 1.0 0.0 bird_of_prey bird_of prey bird_of prey
G_00_03 FLAMINGO 0.0 1.0 1.0 0.0 bird bird bird
G_00_03 HAWK 00 1.0 1.0 0.0 bird_of _prey bird_of prey bird_of prey
G_00_03 OSTRICH 00 1.0 1.0 0.0 bird bird bird
G_00_03 PHEASANT 00 1.0 1.0 0.0 bird bird bird
G_00_03 SKYLARK 0.0 1.0 1.0 0.0 bird bird bird
G_00_03 SPARROW 00 1.0 1.0 0.0 bird bird bird
G_00_03 SWAN 00 1.0 1.0 0.0 bird bird bird
G_01_01 TORTOISE 0.0 0.0 1.0 0.0 reptiles reptiles reptiles
G_01_02 SCORPION 0.0 0.0 0.0 0.0 arachinida arachinida arachinida
G_01_02 TOAD 0.0 0.0 1.0 0.0 amphibian amphibian ~ amphibian
G_01_03 GULL 0.0 1.0 1.0 0.0 bird bird bird
G_01_03 KIwI 00 1.0 1.0 0.0 bird bird bird
G_01_03 PENGUIN 00 1.0 1.0 0.0 bird bird bird

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 37 di 112

Group ANIMAL FUR FEATHER EGGS MILK XXX D1 D2 D3

G_02_00 ANTELOPE 1.0 0.0 0.0 1.0 mammal mammal mammal
G_02 00 BUFFALO 1.0 0.0 0.0 1.0 mammal mammal mammal
G_02 00 DEER 1.0 0.0 0.0 1.0 mammal mammal mammal

- 02_00 ELEPHANT 1.0 0.0 0.0 1.0 mammal mammal mammal
2 00 FIELD_ MOUSE 1.0 0.0 0.0 1.0 mammal mammal mammal
2 00 GIRAFFE 1.0 0.0 0.0 1.0 mammal mammal mammal
2 00 GORILLA 1.0 0.0 0.0 1.0 mammal mammal mammal
2 00 HARE 1.0 0.0 0.0 1.0 mammal mammal mammal
2 00 KANGAROO 1.0 0.0 0.0 1.0 mammal mammal mammal
2 00 SQUIRREL 1.0 0.0 0.0 1.0 mammal mammal mammal
2 00 VAMPIRE 1.0 0.0 0.0 1.0 mammal mammal mammal
2 02 DUCKBILL 1.0 0.0 1.0 1.0 mammal mammal mammal
2_03 FROG 00 0.0 1.0 0.0 amphibian amphibian amphibian
2 03 TRITON 0.0 0.0 1.0 0.0 amphibian amphibian amphibian
3 00 CALF 1.0 0.0 0.0 1.0 mammal mammal mammal
3 00 CAT 1.0 0.0 0.0 1.0 mammal mammal mammal
3 00 CAVY 1.0 0.0 0.0 1.0 mammal mammal mammal
3 00 GOAT 1.0 0.0 0.0 1.0 mammal mammal mammal
3 00 HAMSTER 1.0 0.0 0.0 1.0 mammal mammal mammal
3_00 PONY 1.0 0.0 0.0 1.0 mammal mammal mammal
3 00 REINDEER 1.0 0.0 0.0 1.0 mammal mammal mammal
3 01 BEAR 1.0 0.0 0.0 1.0 mammal mammal mammal
3_01 BOAR 1.0 0.0 0.0 1.0 mammal mammal mammal
3_01 CHEETAH 1.0 0.0 0.0 1.0 mammal mammal mammal
3_01 LEOPARD 1.0 0.0 0.0 1.0 mammal mammal mammal
3 01 LION 1.0 0.0 0.0 1.0 mammal mammal mammal
3 01 LYNX 1.0 0.0 0.0 1.0 mammal mammal mammal
3 01 MINK 1.0 0.0 0.0 1.0 mammal mammal mammal
3 01 MOLE 1.0 0.0 0.0 1.0 mammal mammal mammal
3 01 MONGOOSE 1.0 0.0 0.0 1.0 mammal mammal mammal
3 01 OPOSSUM 1.0 0.0 0.0 1.0 mammal mammal mammal
3 01 POLECAT 1.0 0.0 0.0 1.0 mammal mammal mammal
3 01 PUMA 1.0 0.0 0.0 1.0 mammal mammal mammal
3 01 WOLF 1.0 0.0 0.0 1.0 mammal mammal mammal
3 02 DOLPHIN 0.0 0.0 0.0 1.0 mammal mammal mammal
3 02 SEAL 1.0 0.0 0.0 1.0 mammal mammal mammal
3_02 SEA_LION 1.0 0.0 0.0 1.0 mammal mammal mammal
3_02 SEA_SNAKE 0.0 0.0 0.0 0.0 reptiles reptiles reptiles
3 03 CARP 0.0 0.0 1.0 0.0 fish fish fish

3 03 CHUB 0.0 0.0 1.0 0.0 fish fish fish

3 03 CODFISH 0.0 0.0 1.0 0.0 fish fish fish

3 03 HERRING 0.0 0.0 1.0 0.0 fish fish fish

3 03 PERCH 0.0 0.0 1.0 0.0 fish fish fish

3 03 PIKE 0.0 0.0 1.0 0.0 fish fish fish

3 03 PIRANHA 0.0 0.0 1.0 0.0 fish fish fish

3 03 SEAHORSE 0.0 0.0 1.0 0.0 fish fish fish

3 03 SHARK 0.0 0.0 1.0 0.0 fish fish fish
3_03 SOLE 0.0 0.0 1.0 0.0 fish fish fish

3 03 STURGEON 0.0 0.0 1.0 0.0 fish fish fish

3 03 TUNA 0.0 0.0 1.0 0.0 fish fish fish

G)

_0
_0
_0
_0
_0
_0
_0
_0
_0
_0
_0
_0
_0
_0
_0
_0
_0
_0
_0
_0
_0
_0
_0
_0
_0
_0
_0
_0
_0
_0
_0
_0
_0
_0
_0
_0
_0
_0
_0
_0
_0
_0
_0
_0
_0
_0

The manual cataloging is confirmed except for the coloured records of the groups
G_00_00, G_00_01,G_01_02 and G_03_02.

The questions that the researchers could ask in analogue cases, but which are
much more complicated and important in real life of companies and organisations,
could be:

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 38 di 112

» do errors occur during the gathering of data?

« do errors exist while inserting data?

« do mutations occur inside the groups?

 are there defects in production / working?

« Is there a lack in the design of the manual classification?
« Is it necessary to introduce other variables / columns?

Comparison of the results of the automatic cataloging of
iris.txt to those recognized by botanists

The reliability of the algorithms of neural networks is often appreciated
by the coincidence between the automatic cataloging of files iris.txt (150
records) and that carried out by botanists.

KB_CAT with a cataloging into 3 groups was made with the following
results.

Group RecId
G_00_00 versicolorl100
G_00_00 versicolor54
G_00_00 versicolor56
G_00_00 versicolor60
G 00 00 versicolor63
G 00 00 versicolor69
G_00_00 versicolor70
G_00_00 versicolor72
G_00_00 versicolor73
G_00_00 versicolor8l
G_00_00 versicolor83
G_00_00 versicolor85
G 00 00 versicolor88
G _00 00 versicolor90
G_00_00 versicolor9l
G_00_00 versicolor93
G_00_00 versicolor95
G_00_00 versicolor97

Sepal Length Sepal Width Petal Length Petal Width
5
5
5
5
6
6
5
6
6
5
5
5
6
5
5
5
5
5
G_00 00 virginicalO7 4.
6
6
5
6
5
5
6
6
6
6
6
5
6
5
6
7
6
7
7

.7 2.8 4.1 1.3

G_00_00 virginical20
G 00 01 versicolor84
G 00 01 virginical02
G_00_01 virginicall2
G_00_01 virginicall4d
G_00_01 virginical22
G_00_01 virginical24
G_00 01 virginical2?
G 00 01 virginical28
G 00 01 virginical35
G 00 01 virginical39
G_00_01 virginical43
G_00_01 virginical4d?7
G_00_01 virginical50
G_00_02 virginicalOl
G_00 02 virginical0O3
G_00_02 virginical05
G 00 02 virginical0O6
G 00 02 virginical08

....................................
WO U WWOWONORHEHFNWOANDROOOWOWUNOWWMUUWEOUWROAONON-NW
NWWWWWNNMNWNMWNNMNNNMNONMNNOMNOMNOMNNOMNNOMNMNOMNMNNOMNNWNOMNONNOMNONDNDNDNDNDND
e 6 & s s s s e & & e e e o & ® 4 e e e e e e e e e e e e e e 4w e e e
WO OO WO UINOONOWMNOUNNNINUOWIONOOUWOIEUooUNNNNIOWwW
OOV e BB DUUTOUO O D DD DD D DD WWD D WD D WD D
WO OWOWOHOHFHOMONWOWMWMWVWWOWOWHRREROUNNODOBRUWLOO®WLWOWLWU OWUL O
RFNNMNMNNRRRRRPRERRRENNRRRPRPRRRERRERRPEPRREBRERERERERRR R R
e e & e & e e e+ e e e & e & e e e e e e e+ e e e e e e e e e e 4 e e e e
O NHU OWOW®OROOWMOVOOWVWWOWAUJTWWNNWWUNRUWRUIOD® WW

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 39 di 112

Group RecId

G 00 02 virginical09
G_00_02 virginicallO
G_00_02 virginicall3
G_00_02 virginicall5
G_00_02 virginicallé
G _00 02 virginicalls
G_00_02 virginicall9
G 00 02 virginical2l
G 00 02 virginical23
G_00_02 virginical25
G_00_02 virginical2é6
G_00_02 virginical29
G_00_02 virginical3l
G _00 02 virginical32
G_00_02 virginical33
G 00 02 virginical3é6
G 00 02 virginical3?7
G_00_02 virginical40
G_00_02 virginical4l
G_00_02 virginical42
G_00_02 virginical44
G_00_02 virginicald5
G_00_02 virginical4é
G 00 02 virginical4s8
G 00 02 virginical49
G_01_00 versicolor58
G_01_00 versicolor6l
G_01 00 versicolor65

Sepal Length Sepal Width Petal Length Petal Width
6.
7.
6.
5.
6.
7.
7.
6.
7.
6.
7.
6.
7.
7.
6.
7.
6.
6.
6.
6.
6.
6.
6.
6.
6.
4.
5.
5.
G _01 00 versicolor68 5.
5.
5.
5.
5.
5.
5.
5.
6.
5.
5.
6.
6.
6.
6.
6.
6.
6.
7.
6.
5.
4.
5.
4.
4.
4.
5.
5.
5.

2.5 5.8 1.8

N

G 01 00 versicolor80
G_01 00 versicolor82
G 01 00 versicolor89
G 01 00 versicolor94
G_01_00 versicolor96
G_01_00 versicolor99
G_01 01 versicolor62
G_01 01 versicolor64
G 01 01 versicoloré67
G_01 01 versicolor71l
G 01 01 versicolor79
G 01 01 versicolor86
G 01 01 versicolor92
G_01_02 versicolor78
G_01 02 virginical0O4
G_01 02 virginicalll
G 01 02 virginicall?
G _01 02 virginical30
G 01 02 virginical38
G 02 00 setosal
G_02_00 setosall
G_02_00 setosall
G_02 00 setosal2
G_02_ 00 setosal3

G 02 00 setosald
G_02 00 setosal>s

G 02 00 setosalé

G 02 00 setosal?

OO OO O OO OCOOFRFRFRFFLFNFFPFFRPRFRPEPFERPERPRPRERPRFRPRPRERPRERPFRPREREFRERPRPRFEFREFDDNDDDNMDMNDDNDDNDMNDDMDODNDMNDMDNDNDMNREDNMRERENDMDDNDNDNDNDDDNDDN
« e ¢« o e o ¢« o e o ¢« o e o . ¢« o e e e o e o ¢« o e o .
BB NEFEPEPNMNNMNEFEPEDNMNOONO0OONI OGOV E UFPFNOWOOOWOODWOWUILw Wik EFPLPEWDNODOUERFRFORFROWWNDWRERREWM

epa
7
2
8
8
4
7
7
9
7
7
2
4
4
9
4
7
3
9
7
9
8
7
7
5
2
9
0
6
8
7
5
6
0
7
1
9
1
6
9
0
0
1
7
3
5
5
2
4
1
9
4
8
8
3
8
7
4

FHRRPRPRRRERRERRPOCOOUOOOSLSLSEDLSEDSEDBRDWAWAWWRWWWOUUUUUUOUUUUOOUGOGOAU UG Uy U U U &

WE B WWWWWWWWWwWNhWWWNWWDNOWLWDNDWDNOWNMNDNDNNOMDMDMDNMNWWWWWWLWWWWWDNDWDNNMWWDNWDNDWWNDWW
« . e o e e e o e e o e e o e o e e o e e o e « .

O P OO P IR UUFOONWVOUOOPRL OUNODWVWOUIODCDWOPRPANANNVWO PR POOWNERERRE B OOWODODOWDNWOLDNOONOWOO
WU EFE OV UDTOUIF YOO ULMUTOOULININDNODNMNMNWEJURFRPROOUDWEBDNMNDNMNMNYNOURFOPRORFROPRFPFOONNYNOUYWREOV R

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 40 di 112

Group
G 02 00
G_02_00
G_02_00
G_02_00
G_02_00
G_02 00
G_02 00
G 02 00
G 02 00
G_02_00
G_02_00
G_02_00
G_02_00
G_02 00
G_02 00
G 02 00
G 02 00
G_02_00
G_02_00
G_02_00
G_02_00
G_02 00
G_02 00
G 02 00
G 02 00
G_02_00
G_02_00
G_02_00
G_02_00
G_02 00
G_02 00
G 02 00
G 02 00
G_02_00
G_02_00
G_02_00
G_02_00
G_02 00
G_02 00
G 02 00
G 02 00
G_02_02
G_02_02
G_02 02
G_02_02
G 02 02
G _02 02
G 02 02
G 02 02
G_02_02
G_02_02
G_02 02
G_02_02
G 02 02
G _02 02

With the exception of records highlighted in yellow, the automatic
KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 41 di 112

RecId
setosal8
setosal?
setosa?2
setosa20
setosa?l
setosa22
setosa23
setosa24
setosa25
setosa26
setosal’7
setosa28
setosa29
setosa3
setosa30
setosail
setosa32
setosa33
setosa34
setosa3b
setosa3b
setosa3’
setosa38
setosa3?
setosa4
setosa40
setosa4dl
setosa4d?2
setosa43
setosad4
setosa4b
setosa4d6
setosad’
setosa48
setosa49
setosab
setosa50
setosab
setosa7
setosa8
setosa?9
versicolor51
versicolor52
versicolor53
versicolor55
versicolor57
versicolor59
versicolor66
versicolor74
versicolor75
versicolor76
versicolor77
versicolor87
versicolor98
virginical34

NN WDNOWDMMDNMNMWNWDNWWWHMNWWWWWWWWWWWWNWWWWWLWWWWEPRERWWWLWWLWWWWWWWWWWWWW

OO P OOWVWORFRFRWVWORFRNMNMNMOUBSDPLOWONNMNOODOOUIMNMNWLWLIdEFRLPROOOUIIDMRENMNE SR DNMNMSE OO WO NS OO O

1.

G DD DD DD DD DD D DR RERRRRBRRRRRRB/R R B B[2 2 B B3 2 2 B39 28 35 29 2 83 3 29 2 39 B3 3 2 2 B3 3 @93 @92

4

R W Joo bk wddbhboaadoOhVWOUuUNNDOUEIE PO OO WWWLWULILIWE WD UTUUO O WD UL VO IO U U b

P RPRPPRPRPRPRPRPPRPRPRPRPRPPPRPPRPPRPOOOOO0ODO0ODO0O0000O00000000000000000D0D0D0ODO0CDODO0ODO0ODOCDOODODOOO

epal Length Sepal Width Petal Length Petal Width

.5 .3

WU WNELWATUTULULLE DN WEDNDNMNDNNMDMNMDMDNWEANMWWNMNDNDNEDNMDMDNMDNNNDNNDEBBNDNMDDNDNDNDBEDNDDNDOONDEDNDWDNDW

cataloging has confirmed the botanists's opinion (inserted in the column
Recld), reaching a high value of the Knowledge Index (0.9311).

Clinical trials on hepatitis B virus

In 2006 KB_CAT was used to process data from an important research on clinical
trials regarding 1414 subjects with 33 variables / columns.

The research concerned the hepatitis B virus, the characteristics of typical
carriers, of symptomless carriers, those with low viral repetition, the possible
evolution of the virus in other pathologies, the identification marker, the diagnosis
and the treatment.

The problem of identification consists in determining whether a
person has the characteristics enough to associate him with a group
of carriers of the virus.

The variables / columns that concern the generalities of the subjects,
such as age, race, weight, height, the area of birth, and residency
were omitted as they resulted to be of little importance in previous
runs.

The weight and height of the subjects would be misleading if adopted
separately. For this reason it was calculated the body mass index
(BMI) that connects the two attributes, through the relationship

BMI = kg /(m) 2

In addition, it was also calculated an index, particularly significant that correlates
weight, height, gender and age of the subject. The real index of weight, which also
takes account of the muscles and the body of the subjects is in fact the percentage
of fat mass (FAT). There are different formulas, very similar to each other, to
calculate this index. In this case it was considered the formula of Deurenberg that,
most of the other, takes into account the age of the subject:

FAT(%)= (1,2 * BMI) + (0,23 * age) — (10,8 * gender) — 5,4
gender 1 = men, gender 2 = women

Regarding the variables related to the potus, indicating the number of
glasses of wine / beer / spirits drunk daily and how long the subjects were
drinking, were calculated the alcohol units as the product of the two values.
Consequently, it was eliminated field indicating whether or not the subject
was a teetotaler.

The input file, after the revision, it is shown in the following table:

Generalities Age, Gender, BMI, FAT, Case

Potus Total-UA (Total alcoholic Units)
Diagnosis Diagnosis, Steatohepatitis, Steatosis
Therapy Prelnterferone, PreLamivudina , PreAdefovir ,

PrePeglnterferone, PreEntecavir, PreTecnofovir,
Interferone, Peginterferone, Lamivudina, Adefovir,
Tecnofovir

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 42 di 112

Laboratory trials

AST, ALT, HBeAg, AntiHBe, AntiHBcIgM,
HBVDNAqualitative, HBVDNAquantitative,
GentipoHBV, AntiDelta, HIV, AntiHCV,

HCVRNAQualitative. GentinoHCV

The most significant characteristics of the more numerous groups are contained in

the following table.

Group | M/F[FAT % Case UA Diagnosis Pdefo—vir AST/ALTLHBeAg |AntiHBclgM
101 M 11-43 |Prevalent | 73000Chronic Hepatitis No high NegativeNegative
103 M 1743 Prevalent 29200 Chronic Hepatitis o medium NegativeNot

rN ﬁesearched
2 01 M 1636 Prevalent 45000 Carrier in non o mormal NegativeNegative
repeating phase F] F rN
2 08] F 2356 Prevalent 9000 Chronic Hepatitis and [No normal NegativeNegative
carrier in non
repeating phase
301 M 2837 Prevalent (282800 HCC and Cirrhosis No high NegativeNegative
304 M 1434 Incidental | 64000 Chronic Hepatitis and [No high NegativeNot
- carrier in non researched
repeating phase
4 01| M 2838 Prevalent 73000 HCC and Cirrhosis No high NegativePositive /
not
researched
8 01| M (01/12/47 Prevalent 45600 Chronic Hepatitis No high PositiveNegative
8 08 M 1737 Prevalent | 73000[Cirrhosis lyes medium NegativeNegative

From a comprehensive analysis of the results obtained, not published in detail, the
following conclusions have emerged:

women drink less than men, and consequently suffer from hepatitis rather
than from cirrhosis

only men over the age of 50 years show a diagnosis of HCC, such persons do
not have steatosis and the steatohepatitis positive does not take a very high
level

carriers of the virus in the non repetitive phase show normal values in AST
and ALT laboratory exams

HIV positive are almost exclusively men with chronic hepatitis

the diagnosis of cirrhosis is only present in subjects who are over the age of
40 years

the carriers in non repetitive phase have a percentage of incident cases
greater than the other diagnoses

subjects who have been diagnosed HCC are nearly always prevalent cases

the highest values ALT and AST regard the subjects who have been
diagnosed with cirrhosis or HCC

nearly all the women in the non repetitive phase result teetotaler: this is not
the case for the men

the lowest values of FAT concerns men who have been diagnosed with
chronic hepatitis and show values of units of alcohol reduced

Not good, but better! (2006 mail)

Dear Roberto,
it really does seem that your software is a winner.

As | anticipated, | have sent the conclusions of the E.to P A.

(hepatologist

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 43 di 112

and top-publisher, who is native of Milan but works in Palermo) also because he
was one of the owners of the database which was used and especially because it
was him, with his data who carried out the more detailed clinical/statistical
analysis.

He phoned me this morning asking which doctor had contributed with analysing
the database and writing the report. When | explained that neither you nor E. Are
doctors and that the conclusions were drawn with your software, he didn’t want to
believe me.

All (and | mean ALL) the conclusions are correct and coincide with those taken
from statistical analysis and from the clinical observations.

| explained that the software is in the process of being verified and that his
collaboration would be useful in this.

As it would be a case of verifying that the conclusions of the software are parallel
to those of the clinical/statistical analysis and in other databases and once this has
been done, an informative/clinical publication could be released to verify your
application at least in this field.

He would be pleased to collaborate with you in this way and will start by sending
you one or two clinical databases which have already been analysed (from 800 to
8.000 cases) on which the small KB will be tested. A big pat on the back and
congratulations!

KB_STA - the statistical analysis of the result of the cataloging

Generalities, aims and functions

The aim of KB_STA is to help researchers in the analysis of the results
of processing.
KB_STA has proven to be indispensable when the input file is of a large
size, either in the amount of records or the number of variables /
columns.
A purely visual exam of records in each group would be difficult resulting
in a lot of hard work highlighting the need to subject the groups to costly
external analysis, complex and with questionable results.
KB_STA resolves the problem of the black box which is typical of
algorithms of neural networks.
KB_STA:
« submit the file of CV groups to statistical analysis
« evaluates the degree of homogeneity of the groups within them
« evaluates the importance of the variables / columns in cataloging the
records in the groups
« groups the records in each group for each variable / column in
quartiles (if numeric) or frequency tables (if text values)
- if required, shows for each group and for each variable / column
the original value of input records

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 44 di 112

Source of KB_STA (see attachment 2)

How to use

Having the kb_sta.py program and the input file to process already in the folder, run
KB_STA by typing in the window:

python kb_sta.py
where with python you ask the kb_sta.py to be run (in python language)

The program begins the processing by asking in succession:

Catalogued Records File (_outsrt.txt) : vessels_M_g3_outsrt.txt

vessels_ M _g3 outsrt.txt is the file in txt format containing the table of records /
cases cataloged and arranged in group_code sequence.

The file vessels_M_g3 outsrt.txt is one of the results of the previous processing
with the program KB_CAT.

Groups / CV File (_cv.txt) : vessels_M_g3_cv.txt

vessels_M_g3 cv.ixt is the file in txt format containing the table of the CV of the
groups.

The file vessels M _g3 cv.ixt is one of the results from the previous processing
with the KB_CAT program.

It is important that this file and the previous one come from the same KB_CAT
processing.

Report File (output) : vessels_M_g3_report.txt

vessels_M_g3 report.txt is the output file that will contain the statistical analysis of
the results obtained from the previous program of cataloging.

It is useful, for clarity, that the name of the report file beginnings as the two
previous, as just exemplified above, in the case of statistical analysis with
different parameters, the names may change in the final part of the name
(example _r1, r2, r3).

Display Input Records (Y / N) 'n
Group Consistency (% from0to100) :0

Parameter to request the display of the groups with a percentage of homogeneity
inside them not less than that indicated, it is advisable to carry out the initial
processing with the parameter set equal to zero, which would show all groups, and
then use a different parameter in relation to the results achieved.

Too high a value of this parameter may produce an empty list.

Variable Consistency (% from0to 100) :0

Parameter to request the display of variables, within groups with a percentage of

homogeneity of the variable is not less than that indicated, it is advisable to carry out the

initial processing with the parameter set equal to zero, which would show all the

variables of the groups, and then use a different parameter in relation to the results
KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 45 di 112

obtained.
Too high a value of this parameter may produce an empty list.

Select groups containing records >= 12

The parameter to request the visualization of the groups composed of at least x records.
The groups formed by a single record are automatically homogeneous at 100% for all the
variables / columns.

Select groups containing records <= : 1000

The parameter to request the display of groups composed of a number of records less than x.
The parameter can be useful for examining the groups containing only a few records.

Summary / Detail report (S / D) :d

If the parameter has the value of s/S, the report will contain the values of
homogeneity (consistency), the total number of records and the percentage of
records cataloged in the group.

If the parameter has a value of d/D, the report will contain numerical values for
each quartile, while for each text variable the report will contain the frequency
distribution of the different text values.

Display Input Records (Y / N) 'n

If the parameter has the value of n/N the input records belonging to the groups will
not be visualized, on the contrary (y/Y) will be visualized.

KB_STA running

AR R R R

KB_STA KNOWLEDGE DISCOVERY IN DATA MINING (STATISTICAL PROGRAM)
by ROBERTO BELLO (COPYRIGHT MARCH 2011 ALL RIGHTS RESERVED)
Language used: PYTHON .
$HHHEHEHEHEEHEHEHEEE RS R R R R R R
Catalogued Records File (_outsrt.txt) : vessels M g3 outsrt.txt

Groups / CV File (_ev.txt) : vessels M g3 cv.txt

Report File (output) : vessels M g3 report.txt

Group Consistency (% from 0 to 100) : 0

Variable Consistency (% from 0 to 100) : 0

Select groups containing records >= H

Select groups containing records <= : 1000

Summary / Detail report (S / D) . d

Display Input Records (Y / N) :n

Elapsed time (seconds) : 0.3956

Analysis of the results of the cataloging of vessels.txt
Example for the group G_00_00

G 00 00 Consistency 0.7140 %Consistency 79 Records 7 %Records 17.50
*** shape Consistency 0.6910 %$Consistency 3.22
Value cylinder cone Frequency 3 Percentage 42.00
Value Dball cone Frequency 2 Percentage 28.00
Value cylinder Frequency 1 Percentage 14.00
Value cut cone Frequency 1 Percentage 14.00
*** material Consistency 0.7687 %Consistency 0.00
Value glass Frequency 5 Percentage 71.00
Value terracotta Frequency 1 Percentage 14.00
Value metal Frequency 1 Percentage 14.00

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 46 di 112

*** height Consistency 0.4537 %Consistency 36.46

Mean 53.57 Min 30.00 Max 100.00 Step 17.50

First Quartile (end) 47 .50 Frequency % 57.14

Second Quartile (end) 65.00 Frequency % 14.29

Third Quartile (end) 82.50 Frequency % 14.29

Fourth Quartile (end) 100.00 Frequency % 14.29

*** colour Consistency 0.2673 %Consistency 62.56
Value green Frequency 5 Percentage 71.00

Value grey Frequency 1 Percentage 14.00

Value Dbrown Frequency 1 Percentage 14.00

**x* weight Consistency 1.9116 %Consistency 0.00
Mean 2680.71 Min 120.00 Max 15000.00 Step 3720.00

First Quartile (end) 3840.00 Frequency % 85.71

Fourth Quartile (end) 15000.00 Frequency % 14.29

*** haft Consistency 0.0000 %$Consistency 100.00
Value no Frequency 7 Percentage 100.00

**% plug Consistency 0.9055 %Consistency 0.00
Value cork Frequency 3 Percentage 42.00

Value no Frequency 2 Percentage 28.00

Value metal Frequency 2 Percentage 28.00

The group G_00_00 is composed predominantly of glass containers, with
a height from 30 to 65 cm, green color, with a weight up to 3840 and
without handle (haft) .

Analysis of the results of a political poll of 2007

The analysed case takes into consideration a political poll, carried out on 22nd
and 23rd November 2007 by Prof. Paolo Natale of the State University of Milan,
Department of Political Sciences. After an initial processing of the data which
gave no evident results, the database was updated eliminating the fields which
were evidently not relevant and grouping some variables.

Fields regarding the size of the area of residence, the judgement on the weight of
democracy and politics were eliminated. The field regarding the province of
residence was changed, by grouping together the provinces among the north, the
centre and the south.

The new starting database contains 982 records relating to persons who have
participated in the political poll by answering the questions that follow:

« gender (men / women)

« coalition of confidence regardless of the vote (ES extreme left, left SS, CS
center-left, center CC, CD center-right, right DD, ES extreme right, ** does
not answer)

« profession

« believer (yes/no)

« religion

« expectations for the economic situation for the next 6 months

« judgment on the current state of country's economy

« protection (who you can trust)

« security (perception)

« prediction of the winner of a possible short-term election

« opinion of the government’s actions

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 47 di 112

« opinion of the opposition’s actions

e interest in politics

« confidence in coalition

« short term vote

« party voted in 2006

« party you intend to vote in the next election

« PDL party
- age
« region

« qualifications
- attendance at religious functions

The processing with the program KB_CAT was made with 4 groups.
The results of the cataloging obtained by KB_CAT are been then processed by
KB_STA.
From an analysis of the results obtained we can draw the following observations:
« supporters of the left believe, with the exception of those in the group
G_04_02, that the eventual winner will be the center right, or do not respond
to who will be the future winners (group G_02_04)
« supporters of the center left / left defend the government and considering his
work on average
« supporters of the centre left / left on average give a positive opinion on the
opposition
« group G 04 04 is formed of apolitical people, agnostic (or
extremely reserved), people who prefer not to express an
opinion, they are pensioners and unemployed, over 50
years of age
» does not exist, as in the past, a relationship between the profession, the
economic condition and the trusted party
« the category of pensioners is divided between those who imagine a victory by
the centre right (group G_02_03) and those who prefer not to reply (Group
G 02 04e G 04 _04)
« age does not affect cataloging
« in all groups people say they do not want to give the vote to the PDL, even in
groups in which the same people speculate that the winner will be the center
right (G_01_04, G_02_03, G_04_01)
A large part of the observations expressed above were confirmation of the loss of
ideological values linked to the hard core of belonging to a social class, age group,
level of education, area of residency, etc., important characteristics in the past for
political tendencies for the voters.
In 2007 the idea of liquid voters came into use, that is, the people who are no
longer a supporter of a party or an alliance, but able to evaluate the results of
government and opposition actions and decide whether and how to vote.
It 'obvious that if you define detailed profiles of voters you can then formulate specific
election programs and not only based on ideologies almost meaningless.

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 48 di 112

KB_CLA — Classification of new records

Generalities, aims and functions

The KB_CAT program produces the file containing the training matrix (for example
vessels_M_g3_grid.txt) which can be immediately used to classify records that are
similar to records that have been previously cataloged.
The use of classification programs on the fly are very useful when you must act
quickly taking into consideration the knowledge already acquired.
Classifications running in real time can be found, for example:

« in banking / insurance fields for the prevention of illegal activity

* in the business of mobile phones to identify customers in preparing to move
to competition

* in the quality control of industrial processes and products
* in companies to avoid cases of insolvency with clients

Source of KB_CLA (attachment 3)

How to run

KB_CLA requires that the file of the new records / cases to classify has the
same structure and a similar content as the file used in the previous KB _CAT
processing.

For the same structure we mean that the file of the new records / cases must have
the same number of variables / columns with an identical format of data
(numerical / textual).

For similar content means that the file of new records / cases should contain
records from samples of the same universe.

Acquired knowledge for the cataloging of animals, can not be used to classify new
containers!

Input files = n_vessels.txt

Contents of the file n_vessels.txt

The records / cases to be classify are reported in the following table and are
identified by the first character N in the description.

description shape material height colour weight haft plug
n_glass cut_cone terracotta 6 transparent 22 No no
n_bottle cylinder_cone glass 37 brown 120 No metal
n_tea cup cut_cone ceramic 7 white 28Yes no
n_cup cut_cone glass 22 transparent 36Yes no
n_coffee_cup cut _cone glass 6 transparent 19Yes no
n_perfume cylinder glass 7 transparent 12 No plastic
n_trousse cylinder plastic 1 blue 6 No yes
n_plant pot cut cone terracotta 40 brown 180 No no
n_pasta_case cylinder glass 30 transparent 130 No metal

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 49 di 112

Number of Groups (3 — 20) =3
Normalization(Max, Std, None) =m
File Training Grid = vessels_M _g3_grid.txt

KB_CLA running

BHAGHHH B R R AR EHHHHHHHHHHHHHHHHHSHS S R R R R

KB_CLA KNOWLEDGE DISCOVERY IN DATA MINING (CLASSIFY PROGRAM)
by ROBERTO BELLO (COPYRIGHT MARCH 2011 ALL RIGHTS RESERVED)
Language used: PYTHON
iSRRI E RS SSEEE RIS TSRS LIRSS EEESTISSEEESTTLE
InputFile : n_vessels.txt

Number of Groups (3 - 20) : 3

Normalization(Max, Std, None) tm

File Training Grid : vessels M g3 _grid.txt

Output File Classify.original n_vessels CM g3_out.txt

Output File Classify.sort n_vessels CM g3 _outsrt.txt
Output File Summary sort n_vessels CM g3 sort.txt
Output File Matrix Catal. n_vessels CM g3_catal.txt

Output File Means, STD, CV. n_vessels CM g3 medsd.txt
Output File CV of the Groups n_vessels CM g3 _cv.txt
Output File Training Grid vessels M g3 _grid.txt
Output File Run Parameters n_vessels CM g3 log.txt

Elapsed time (seconds) : 0.16115

Analysis of the results of the classification of n_vessels.txt

The new records, recognisable by the first letter N, have been inserted into the
previous table obtained by KB_CAT.

Group description shape material height colour Weight haft plug
G_00_00 ancient_bottle ball_cone glass 40.0 green 150.0 no cork
G_00_00 bottle_1 cylinder_cone glass 40.0 green 120.0 no cork
G_00 00 bottle 4 cylinder_cone glass 35.0 green 125.0 no metal
G_00_00 carboy ball_cone glass 80.0 green 15000.0 no cork
G_00_00 magnum_bottle cylinder_cone glass 50.0 green 170.0 no metal
G_00_00 plant_pot cut_cone terracotta 30.0 brown 200.0 no no
G_00_00 umbrella_stand cylinder metal 100.0 grey 3000.0 no no
G_00_00 n_bottle cylinder_cone glass 37.0 brown 120.0 no metal
G_00_00 n_glass cut_cone terracotta 6.0 transparent 22.0 no no
G_00 00 n_pasta_case cylinder glass 30.0 transparent 130.0 no metal
G_00_00 n_plant_pot cut_cone terracotta 40.0 brown 180.0 no no
G_00 01 pot_1 cylinder metal 40.0 grey 500.0 two yes
G_00_02 coffee_cup cut_cone ceramic 6.0 white 20.0 yes no
G_00 02 cup_1 cut_cone ceramic 10.0 white 30.0 yes no

G _00 02 cup_2 cut_cone glass 20.0 transparent 35.0 yes no

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 50 di 112

Group description shape material height colour Weight haft plug

G _00 02 pot 2 cut_cone metal 7.0 grey 200.0 vyes yes
G_00_02 n_coffee_cup cut_cone glass 6.0 transparent 19.0 yes no
G_00_02 n_tea_cup cut_cone ceramic 7.0 white 28.0 yes no
G_01_00 beer_jug cut_cone porcelain 18.0 severals 25.0 no no
G_01_00 bottle 2 cylinder_cone glass 40.0 transparent 125.0 no cork
G_01_00 bottle_3 cylinder_cone glass 45.0 opaque 125.0 no plastic
G_01_00 glass_1 cut_cone pewter 10.0 pewter 20.0 no no

G _01._00 glass_3 cut_cone terracotta 8.0 grey 20.0 no no
G_01_00 tuna_can cylinder metal 10.0 severals 10.0 no no
G_01_00 n_perfume cylinder glass 7.0 transparent 12.0 no plastic
G_01_00 n_trousse cylinder plastic 1.0 blue 6.0 no yes
G_01_02 - cut_cone glass 22.0 transparent 36.0 yes no

G 02 00 cd parallelepiped plastic 1.0 transparent 4.0 no no
G_02_00 champagne_glass cut_cone crystal 17.0 transparent 17.0 no no
G_02_00 dessert_glass cut_cone glass 17.0 transparent 17.0 no no
G_02_00 glass_2 cut_cone plastic 9.0 white 4.0 no no
G_02 00 pasta_case parallelepiped glass 35.0 transparent 150.0 no metal
G_02_00 perfume parallelepiped glass 7.0 transparent 15.0 no plastic
G_02_00 tetrapack1 parallelepiped mixed 40.0 severals 20.0 no plastic
G_02_00 tetrapack2 parallelepiped plastic 40.0 severals 21.0 no plastic
G_02_00 tetrapack3 parallelepiped millboard 40.0 severals 22.0 no no
G_02_00 toothpaste cylinder plastic 15.0 severals 7.0 no plastic
G_02_00 trousse cylinder plastic 1.0 silver 7.0 no yes
G_02_00 tuna_tube cylinder plastic 15.0 severals 7.0 no plastic
G_02_00 visage_cream cylinder metal 15.0 white 7.0 no no
G_02_00 wine_glass cut_cone glass 15.0 transparent 15.0 no no
G_02_01 pyrex parallelepiped glass 10.0 transparent 300.0 two glass
G_02_02 cleaning_1 parall_cone plastic 30.0 white 50.0 yes plastic
G_02_02 cleaning_2 cylinder_cone plastic 30.0 blue 60.0 yes plastic
G_02_02 cleaning_3 cone plastic 100.0 severals 110.0 yes plastic
G_02_02 jug cylinder terracotta 25.0 white 40.0 yes no
G_02_02 milk_cup cut_cone terracotta 15.0 blue 35.0 yes no
G_02 02 tea_cup cut_cone terracotta 7.0 white 30.0 yes no
G_02_02 watering_can irregular plastic 50.0 green 400.0 vyes no

The new records have been classified, almost completely, in the correct way except
for the two records highlighted in pink colour.

The n_glass record has been classified in the group G_00_00 with the variables
colour e weight with values that are not present in other records of the group.

Political opinions in Facebook (January 2013)

A sample of 1070 political opinions present in 14 different groups of discussion was
examined: fb_casini, fb_fini, fb_bonino, fb_di_pietro, fb_corsera, fb_fanpage,
fo_brambilla, fb_storace, fb_maroni, fb_bersani, fb_meloni, fb_grillo,
fb_termometro_politico, fb_fattoquotidiano.
For every post are taken into consideration:

» the group of discussion

» the topic of the discussion (e.g. gay marriage and adoption, interview by TG3,
Rai 3 news, the moral drift)

» the political leader involved (Bersani, Casini, Berlusconi, etc.)

« the attitude inferred from the judgment expressed by the author of the post
using a 5-point scale (1 = an abusive opinion, 2 = a negative opinion, 3 = an
indifferent opinion, 4 = a positive opinion, 5 = a laudatory judgment).

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 51 di 112

The research aims to explore the possible relationships existing between the
groups, the arguments, the politicians and the opinions expressed.
KB_CAT has cataloged the 1070 opinions in 25 groups, 15 of which contain a
significant number of views.

Group 00 Records 132

groups: fb_corsera, fb_fanpage

politicians: Berlusconi, Dell'Utri, Bersani

topics: always-candidated, moral drift, euro 100000 (cheque for Veronica)
abusive opinion, negative opinion

comment: groups not aligned, and especially the fb_corsera group in which the
insults abound

Group 04 Records 115

groups: fb_maroni, fb_storace, fb_meloni
politicians: Maroni, Storace, Meloni
topics: diary

positive, laudatory opinions

comment: groups aligned

Group 24 Records 85

groups: fb_fanpage, fb_grillo, fb_fattoquotidiano

politicians: Grillo, Ingroia

topics: various

positive opinion

comment: 2 of the groups not aligned but Grillo and Ingroia are new so they attract
people

Group 02 Records 69

groups: fb_brambilla, fb_casini, fb_bersani

politicians: Brambilla, Casini, Bersani

topics: various

positive, laudatory opinions

comment: aligned groups, where the animal rights mission “pays”

Group 40 Records 69

groups: fb_termometro_politico

politicians: Berlusconi, Ingroia

topics: public services, succession, taxes

offensive, negative opinions

comment: not aligned, politicians and topics that are “hot”

Group 44 Records 66

groups: fb_corsera, fb_meloni, fb_fanpage

politicians: Pannella, Meloni, Vendola

topics: alliances, diary attack

offensive, negative opinions

comment: group fb_corsera not aligned and the unpopular alliance of Pannella with

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 52 di 112

Storace

Group 43 Records 66

groups: fb_fanpage

politician: Monti

topics: no_marr_adop_gay, monti_su_fb

offensive, negative opinions

comment; not aligned and disagreement on no_marr_adop_gay

Group 12 Records 58

groups: fb_bonino, fb_brambilla, fb_casini
politicians: Bonino, Brambilla, Casini
topics: president_republic, animalist_bill
positive opinion

comment: aligned groups

Group 11 Records 51

groups: fb_casini, fbo_bersani

politicians: Casini, Bersani

topics: the 11 lies, interview with TG3 (national news), interview with TG5 (national
news)

negative opinion

comment: criticism for aligned groups on non shared opinions

Group 23 Records 44

groups: fb_dipietro, fb_casini
politicians: Di Pietro, Casini, Grillo
topics: tv_adverts, last_word
positive, laudatory opinion
comment: aligned groups

Group 42 Records 43

groups: fb_fanpage, fb_corsera
politicians: Monti, Grillo

topics: piper, profile_fb, monti_exorcist
offensive opinion

comment: not aligned groups

Group 14 Records 40

groups: fb_fanpage, fb_grillo

politicians: Monti, Grillo

topics: no_marr_adop_gay, meeting_lecce

positive, laudatory opinion

comment: laudatory opinions on the two topics of Monti and Grillo

Group 21 Records 39

groups: fb_bonino, fb_casini

politicians: Bonino, Casini

topics: regional, pact_monti_bersani, president_republic

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 53 di 112

positive opinion
comment: aligned groups

Group 20 Records 33
groups: fb_fanpage
politician: Bersani

topics: pact_monti_bersani
offensive negative opinion
comment: not aligned group

Group 31 Records 32

groups: fb_di_pietro

politician: Di Pietro

topics: rivoluzione_civile, tv_advert

offensive negative opinion

comment: aligned group and disagreement on “rivoluzione_civile” (civil revolution)

Summary

There are close relationships between the typology of the groups, the politicians,
the topics and the opinions.

In the groups "aligned":
» positive and laudatory opinions are plentiful
« any possible disagreements arise from sympathizers who do not share any
political positions or from opponents who were immediately marginalised
» obscene language is rare and the syntactical and grammatical forms are
proper
In the groups “not aligned”:
« prevails much dissent on consensus
* bad language is the norm and the syntactic and grammar forms are poor
* persons are aware not to suffer criticism
* open discussions on issues banned in the groups "aligned"

Know4Business (Cloud version in Google App Engine)

Giulio Beltrami, software engineer and expert in innovative architectures ICT of the
social type, has transferred the KB in the field of Cloud Computing of the Google
App Engine with the name of Know4Business.

Know4Business is usable in pay fo use mode and is obtainable in Internet at the
link http://know4business.appspot.com/.

Know4Business adds to Google-Apps a powerful general-purpose discovering of
the hidden knowledge, in your business data, enabled by a well-known neural-
network self-learning data-mining algorithms.

Know4Business provides 5 tools, to fulfill the knowledge discovery:

*SOURCE for preparing (checking, normalizing, cleaning, filtering and encoding)
the input data.

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 54 di 112

http://know4business.appspot.com/

*CATALOGUE for discovering groups in the sample data, that are in some way or
another "similar", without using known structures.

*STATISTICS to evaluate the success of the catalogue clustering.

*CLASSIFIER for generalizing known structures, to apply to new data.

*AGENCY to return some diagnosis and suggestions, about the user data
management, checking the success of the classification. plus an interactive
CONSOLE to help the data-analyst to:

run the catalogue and the other tools

*Report and graph the results of the tools

Know4Business end-to-end process of knowledge discovery, provides a simple
work-flow, with some useful feedback capabilities:

-Classification operates forward to the catalogue of the sample data.

-Statistics of the catalogue clustering can suggest some filtering rules, both on
cardinality and dimensions, on the sample data.

-Agency can also influence some source filtering rules and/or put something to
data management, depending on the circumstances. which enables a kind of data
knowledge “auto-poiesis”, minimizing human intervention.

Know4Business - Main advantages:

*The ease of use, based upon a simple HTML 5 GUI, to use the tools and to look to
the results.

*The clear implementation, based upon an object oriented paradigm and an
authentic SaaS, for the cloud computing, architecture.

@ Know! for Business Dashboard My account | g beltrami@vega.it-EXIT | |48 Frbasa tngna Version: 0,02, Author: Roberto Bello, Engineer: Giulio Beltrami
[2] SOURCES public(owner) file size load time CATALOGS groups norm max_alpha min_alpha step_alpha Klndex CLASSIFIERS reference
DELETE | Source#3 animali txt 3313 2012-03-05 1950 [NEW |
DELETE Catalogt7 4 M 18 0.0001 0.1 0.9334 [NEW |
[DELETE | Class#11 Source#s
DELETE | Source#s animals fat_ittxt 115020 2012-03-0521:58 [NEW |

Class#11 Catalog#7

Fetch [public | |] SOURCE To get the User Guide: click the header mini icons.
IMPORT Google SPREADSHEET | will be available ..

| UPLOAD csfFILE | | Scegli file | Nessun file selezionato

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 55 di 112

f KB Chart Catalog#5

animali.txt

10,0

7.5

CcV

50

25 ;
G_01_00 Rec. 000002
— DOMESTICO: 0
0.0 1 I

W DOMESTICO
Il CODA

1 ZAMPE
H PINNE
M VELENOSO
Il POLMONI
Il VERTEBRATO
Il DENDATO
Il PREDATORE
Il ACQUATICO
W VOLATILE
W LATTE

uovAa

H PIUME

|: W PELO

@QQ‘@@Q@ @QQQQ’ Q@’\ QQ@ Q“()Q ng(f\ QQG\ @@@QQ@ QQQ @065\ GQQQB' @Q@ QQ()Q QQG\ {)d\ @@Sl

w P e e O e e qed Pty
N Al S D S Sl S S Sl S i il Sl i A @9

ot Pt R of o
;)0/ gu/ ®7 gu/ P S B Q’b/ P, P B Qb‘/ B, P B PO g

APPENDIXES

Appendix 1 — KB_CAT source

-*— coding: utf-8 -*-

Source#3 (animali.txt) |

FHAFHHHAAEAA A AR R R R R R R R R R R R R R R R R R R R

KB_CAT KNOWLEDGE DISCOVERY IN DATA MINING (CATALOG PROGRAM)
by ROBERTO BELLO (COPYRIGHT MARCH 2011 ALL RIGHTS RESERVED)

Language used: PYTHON

#
#
#

FHERHA AR RFHF R FHFHHHHHE S R R R R R R R R R R R R H

import os
import random
import copy

import datetime

def mean(x): # mean
n = len(x)
mean = sum(x) / n

return mean

def sd(x): # standard deviattion
n = len(x)
mean = sum(x) / n
sd = (sum((x-mean)**2 for X in x) / n) ** 0.5

return sd

class ndim: # from 3D array to flat array
def init_ (self,x,y,z,d):
self.dimensions=[x,y,2z]
self.numdimensions=d

self.gridsize=x*y*z

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 56 di 112

def getcellindex(self, location):
cindex = 0
cdrop = self.gridsize
for index in xrange(self.numdimensions):
cdrop /= self.dimensions[index]
cindex += cdrop * location[index]

return cindex

def getlocation(self, cellindex):
res = []
for size in reversed(self.dimensions):
res.append(cellindex % size)
cellindex /= size

return res[::-1]

""" how to use ndim class
n=ndim(4,4,5,3)

print n.getcellindex((0,0,0))
print n.getcellindex((0,0,1))
print n.getcellindex((0,1,0))
print n.getcellindex((1,0,0))

print n.getlocation(20)
print n.getlocation(5)
print n.getlocation(1)

print n.getlocation(0)

print ("###44 A HA B R AR HHHHHHBHHH A FHHHFHHHHHH S R)

print("# KB _CAT KNOWLEDGE DISCOVERY IN DATA MINING (CATALOG PROGRAM) ")
print("# by ROBERTO BELLO (COPYRIGHT MARCH 2011 ALL RIGHTS RESERVED) #")
print("# Language used: PYTHON #")

print ("H#A####HHHAAAEHEHHAEAHARHHHAESHH R R BB LA H AR R B A AR AR AR AR R R R)

input and run parameters

error = 0

while True:
arch_input = raw_input('InputFile : ")
if not os.path.isfile(arch_input):
print("Oops! File does not exist. Try again... or CTR/C to exit")
else:

break

while True:

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 57 di 112

try:
num_gruppi = int(raw_input('Number of Groups (3 - 20) : "))
except ValueError:
print("Oops! That was no valid number. Try again...")
else:
if(num_gruppi < 3):
print("Oops! Number of Groups too low. Try again...")
else:
if (num_gruppi > 20):
print("Oops! Number of Groups too big. Try again...")
else:

break

while True:

normaliz = raw_input('Normalization(Max, Std, None) : ")
normaliz = normaliz.upper()
normaliz = normaliz[0]

if(normaliz <> 'M' and normaliz <> 'S' and normaliz <> 'N'):
print("Oops! Input M, S or N. Try again...")
else:

break

while True:
try:
max_alpha = float(raw_input('Start value of alpha (1.8 - 0.9) "))
except ValueError:
print("Oops! That was no valid number. Try again...")
else:
if(max_alpha > 1.8):
print("Oops! Start value of alpha too big. Try again...")
else:
if(max_alpha < 0.9):
print("Oops! Start value of alpha too low. Try again...")
else:

break

while True:
try:
min_alpha = float(raw_input('End value of alpha (0.5 - 0.0001) : "))
except ValueError:
print("Oops! That was no valid number. Try again...")
else:
if(min_alpha > 0.5):
print("Oops! alpha too big. Try again...")
else:

if(min_alpha < 0.0001):
KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 58 di 112

print("Oops! alpha too low. Try again...")
else:

break

while True:
try:
step_alpha = float(raw_input('Decreasing step of alpha (0.1 - 0.001) : '))
except ValueError:
print("Oops! That was no valid number. Try again...")
else:
if(step_alpha > 0.1):
print("Oops! Decreasing step of alpha too big. Try again...")
else:
if(step_alpha < 0.001):
print("Oops! Decreasing step of alpha too low. Try again...")

else:

break

file input
gruppi_num
tipo_norm
alpha min
alpha max

alpha_step

arch_input
num_gruppi
normaliz
min_alpha
max_alpha

step_alpha

outputs files

file_input = arch_input

tipo_norm = normaliz

gruppi_num = num_gruppi

nome_input = file input.split(".")

arch_output = nome_input[0] + "_" + tipo norm + "_g" + str(gruppi_num) + "_out.txt"
arch outsrt = nome input[0] + " " + tipo norm + " _g" + str(gruppi num) + " outsrt.txt"
arch_sort = nome_input[0] + "_" + tipo norm + " _g" + str(gruppi num) + " _sort.txt"
arch_catal = nome_input[0] + "_" + tipo_norm + " g" + str(gruppi num) + " _catal.txt"
arch _medsd = nome_input[0] + " " + tipo norm + " g" + str(gruppi num) + " medsd.txt"
arch_cv = nome_input[0] + "_" + tipo norm + " _g" + str(gruppi_num) + "_cv.txt"
arch_grid = nome_input[0] + "_" + tipo_norm + " _g" + str(gruppi_num) + " _grid.txt"
arch _log = nome_input[0] + " " + tipo norm + " g" + str(gruppi num) + " log.txt"

start time

t0 = datetime.datetime.now()

read input file
arr r =[]

arr_orig = []

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 59 di 112

]
—_
—

arr cC

mtchx =11
mtchy =[]
txt_col = []
xnomi =[]

the numbers of variables / columns in all record must be the same
n_rows = 0
n cols =0
err_cols = 0
index = 0
for line in open(file_input).readlines():
linea = line.split()
if(index == 0):
xnomi.append(linea)
n_cols = len(linea)
else:
arr_r.append(linea)
if(len(linea) != n_cols):
err cols =1
print("Different numbers of variables / columns in the record " + str(index)
+ " cols " + str(len(linea)))
index += 1
if(err_cols == 1):
print("File " + file_input + " contains errors. Exit ")
quit()
index = 0
while index < len(arr_r):
linea = arr_r[index]
index ¢ = 0
while index_c < len(linea):
if linea[index c].isdigit():
linea[index c] = float(linea[index c])
index c += 1
arr_r[index] = linea
index += 1
arr_orig = copy.deepcopy(arr_r) # original input file

testata_cat = copy.deepcopy(xnomi[0]) # original header row

finding columns containing strings and columns containing numbers
testata = xnomi[0]

testata _orig = copy.deepcopy(xnomi[0])

n_cols = len(testata) -1

n_rows = len(arr_r)

ind ¢ =1

err_type = 0

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 60 di 112

while ind c < len(testata):

ind r =1

tipo num = 0
tipo_txt =0
while ind r < len(arr_r):
arr ¢ = arr_r[ind r]
if isinstance(arr_c[ind c],basestring):

tipo_txt =1

else:
tipo num = 1
ind r += 1
if tipo num == 1 and tipo_txt ==

print "The columns / variables " + testata[ind c] + " contains both strings and
numbers."

print arr_c
err type = 1
ind ¢ += 1
if err_type == 1:
print "Oops! The columns / variables contains both strings and numbers. Exit. "

quit()

index c =1
while index c¢ <= n_cols:
txt _col = []
index = 0
while index < len(arr_r):
arr c = arr_r[index]
if(isinstance(arr_c[index c],str)):
txt_col.append(arr_c[index c])
index += 1
set_txt_col = set(txt_col) # remove duplicates
txt_col = list(set(set_txt col))

txt _col.sort()

from strings to numbers
if(len(txt_col) > 0):

if(len(txt_col) > 1):

passol = 1.0 / (len(txt_col) - 1)
else:
passol = 0.0

index = 0
while index < len(arr_r):
arr_c = arr_r[index]
campol = arr_c[index c]
indicel = txt_col.index(campol)

if(len(txt_col) == 1): # same values in the column

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 61 di 112

val numl float (1)
else:
val numl = float(passol * indicel)
arr_c[index c] = val_numl + 0.00000001 # to avoid zero values in means
(to prevent zero divide in CV)

index += 1

index c += 1

means, max & std

xmeans = []
xmaxs = []
xmins = [] ### aggiunto Roberto 4/03/2012
xsds =[]
Xcv =[]
index ¢ = 0

while index c <= n_cols:
xmeans.append(0.0)
xmaxs.append(-9999999999999999.9)
xmins.append(9999999999999999.9) ### aggiunto Roberto 4/03/2012
xsds.append(0.0)
xcv.append(0.0)

index c += 1

means & max
index = 0
while index < n_rows:
arr_c = arr_r[index]
index c =1
while index ¢ <= n_cols:
xmeans[index c] += arr_c[index_c]
if(arr_c[index c] > xmaxs[index c]):
xmaxs[index c] = arr_c[index c]
index c += 1
index += 1
index ¢ =1
while index c <= n_cols:
xmeans[index_c] = xmeans[index c] / n_rows

index ¢ += 1

std

index = 0

while index < n_rows:
arr_c = arr_r[index]
index ¢ =1
while index ¢ <= n_cols:

xsds[index c] += (arr_c[index_c] - xmeans[index_c])**2

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 62 di 112

index c += 1
index += 1

index ¢ =1

while index c <= n_cols:
xsds[index c] = (xsds[index c] / (n_cols - 1)) ** 0.5

index c += 1

Means, Max, Std, CV output file

medsd_file = open(arch_medsd, 'w')

columns names
medsd_file.write('%s %s ' % ('Function' , "\t"))
index ¢ =1
while index c <= n_cols:
medsd file.write('%s %s ' % (testata[index c], "\t"))
index ¢ += 1

medsd file.write('$s' % ('\n'))

means
medsd file.write('$s %s ' % ('Mean' , "\t"))
index c =1
while index c¢ <= n_cols:
valore = str(xmeans[index c])
valore = valore[0:6]
medsd file.write('%s %s ' % (valore, "\t"))
index ¢ += 1

medsd_file.write('%$s' % ('\n'))

max
medsd_file.write('%$s %s ' % ('Max' , "\t"))
index ¢ =1
while index c <= n_cols:
valore = str(xmaxs[index_c])
valore = valore[0:6]
medsd file.write('$s %s ' % (valore, "\t"))
index c += 1

medsd file.write('%s' % ('\n'))

std
medsd file.write('%s %s ' % ('Std' , "\t"))
index ¢ =1
while index c <= n_cols:
valore = str(xsds[index_c])
valore = valore[0:6]

medsd file.write('%s %s ' % (valore, "\t"))

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 63 di 112

index c += 1

medsd file.write('%s' % ('\n'))

cv

medsd file.write('$s %s ' % ('CV' , "\t"))

index ¢ =1

med cv_gen = 0.0 # cv average of all columns / variables

while index c <= n_cols:

if xmeans[index c] == 0:
medial = 0.000001

else:
medial = xmeans[index c]

xcv[index c] = xsds[index c] / abs(medial)
valore = str(xcv[index_c])

med cv_gen += xcv[index c]

valore = valore[0:6]

medsd file.write('%s %s ' % (valore, "\t"))

index ¢ +=1

med _cv_gen = med_cv_gen / n_cols
str_med cv_gen = str(med_cv_gen)
str_ med cv_gen = str_med cv_gen[0:6]
medsd_file.write('%$s' % ('\n'))

medsd_file.close()

input standardization

standardization on max

if tipo norm == 'M':
index = 0

while index < n_rows:

arr_c = arr_r[index]

index ¢ =1
while index c <= n_cols: ## aggiornare anche kb _cla.py
if xmaxs[index c] == 0.0:
xmaxs[index c] = 0.00001
arr_c[index_c] = arr_c[index_c] / xmaxs[index c]

index ¢ += 1

index += 1
standardization on std

if tipo_norm == 'S':
index = 0
while index < n_rows:

arr_c = arr_r[index]

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 64 di 112

index c =1

while index ¢ <= n_cols:

if xsds[index c] == 0.0:

xsds[index c] = 0.00001

arr_c[index c] = (arr_c[index c] - xmeans[index _c]) / xsds[index c]
if arr c[index c] < xmins[index c]: ### aggiunto Roberto 4/03/2012
xmins[index_c] = arr_c[index_c] ### aggiunto Roberto 4/03/2012

index ¢ += 1

index += 1

aggiungo xmins per eliminare i valori negativi (aggiunto da Roberto 4/03/2012)

index = 0

while index < n_rows:

arr_c = arr_r[index]

index ¢ =1

while index ¢ <= n_cols:

arr_c[index c] = arr_c[index c] - xmins[index_c]

print arr_c[index c]

index ¢ += 1

index += 1

fine aggiunta da Roberto 4/03/2012

start of kohonen algorithm

min

vmaxs

vmins

index_

while

and max vectors

[]
[]

c =0

index_c <= n_cols:

vmaxs .append (-10000000000000.0)

vmins.append(10000000000000.0)

index c += 1

columns min & max

index

while

=0

index < n_rows:

arr_c = arr_r[index]

index c =1

while index ¢ <= n_cols:

if arr_c[index c] > vmaxs[index c]:

vmaxs[index_c] = arr_c[index_c]

if arr_c[index _c] < vmins[index_c]:

vmins[index c] = arr_c[index c]

index c += 1

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 65 di 112

ind

run

ex += 1

parameters and temp arrays

n = n_rows

m = n_cols

nx

ny

ix
nstep
nepok
unit_«
passo
rmax

rmin

if pa
pas
grid
index
while
gri

ind

gruppi_num

gruppi_num

950041

s = int (10000 * nx * ny)

s = int(nsteps / n ** 0.5)
calc = int(n * m * nx * ny)
= int (5000 / n)

=nx -1

=1.0

sso < 1l:

so =1

=11 #
=0

index < nx * ny * m:
d.append(0.0)

ex += 1

n=ndim(nx,ny,m,3)

random.seed (ix)

same
index
while
ind
whi

i

w.

i
ind
gridp

gridm

for
iter
discr
discr
if ne

nep

sequences in new runs
=0

index < nx:
ex ¢ =0

le index ¢ < ny:
ndex_ k = 0

hile index_k < m:

integer as random seed
number of steps
number of epochs

running units

H+= H= H H H

step of visualization on monitor

training grid

initial value of random seed to obtain the

ig = n.getcellindex((index,index_c,index k))

grid[ig] = random.random()

index_ k += 1

ndex ¢ += 1
ex += 1
= copy.deepcopy(grid) # initial previous grid = current grid
= copy.deepcopy(grid) # initial min grid = current grid
each record in each epoch
=0
ea = 1000000000000.0 # current error
ep = 0.0 # previous error
poks < 20:
oks = 20 # min epochs = 20

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 66 di 112

nepokx =0

min_epok = 0 # epoch with min error

min_err = 1000000000.0 # min error

alpha = float(alpha_max) # initial value of alpha parameter
ir = 0.0 # initial value of ir parameter ir
ne =1

print " "

print 'Record ' + str(n_rows) + ' Columns ' + str(n_cols)

main loop
try:
while ne <= nepoks:
if (ne % passo == 0): # print running message when modulo division = zero
min _err txt = "%14.5f" % min_err # format 8 integers and 3 decimals
alpha_txt = "%12.5f" % alpha # format 6 integers and 5 decimals
print ('Epoch ' + str(ne) + ' min err ' + min_err_ txt + min epoch ' +
str(min_epok - 1) + " alpha " + alpha txt)
if min_err < 1000000000.0:
nepokx += 1
if min _err > discrea and discrep > discrea and discrea > 0.0:
min_epok = ne # current epoch (min)
min_err = discrea
copy current grid to min grid

gridm = copy.deepcopy(grid)

min_err_txt = "%12.3f" % min_err # format 8 integers and 3 decimals
alpha_txt = "%12.5f" % alpha # format 6 integer and 5 decimals
print ('**** Epoch ' + str(ne - 1) + ' WITH MIN ERROR ' + min_err txt +

" alpha " + alpha_txt)

cheking the current value of alpha
if alpha > alpha min:

discrea = discrep

discrep 0.0
copy current grid to previous grid

gridp = copy.deepcopy(grid)

from the starting row to the ending row
i=0
while i < n_rows:

iter += 1

find the best grid coefficient

ihit = 0
jhit = 0
dhit = 100000.0
igx = 0

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 67 di 112

igy = 0

while igx < nx:
igy = 0
while igy < ny:

d =0.0
neff = 0
k=0

arr_c = arr_r[i]
while k < m: # update the sum of squared deviation of input
value from the grid coefficient
ig = n.getcellindex((igx,igy,k))
d =d + (arr_c[k+1] - grid[ig]) ** 2
k +=1
d =d / float(m)
d=d/m
if d < dhit:

dhit = d
ihit = int(igx)
jhit = int(igy)
igy += 1
igx += 1

update iteration error
discrep = discrep + dhit
now we have the coordinates of the best grid coefficient

ir = max(rmax * float(1001 - iter) / 1000.0 + 0.9999999999 , 1)

ir int(ir)
new alpha value to increase the radius of groups proximity
alpha = max(alpha max * float(l - ne * alpha_step) , alpha _min)
update the grid coefficients applying alpha parameter
inn0 = int(ihit) - int(ir)
inn9 = int(ihit) + int(ir)
jnn0 = int(jhit) - int(ir)
jnn9 = int(jhit) + int(ir)
while inn0 <= inn9:
jnn0 = int(jhit) - int(ir)
while jnn0 <= jnn9:
if not (inn0 < 0 or inn0 >= nx):
if not (jnn0 < 0 or jnn0 >= ny):
arr ¢ = arr_r[i]
k=0
while k < m:
ig = n.getcellindex((inn0,jnn0,k))
grid[ig] += alpha * (arr_c[k+1l] - grid[ig])
k +=1
jnn0 += 1

inn0 += 1

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 68 di 112

i+=1
else:

print

print "Min alpha reached "

print

break

ne += 1
except KeyboardInterrupt:

print

print "KeyboardInterrupt (Ctrl/C) "

print

pass

computing results
grid = grid min

grid = copy.deepcopy(gridm)

write min grid file
arch_grid file = open(arch_grid,
ii =0
while ii < nx:
j =0
while j < ny:
k=0

while k < m:

‘W')

ig = n.getcellindex((ii,j, k))

arch grid file.write('%6i %s %.61i %s %.61 %s %14.7f %s' % (ii,’

grid[ig], "\n"))
k += 1
jo4+=1

ii 4= 1

arch_grid file.close()

catalog input by min grid
ii =0
while ii < n_rows:
ihit = 0
jhit = 0
dhit = 100000.0
from 1 to numbers of groups
ir =0
while ir < nx:
jc =0
while jc < ny:
d =0.0
neff = 0

from 1 to numbers of groups

from 1 to numbers of groups

4

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 69 di 112

k=0

while k < n_cols:

arr_ c = arr_r[ii]

update the sum of squared deviation of input

value from the grid coefficient

ig = n.getcellindex((ir,jc,k))

d =d + (arr_c[k+1l] - grid[ig]) ** 2

k += 1
d=d/m
if d < dhit:

dhit d

ihit ir

jhit jc
jc +=1
ir += 1
mtchx.append(ihit)
mtchy.append(jhit)

ii += 1

write arch catal file

save the coordinates of the best coefficient

arch_catal_file = open(arch_catal, 'w')

ii =0

while ii < n_rows:

arch catal file.write("%.61i %s %.61 %s %.6i %s" % (ii, ' ', mtchx[ii],
"\n"))
ii += 1

arch_catal_file.close()

matrix of statistics

arr_ cv = []
arr med = []
riga cv = []
arr_col = []

arr_grsg = []

arr_grsg ¢ = []

CV array of the Groups and Total
means array of the Groups
CV row in arr _cv

group temporary array

input data array (normalized)

copy of arr grsg (for file out sort)

input matrix sort in group sequence

while ii < n_rows:
ix += 1
grl = str(mtchx[ii])
if mtchx[ii] < 10:

grl = '0' + str(mtchx[ii])

sgl = str(mtchy[ii])
if mtchy[ii] < 10:

sgl = '0' + str(mtchy[ii])

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 70 di 112

', mtchy[ii],

riga norm = arr_r[ii]
im =0

riga norml = []

while im <= m:

riga_norml.append(str(riga norm[im]))

im += 1
riga norm2 = " ".join(riga_norml)
gr_sg_txt = "G_" + grl + "_" + sgl + " " + str(ix) + " " + riga_norm2

arr_grsg.append(gr_sg_txt)
ii +=1

arr_grsg.sort()

ii =0

while ii < n_rows:
arr_grsg_c.append(arr_grsg[ii])

ii +=1

setup of arr_cv matrix
num gr = 0
gruppo0 = ""
ir = 0
while ir < n_rows:
grsg_key = arr_grsg_c[ir].split()
if not grsg_key[0] == gruppoO:
gruppo0 = grsg key[0]
num _gr +=1
ic =1
rigal = []
rigal.append(grsg_key[0])
while ic <= m + 2: # adding new columns for row mean and n° of records

rigal.append(0.0)

ic += 1
arr_cv.append(rigal) # cv row
ir += 1
rigal = []
rigal.append("*Means*") # adding new row for cv mean
ic =1
while ic <= m + 2: # adding new column for row mean and n° of records

rigal.append(0.0)
ic += 1

arr_cv.append(rigal)

def found(x):
ir =0
while ir < len(arr_cv):
linea cv = arr_cv[ir]

key cv = linea cv[0]

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 71 di 112

if key _cv == x:

return ir

ir += 1
ir =0
irx = len(arr_grsg _c)
ic =3

linea_cv = arr_cv[0]
icx = len(linea cv)

val _col = []

while ic < icx:
ir =0
gruppo = ""
val col = []
while ir < irx:
linea = arr_grsg c[ir].split()
if linea[0] == gruppo or gruppo == "":
gruppo = linea[0]
val col.append(float(linea[ic]))
else:
i_gruppo = found(gruppo)
linea_cv = arr_cv[i_gruppo]
media v = abs(mean(val _col))
if media v == 0.0:
media v = 0.0000000001

std v = sd(val_col)

cv_v = std v / media_v

linea cv[ic-2] = cv_v # cv value

linea cv[len(linea cv)-1] = len(val col) # number of records
val col = []

val col.append(float(linea[ic]))
gruppo = linea[0]

ir += 1

i_gruppo found (gruppo)
linea cv = arr_cv[i_gruppo]
media_v = abs(mean(val_col))
if media v == 0.0:

media v = 0.0000000001

std_v = sd(val_col)

cv._v = std v / media v
linea cv[ic-2] = cv_v # cv value
linea_cv[len(linea_cv)-1] = len(val_col) # number of records
ic += 1

ir =0

irx = len(arr_cv)

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 72 di 112

linea_cv = arr_cv[0]

icx = len(line
ic =1

num recl = 0

while ir < irx:

media_riga =
ic =1
num_coll = 0
linea_cv = a
while ic < i
media riga
num _coll +
ic += 1
linea cv[icx
num_recl +=
ir += 1
ir =0

ic =1

while ic < icx
media_col =
ir =0
num_recl = 0
while ir < i
linea_cv =

media col
of records

num_recl =

ir 4= 1
linea_cv = a
linea_cv[ic]

ic += 1

acv) -2

rows mean

rr_cv[ir]
CcX:
+= float(linea cv[ic])

=1

] = media riga / num coll

linea_cv[icx + 1]

: # weighted mean of columns

0.0

rx - 1l:
arr_cv[ir]

= media col + linea cv[ic] * linea cv[icx+l]

num recl + linea_cv[icx+1]

rr_cv[irx - 1]

= media _col / num recl

updating mean of the row

linea cv = arr_cv[irx - 1]

linea_means =
media riga =

linea_cv[icx]

linea_cv[l:icx]
mean(linea means)

= media riga # Total mean

linea_cv[icx + 1] = num recl # n° of records

cv_media gen after = str(media_riga)

cv_media gen after = cv_media gen after[0:6]

write cv fi

le

testata_cv = testata

testata_cv[0]

= "*Groups*"

linea cv[icx+1]

number

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 73 di 112

testata_cv.append("*Mean*")
testata_cv.append("N_recs")
arch cv_file = open(arch cv, 'w')
ic =0
while ic <= icx + 1:
arch cv_file.write('%s %s ' % (testata_cv[ic], " "*(9-len(testata cv[ic]))))
ic += 1
arch cv_file.write('%s' % ('\n'))
ir = 0
while ir < irx:
ic =0
linea cv = arr_cv[ir]
while ic <= icx + 1:
if ic ==
arch cv_file.write('%s %s ' % (linea cv[0], " "))
else:

if ic <= icx:

arch cv_file.write('%7.4f %s ' % (linea cv[ic], " "))
else:
arch cv_file.write('%6i %s ' % (linea_cv[ic], " "))
ic += 1

arch cv_file.write('%s' % ("\n"))
ir += 1

ic =0

media xcv = mean(xcv[l:icx])

while ic <= icx : # print CV input (before catalogue)
if ic ==
arch cv_file.write('%s %s ' % ("*CVinp*", " "))
else:

if ic < icx:

arch cv_file.write('%7.4f %s ' % (xcv[ic]l, " "))
else:
arch cv_file.write('%7.4f %s ' % (media_xcv, " "))
arch cv_file.write('%6i %s ' % (linea cv[ic+l], " "))
ic +=1

arch cv_file.write('%s' % ("\n"))

$=========istruzioni aggiunte Roberto Bello 29/02/2012

#know_index = str(l.0 - float(cv_media_gen_ after) / float(str_med cv_gen))
#know_index = know_index[0:6]
farch cv_file.write('%s %s %s' % ('*KIndex* ', know_index, '\n'))

$=========fine istruzioni aggiunte da Roberto Bello 29/02/2012==

arch _cv_file.close()

writing out catalog file

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 74 di 112

testata_catl = []

testata_catl.append("*Group*")

arch output file = open(arch output, 'w')

ic= 0

while ic < icx:
testata catl.append(testata cat[ic])
ic += 1

ic= 0

while ic < len(testata catl):

arch_output_file.write('%s %s ' % (testata_catl[ic],

ic += 1
arch output file.write('%s ' % ("\n"))
index = 0
while index < len(arr_orig):

riga orig = arr_orig[index]

ic =0

while ic < len(riga_orig):

if not(isinstance(riga orig[ic],str)):

riga_orig[ic] = str(riga_orig[ic])
ic += 1
place before 0 if gr / sg < 10
grl = str(mtchx[index])
if mtchx[index] < 10:
grl = '0' + str(mtchx[index])
sgl = str(mtchy[index])
if mtchy[index] < 10:

sgl = '0' + str(mtchy[index])

arr_rigo = "G_" + grl + u_u + Sgl + n onxg

arch output file.write('%s ' % (arr_rig0))

ic= 0

while ic < len(riga_orig):

" "*(l5-len(testata_catl[ic]))))

arch output file.write('%s %s ' % (riga_orig[ic], " "*(15-len(riga_orig[ic]))))

ic += 1

arch _output file.write('$s ' % ("\n"))

index += 1
testata_catl = []
testata_catl.append("*Group*")
testata_catl.append("*RecNum*")
arch_sort file = open(arch sort, 'w')
ic= 0
while ic < icx:

testata catl.append(testata cat[ic])

ic += 1
ic= 0

while ic < len(testata catl):

arch_sort file.write('%s %s ' % (testata_catl[ic], " "*(l5-len(testata_catl[ic]))))

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 75 di 112

ic += 1
arch_sort file.write('$s ' % ("\n"))
index = 0
while index < len(arr_grsg c):
riga_grsg = arr_grsg_c[index].split()
ic =0
while ic < len(riga_grsg):

val _txt = riga_grsg[ic]

val _txt = val _txt[0:13]
arch_sort file.write('%s %s ' % (val_txt, " "*(1l5-len(val_txt))))
ic += 1

if index < len(arr_grsg c) - 1:

arch_sort file.write('%s ' % ("\n"))
index += 1

arch_sort file.close()

writing out catalog and sorted file
arr_outsrt = []
index = 0
while index < len(arr_orig):
riga_sort = []
place before 0 if gr / sg < 10
grl = str(mtchx[index])
if mtchx[index] < 10:
grl = '0' + str(mtchx[index])
sgl = str(mtchy[index])
if mtchy[index] < 10:
sgl = '0' + str(mtchy[index])
riga_sort.append("G_" + grl + "_" + sgl)
ic =0
riga _orig = arr_orig[index]
while ic < len(riga_orig):
val riga = riga_orig[ic]
riga_sort.append(val_riga)
ic += 1
arr_outsrt.append(riga_ sort)

index += 1

for line in arr outsrt:

line = "".join(line)
arr_outsrt.sort()

testata_srt = []
testata_srt.append("*Group*")

arch_outsrt_file = open(arch outsrt, 'w')

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 76 di 112

ic= 0
while ic < icx:
testata srt.append(testata orig[ic])
ic += 1
ic= 0
while ic < len(testata srt):
arch_outsrt_file.write('%s %s' % (testata_srt[ic], " "*(l5-len(testata_srt[ic]))))
ic += 1
arch outsrt file.write('%s' % ("\n"))
index = 0
key_gruppo = ""
while index < len(arr_outsrt):
riga_sort = arr_outsrt[index]
index ¢ = 0
while index c < len(riga_sort):
if index c ==
if riga_sort[0] != key gruppo:
arch outsrt file.write('%s ' % ("\n"))
key gruppo = riga_sort[0]
valore = riga_sort[index_c]
arch outsrt file.write('%s %s' % (valore, " "*(1l5-len(valore))))
index c += 1
if index < len(arr_grsg c) - 1:
arch outsrt file.write('%s' % ("\n"))
index += 1

arch_outsrt_file.close()

print ("H#H####HHHAAAHHEHHAEAHHRHHHAESHS R R R B LA H SRR B A H SRR R R R R R R R)

print("# KB_CAT KNOWLEDGE DISCOVERY IN DATA MINING (CATALOG PROGRAM) #")
print("# by ROBERTO BELLO (COPYRIGHT MARCH 2011 ALL RIGHTS RESERVED) #")
print("# Language used: PYTHON #")

print ("H#HH4H A AR AR R R FRFRFHAHAHRFHFHFHFHEHEFEA SIS S)

arch_log file = open(arch_log, 'w')

arch_log file.write("%s %s" %
("HEHERHHAAES AR A AEA RS A AR A E AR AR R A R R R, "\n"))

arch_log file.write("%s %s" % ("# KB _CAT KNOWLEDGE DISCOVERY IN DATA MINING (CATALOG
PROGRAM) #", "\n"))

arch log file.write("$s %s" % ("# by ROBERTO BELLO (COPYRIGHT MARCH 2011 ALL RIGHTS
RESERVED) #", "\n"))

arch_log file.write("%s %s" % ("# Language used: PYTHON
#u, "\n"))

arch_log file.write("%s %s" %
("HEHSHHEAAES AR AR AR A R R A R R R R, "\n"))

arch _log file.write("%s %s %s" % ("Input File ->
", file_input, "\n"))

arch_log file.write("%s %s %s" % ("Numer of Groups (3 - 20) ->
", str(gruppi num), "\n"))

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 77 di 112

arch_log file.write("%s %s %s" % ("Normalization (Max, Std, None) ->
", tipo_norm, "\n"))

arch log file.write("%s %s %s" % ("Start Value of alpha (from 1.8 to 0.9) ->
", str(alpha_max), "\n"))

arch_log file.write("%s %s %s" % ("End Value of alpha (from 0.5 to 0.0001) ->
", str(alpha min), "\n"))

arch_log file.write("%s %s %s" % ("Decreasing step of alpha (from 0.1 to 0.001) ->
", str(alpha_step), "\n"))

arch log file.write("%s" %

" OUTPUT

\n"))

arch log file.write("%s %s %s" % ("Output File Catalog.original ", arch_output,
"\n"))

arch_log file.write("%s %s %s" % ("Output File Catalog.sort ", arch_outsrt,
"\n"))

arch_log file.write("%s %s %s" % ("Output File Summary sort ", arch_sort, "\n"))
arch_log file.write("%s %s %s" % ("Output File Matrix Catal. ", arch_catal,

"\n"))

arch_log file.write("%s %s %s" % ("Output File Means, STD, CV. ", arch_medsd,

||\n||))

arch log file.write("%s %s %s" % ("Output File CV of the Groups ", arch cv, "\n"))
arch_log file.write("%s %s %s" % ("Output File Training Grid ", arch _grid, "\n"))
arch_log file.write("%s %s %s" % ("Output File Run Parameters ", arch_log, "\n"))
$=========istruzioni aggiunte Roberto Bello 29/02/2012

know_index = str(1.0 - float(cv_media _gen_ after) / float(str_med cv_gen))

know_index = know_index[0:6]

arch log file.write('%s %s %s' % ('*KIndex* ', know_index, '\n'))
$=========fine istruzioni aggiunte da Roberto Bello 29/02/2012==

min _err_txt = "%12.3f" % min_err # format 8 integer and 3 decimals
alpha txt = "%12.5f" % alpha # format 6 integer and 5 decimals
alpha min txt = "%12.5f" % alpha min # format 6 integer and 5 decimals
print

if min_err == 1000000000.000:

print("Oops! No result. Try again with new alpha parameters")

print
print ("EPOCH " + str(min_epok -1) + " WITH MIN ERROR " + min_err_txt +
" starting alpha " + alpha min txt + " ending alpha " + alpha txt +

" Iterations " + str(iter) + " Total Epochs " + str(ne - 1))
print

print 'Output File Catalog.original ' + arch output

print 'Output File Catalog.sort ' + arch_outsrt
print 'Output File Summary sort ' + arch_sort

print 'Output File Matrix Catal. ' + arch catal
print 'Output File Means, STD, CV. ' + arch _medsd

print 'Output File CV of the Groups ' + arch _cv
print 'Output File Training Grid ' + arch grid

print 'Output File Run Parameters ' + arch_log

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 78 di 112

print 'CV before Catalog ' + str _med _cv_gen

print 'CV after Catalog ' + cv_media_gen_after

know_index = str(1.0 - float(cv_media gen after) / float(str med cv_gen))
know_index = know_index[0:6]

print 'Knowledge Index ' + know_index

print

Elapsed time

tl = datetime.datetime.now()

elapsed _time = tl1 - tO0

print "Elapsed time (seconds) : " + str(elapsed_time.seconds)

print

Appendix 2 — KB_STA source

-*- coding: utf-8 -*-
A SIS RS EE SRS ESESSSESSSSSS ST

KB_STA KNOWLEDGE DISCOVERY IN DATA MINING (STATISTICAL PROGRAM)
by ROBERTO BELLO (COPYRIGHT MARCH 2011 ALL RIGHTS RESERVED)
Language used: PYTHON .

FHEFHHESHHAFEE A FAFERHH A A A A AR AR A R R R R
import os

import random

import copy

import datetime

def fp conversion(value): # from string containing number to float
try:
return float(value)
except ValueError:

return (value)

def count(s, e): # frequencies count

return len([x for x in s if (x == e)])

print ("###4 A AHAA A AR AR B HHHHHHHHHHIHAFHFFFHHHHHH A)

print("# KB_STA KNOWLEDGE DISCOVERY IN DATA MINING (STATISTICAL PROGRAM) #")
print("# by ROBERTO BELLO (COPYRIGHT MARCH 2011 ALL RIGHTS RESERVED) #")
print("# Language used: PYTHON . #")

print ("#H####HHAAAEFHRHHAEAH AR H B AL HE B R R LA HHH R B S H S B A H LA S SRR R R R R)

input / output files and run parameters

error = 0

while True:

file input = raw_input('Cataloged Records File (_outsrt.txt) : ")

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 79 di 112

if not os.path.isfile(file_input):
print("Oops! File does not exist. Try again... or CTR/C to exit")
else:

break

while True:
file gruppi = raw_input('Groups / CV File (_cv.txt) : ")
if not os.path.isfile(file_gruppi):
print("Oops! File does not exist. Try again... or CTR/C to exit")
else:

break

while True:
file rappor = raw_input('Report File (output) : ")
if os.path.isfile(file_ rappor):
print("Oops! File exist. Try again... or CTR/C to exit")
else:

break

while True:
try:
omog_perc = int(raw_input("Group Consistency (% from 0 to 100) : "))
except ValueError:
print("Oops! That was no valid number. Try again...")
else:
if (omog _perc < 0):
print("Oops! Group Consistency too low. Try again...")
else:
if (omog _perc > 100):
print("Oops! Group Consistency too big. Try again...")
else:

break

while True:
try:
omog_vari = int(raw_input("Variable Consistency (% from 0 to 100) : "))
except ValueError:
print("Oops! That was no valid number. Try again...")
else:
if(omog vari < 0):
print("Oops! Variable Consistency too low. Try again...")
else:
if(omog_vari > 100):
print("Oops! Variable Consistency too big. Try again...")
else:

break

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 80 di 112

while True:
try:
rec_min = int(raw_input("Select groups containing records >= :t "))
except ValueError:
print("Oops! That was no valid number. Try again...")
else:
if(rec_min < 1):
print("Oops! Number of records too low. Try again...")
else:

break

while True:
try:
rec_max = int(raw_input("Select groups containing records <= : "))
except ValueError:
print("Oops! That was no valid number. Try again...")
else:
if(rec_max < 1):
print ("Oops! Number of records too low. Try again...")
if (rec_max < rec_min):
print("Oops! Number of records must be >= " + str(rec_min) + " Try again...")
else:

break

while True:

est_rapp = raw_input("Summary / Detail report (S / D) HELS)
est_rapp = est_rapp.upper()
est_rapp = est_rapp[0]

if(est_rapp <> 'S' and est_rapp <> 'D'):
print("Oops! Input S, D. Try again...")
else:

break

inp_rapp = "N"
if est_rapp == "D" or est_rapp == "d":

while True:

inp_rapp = raw_input("Display Input Records (Y / N) : ")
inp_rapp = inp rapp.upper()
inp_rapp = inp rapp[0]

if(inp_rapp <> 'Y' and inp_rapp <> 'N'):
print("Oops! Input Y, N. Try again...")
else:

break

start time

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 81 di 112

t0 = datetime.datetime.now()

initial setup

arr_r =11 # input rows

arr_c =11 # row list of arr c
xnomi =11 # headings row

len_var = [] # max string lenght of variable

the numbers of variables / columns in all record must be the same
n_rows = 0
n_cols = 0
err_cols = 0
index = 0
file log = file_ input + "_log.txt"
for line in open(file_input).readlines():
linea = line.split()
if(index == 0):
xnomi.append(linea)
n_cols = len(linea)
else:
arr_r.append(linea)
if(len(linea) != n_cols):
err cols = 1
print("Different numbers of variables / columns in the record " + str(index)
+ " cols " + str(len(linea)))
index += 1
if(err_cols == 1):
print("File " + file_input + " contains errors. Exit ")
quit()
index = 0
while index < len(arr_r):

linea = arr_r[index]

index ¢ = 0
while index_c < len(linea): # converting strings containing numbers to float
linea[index c] = fp_conversion(linea[index c])

index ¢ += 1
arr_r[index] = linea
index += 1
testata = xnomi[0]
n_cols = len(testata) -1
n_rows = len(arr_r)
index = 0
while index < len(testata): # finding max string len (for the report)
len var.append(len(testata[index]))
index += 1

index = 0

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 82 di 112

while index < len(arr_r):
linea = arr_r[index]
index ¢ = 0
while index_c < len(linea):
if isinstance(linea[index_c],basestring): # text
len _campo = len(linea[index c])
else: # number
len campo = len(str(linea[index_c]))
if len _campo > len var[index c]:
len_var[index_c] = len_campo
index c += 1
index += 1
max_len = max(len_var)
arr cv = []
testata_cv = []

index = 0

reading Groups / CV file
for line in open(file_gruppi).readlines():
linea = line.split()
if(index == 0):
n_cols = len(linea)
testata _cv.append(linea)
else:
arr_cv.append(linea)
if(len(linea) != n_cols):
err cols =1
print("Different numbers of variables / columns in the record " + str(index)
+ " cols " + str(len(linea)))

index += 1

if(err_cols == 1):
print("File " + file gruppi + " contains errors. Exit ")

quit()

for line in arr cv:
index c = 0
linea = line
while index c < len(linea): # converting strings containing numbers to float
linea[index_c] = fp conversion(linea[index c])

index c += 1

ind_fine = len(arr_cv) # last value of arr_cv
ind _fine = ind _fine - 1
arr_c = arr_cv[ind fine] # row of totals

tot_omogen = float(arr_c[-2]) # consistency totals

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 83 di 112

tot_record = float(arr_c[-1]) # total of records

arch_rappor = open(file_rappor, 'w')

index = 0

ind_fine = len(arr_cv)

ind fine = ind fine - 2 # row of CV Totals

testata_cv = testata_cv[0]

testata_cv = testata _cv[:-2] # removing the last two columns

arch rappor.write("%s %s %s %s %s" % ("KB_STA - Statistical Analysis from: ",
file_input, " and from: ", file gruppi, "\n"))

arch_rappor.write("%s %s %s %s %s %s %s %s %s" % (("Min Perc. of group Consistency: ",

str(omog perc), " Min Perc. of variable Consistency: ",

str(omog_vari), "\nMin Number of records: " , str(rec_min), " Max Number of records:

, str(rec_max),"\n")))

arch_rappor.write("%s " % ("by ROBERTO BELLO (COPYRIGHT MARCH 2011 ALL RIGHTS
RESERVED) \n"))

while index < len(arr_cv):
arr_c = arr_cv[index]
intero = int(arr_c[-1]) # totals of records
perc_omogen = 0.0
if not tot_omogen ==
perc_omogen = (arr_c[-2] * 100.0) / tot_omogen
perc_omog = 100 - int(perc_omogen)
if perc_omog < 0.0:
perc_omog = 0.0

perc_rec = intero * 100.0 / tot record

if (perc_omog >= omog perc and rec_min <= intero and rec_max >= intero) or arr_c[0]

== "*Means*":

arch rappor.write("%s " %

"

N -~

==\n"))
arch rappor.write(("%s %s %.4f %s %3s %s %5s %s %7.2f %s " % (arr_c[O0], "
Consistency ", arr_c[-2], " %Consistency ",
str(perc_omog), " Records ", str(intero), " %Records ", perc_rec, "\n")))

ind ¢ = 0
cod_gruppo = arr_c[0]
while ind ¢ < len(arr_c) - 3:
omogen_perc = 0.0
if float(arr_c[ind c +1]) == 0.0:
arr_c[ind _c] = "0.00000"

if not arr c[-2] <= 0.0:

omogen_perc = 100.0 - arr _c[ind c +1] * 100.0 / arr_c[-2] # CV of group

variabile divided by CV of the group
else:
omogen_perc = 100.0
if omogen perc <= 0.0:
omogen_perc = 0.0

if omogen_perc >= omog vari and (est_rapp == "d" or est_rapp == "D"): #

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 84 di 112

consistency value >= min parameter

arch _rappor.write("%s %s %s %10.4f %s %10.2f %s" % (("*** ", testata_cv[ind c

+ 1] +
" " * (max_len - len(testata_cv[ind ¢ + 1])) , "Consistency\t",
float(arr_c[ind c + 1]),"\t%Consistency\t",omogen_perc, "\n")))
computing variables frequencies and quartiles
1) variables frequencies
ind_sort = 0
arr_temp = [] # variable array of records included in the group
ind temp = 0
while ind_sort < len(arr_r): # list of variable values in the group
linea = arr_r[ind_sort]
if linea[0].strip() == cod_gruppo:
arr_temp.append(linea[ind c + 2])
if (est_rapp == "d" or est_rapp) == "D" and (inp_rapp == "y" or inp_rapp
== "y")

arch_rappor.write(("%s %s %s %s %s %s" % (linea[0], "\tID record\t",
str(linea[l]) +

" " * (max_len - len(str(linea[l]))), "Value", linea[ind c + 2], "\n")))
ind_temp += 1

ind_sort +=1

2) converting strings containing numbers to float

ind _temp = 0

tipo _num = 0

tipo_txt =0

while ind temp < len(arr_temp): # texts or numbers
arr_temp[ind temp] = fp conversion(arr_temp[ind temp])
if isinstance(arr_temp[ind temp],basestring):

tipo_txt =1

else:

I
—

tipo_num
ind _temp += 1
if tipo num == 1 and tipo_txt == 1:

print "The columns / variable " + testata[ind c] + " contains both strings
and numbers. Exit. "

quit()
if tipo_num == 0: # the variable is a text

arr_temp.sort()

3) computing frequencies

keyl = "*

key freq = [] # keys and frequencies
arr_t_index = 0

while arr_t index < len(arr_temp):

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 85 di 112

if arr_temp[arr_t_index] <> keyl:
kf valore = []
kf valore.append(arr_ temp.count(arr_temp[arr_t index]))
kf valore.append(arr_temp[arr_t_ index])
key freq.append(kf_valore)
keyl = arr_temp[arr_t_ index]

arr_t_index += 1

key freqg.sort() # frequencies ascending sort

key freq.reverse() # frequencies descending sort

ris_out_index = 0

while ris_out_index < len(key_freq) and (est_rapp == "d" or est_rapp ==

"D"):
kf valore = key freq[ris_out_ index]
arch_rappor.write("%s %s %s %7i %s %.2f %s" % (("Value\t", kf valore[l] +
" " * (max_len - len(kf_valore[l])),

"Frequency\t", kf valore[0],"\tPercentage\t",
kf valore[0]*100/len(arr_temp), "\n")))

ris_out_index += 1
if tipo_txt == 0: # the variabile is a number
computing means
if len(arr_temp) > 0:
mean_arr = sum(arr_temp)/len(arr_ temp)
computing the step of quartiles
arr_temp.sort()
if len(arr_temp) > 0:
minimo = arr_temp[O0]
massimo = arr_temp[len(arr_temp) - 1]
passo = (float(massimo) - float(minimo)) / 4.0
gl = minimo + passo

g2 = gl + passo

g3 = g2 + passo

g4 = g3 + passo

frl = 0.0 # first quartile
fr2 = 0.0 # second quartile
fr3 = 0.0 # third quartile
frd = 0.0 # fourth quartile
arr_index = 0

while arr_index < len(arr_temp):
if arr_temp[arr_index] <= qgl:
frl +=1
elif arr_ temp[arr_index] <= g2:
fr2 += 1
elif arr temp[arr_index] <= g3:

fr3 += 1

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 86 di 112

else:
fra += 1

arr_index += 1
records = len(arr_temp)
pl = frl * 100 / records
p2 = fr2 * 100 / records
p3 = fr3 * 100 / records
p4 = fr4d * 100 / records

if (est_rapp == "d" or est_rapp == "D"):
arch_rappor.write("$s %.2f %s %.2f %s %.2f %s %.2f %s" % ("Mean\t",
mean_arr,"Min\t", minimo, "\tMax\t", massimo,"\tStep\t", passo, "\n"))
if pl > 0.0:
arch_rappor.write(("%s %10.2f %s %7.2f %s" % ("First Quartile (end)
", al,
" Frequency %\t", pl, "\n")))
if p2 > 0.0:
arch_rappor.write(("%s %10.2f %s %7.2f %s" % ("Second Quartile (end)
"y a2z,
" Frequency %\t", p2, "\n")))
if p3 > 0.0:
arch _rappor.write(("%s %10.2f %s %7.2f %s" % ("Third Quartile (end)
", a3,
" Frequency %\t", p3, "\n")))
if p4 > 0.0
arch_rappor.write(("%s %10.2f %s %7.2f %s" % ("Fourth Quartile (end)
"y a4,

" Frequency %\t", p4, "\n")))
ind ¢ += 1
index += 1

arch_rappor.close()

arch_log = open(file_log, 'w')

arch _log.write("%s %s" %
("HEFEH A AR A R R R R R R R R R,
Il\nll))

arch log.write("%$s %s" % ("# KB STA KNOWLEDGE DISCOVERY IN DATA MINING (STATISTICAL
PROGRAM) #", "\n"))

arch_log.write("%s %s" % ("# by ROBERTO BELLO (COPYRIGHT MARCH 2011 ALL RIGHTS RESERVED)
" , " \nvl))

arch_log.write("%s %s" % ("# Language used: PYTHON
#u, u\nn))

arch log.write("%s %s" %
("HEFEH AR A R R R R R R R R R,
Il\nll))

arch_log.write("%s %s %s" % ("INPUT - Cataloged Records File (_outsrt.txt)
-> ", file input, "\n"))

arch_log.write("%s %s %s" % ("INPUT - Groups / CV File (_cv.txt)
-> ", file gruppi, "\n"))

arch_log.write("%s %s %s" % ("Group Consistency (% from 0 to 100)
-> ", str(omog perc), "\n"))

arch_log.write("%s %s %s" % ("Variable Consistency (% from 0 to 100)

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 87 di 112

-> ", str(omog_vari), "\n"))

arch_log.write("%s %s %s" % ("Select groups containing records >=
-> ", str(rec_min), "\n"))

arch_log.write("%s %s %s" % ("Select groups containing records <=
-> ", str(rec_max), "\n"))

arch _log.write("%s %s %s" % ("Summary / Detail report (S / D)
-> ", est_rapp, "\n"))

arch_log.write("%s %s %s" % ("Display Input Records (Y / N)
-> ", inp_rapp, "\n"))

arch_log.write("%s %s" %
(" OUTPUT ==== ==="
" \nu))

arch_log.write("%s %s %s" % ("Report File
-> ", file rappor, "\n"))

arch_log.close()

Elapsed time
tl = datetime.datetime.now()
elapsed time = tl1 - tO0

print "Elapsed time (seconds) : " + str(elapsed_time.seconds) + "." +
str(elapsed time.microseconds)

print

Appendix 3 — KB_CLA source

-*— coding: utf-8 -*-
RIS S TS EEESESEEEESSESEESSEEESESEEESSSEEESSISEEESISESESSISSEESSSSSESSIEILEE

KB _CLA KNOWLEDGE DISCOVERY IN DATA MINING (CLASSIFY PROGRAM)
by ROBERTO BELLO (COPYRIGHT MARCH 2011 ALL RIGHTS RESERVED)
Language used: PYTHON .

FHESS AR HHHHHH R FHFFFHEFHH A A AR R R R R R
import os
import random
import copy
import datetime
def mean(x): # mean
n = len(x)
mean = sum(x) / n

return mean

def sd(x): # standard deviattion
n = len(x)
mean = sum(x) / n
sd = (sum((x-mean)**2 for x in x) / n) ** 0.5

return sd

class ndim: # from 3D array to flat array
def _ init (self,x,y,z,d):

self.dimensions=[x,y,2]

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 88 di 112

self.numdimensions=d

self.gridsize=x*y*z

def getcellindex(self, location):
cindex = 0
cdrop = self.gridsize
for index in xrange(self.numdimensions):
cdrop /= self.dimensions[index]
cindex += cdrop * location[index]

return cindex

def getlocation(self, cellindex):
res = []
for size in reversed(self.dimensions):
res.append(cellindex % size)
cellindex /= size

return res[::-1]

""" how to use ndim class
n=ndim(4,4,5,3)

print n.getcellindex((0,0,0))
print n.getcellindex((0,0,1))
print n.getcellindex((0,1,0))

print n.getcellindex((1,0,0))

print n.getlocation(20)
print n.getlocation(5)
print n.getlocation(1l)

print n.getlocation(0)

[INTRT]

print ("H#HH4H A AR AR R R FRFRFHAHAHRFHFHFHFHEHEFEA SIS S)

print("# KB_CLA KNOWLEDGE DISCOVERY IN DATA MINING (CLASSIFY PROGRAM) #")
print("# by ROBERTO BELLO (COPYRIGHT MARCH 2011 ALL RIGHTS RESERVED) ")
print("# Language used: PYTHON #")

print ("H##H44 A A A A H AR RHH R HH A A HHHHFHEHHH A R)

input and run parameters

error = 0

while True:
arch _input = raw_input('InputFile HERS|
if not os.path.isfile(arch_input):
print("Oops! File does not exist. Try again... or CTR/C to exit")
else:

break
KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 89 di 112

while True:
try:

num_gruppi = int(raw_input('Number of Groups (3 - 20)

.
~
~

except ValueError:
print("Oops! That was no valid number. Try again...")
else:
if(num_gruppi < 3):
print("Oops! Number of Groups too low. Try again...")
else:
if (num_gruppi > 20):
print("Oops! Number of Groups too big. Try again...")
else:

break

while True:

normaliz = raw_input('Normalization(Max, Std, None) : ")
normaliz = normaliz.upper()
normaliz = normaliz[0]

if(normaliz <> 'M' and normaliz <> 'S' and normaliz <> 'N'):
print("Oops! Input M, S or N. Try again...")
else:

break

while True:
arch grid = raw_input('File Training Grid : ')

if not os.path.isfile(arch_grid):

print("Oops! File does not exist. Try again... or CTR/C to exit")
else:
break
file input = arch_input
gruppi_num = num_gruppi
tipo_norm = normaliz

outputs files

file_input = arch_input

tipo_norm = normaliz

gruppi_num = num_gruppi

nome_input = file input.split(".")

arch_output = nome_input[0] + "_" + "C" + tipo norm + "_g" + str(gruppi_num) +
"_out.txt"

arch_outsrt = nome_input[0] + "_" + "C" + tipo norm + " _g" + str(gruppi_num) +

" _outsrt.txt"

arch_sort = nome_input[0] + " " + "C" + tipo norm + " _g" + str(gruppi num) +
"_sort.txt"
arch_catal = nome_input[0] + "_" + "C" + tipo norm + "_g" + str(gruppi_num) +

KB — Neural Data Mining V\ﬁth Python sources — RoBerto Bello - Pag. 90 di 112

"_catal.txt"

arch_medsd = nome_input[0] + "_" + "C" + tipo norm + "_g" + str(gruppi_num) +
" medsd.txt"

arch_cv = nome_input[0] + "_" + "C" + tipo_norm + " _g" + str(gruppi_num) +
" ov.txt"

arch log = nome_input[0] + " " + "C" + tipo norm + " _g" + str(gruppi num) +
" _log.txt"

start time

t0 = datetime.datetime.now()

read input file
arr_r =11

arr_orig = []

arr_c =[]
mtchx =11
mtchy =11
txt_col = []
xnomi = 1]

the numbers of variables / columns in all record must be the same
n_rows = 0
n _cols =0
err_cols = 0
index = 0
for line in open(file_input).readlines():
linea = line.split()
if(index == 0):
xnomi.append(linea)
n_cols = len(linea)
else:
arr_r.append(linea)
if(len(linea) != n_cols):
err_cols =1
print("Different numbers of variables / columns in the record " + str(index)
+ " cols " + str(len(linea)))
index += 1
if(err_cols == 1):
print("File " + file input + " contains errors. Exit ")
quit()
index = 0
while index < len(arr_r):
linea = arr_r[index]
index ¢ = 0
while index c < len(linea):
if linea[index c].isdigit():
linea[index_c] = float(linea[index c])

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 91 di 112

index c += 1
arr_r[index] = linea
index += 1
arr_orig = copy.deepcopy(arr_r) # original input file

testata_cat = copy.deepcopy(xnomi[0]) # original header row

finding columns containing strings and columns containing numbers
testata = xnomi[0]

testata _orig = copy.deepcopy(xnomi[0])

n_cols = len(testata) -1

n_rows = len(arr_r)

ind ¢ =1

err_type = 0

while ind _c < len(testata):

ind r =1
tipo num = 0
tipo_txt = 0

while ind r < len(arr_r):
arr ¢ = arr_r[ind_r]
if isinstance(arr_c[ind_c],basestring):
tipo_txt =1
else:
tipo_num = 1
ind r += 1
if tipo num == 1 and tipo_txt ==

print "The columns / variables " + testata[ind c] + " contains both strings and
numbers."

err type = 1
ind ¢ += 1
if err_type == 1:
print "Oops! The columns / variables contains both strings and numbers. Exit. "

quit()

index c =1
while index c <= n_cols:
txt _col = []
index = 0
while index < len(arr_r):
arr _c = arr_r[index]
if(isinstance(arr_c[index c],str)):
txt_col.append(arr_c[index c])
index += 1
set_txt_col = set(txt_col) # remove duplicates
txt_col = list(set(set_txt col))

txt _col.sort()

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 92 di 112

from strings to numbers
if(len(txt_col) > 0):
if(len(txt_col) > 1):
passol = 1.0 / (len(txt_col) - 1)
else:
passol = 0.0
index = 0
while index < len(arr_r):
arr c = arr_r[index]
campol = arr_c[index c]
indicel = txt_col.index(campol)
if(len(txt_col) == 1): # same values in the column
val numl = float(1l)
else:
val numl = float(passol * indicel)
arr_c[index c] = val _numl + 0.00000001 # to avoid zero values in means
(to prevent zero divide in CV)
index += 1

index c += 1

means, max & std

xmeans = []
xmaxs = []
xmins = [] ### aggiunto Roberto 4/03/2012
xsds =[]
Xcv =[]
index ¢ = 0

while index c <= n_cols:
xmeans.append(0.0)
xmaxs.append(-9999999999999999.9)
xmins.append(9999999999999999.9) ### aggiunto Roberto 4/03/2012
xsds.append(0.0)
xcv.append(0.0)

index c += 1

means & max
index = 0
while index < n_rows:
arr_c = arr_r[index]
index c =1
while index ¢ <= n_cols:
xmeans[index c] += arr_c[index_c]
if(arr_c[index c] > xmaxs[index c]):
xmaxs[index c] = arr_c[index c]
index ¢ +=1

index += 1

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 93 di 112

index c =1
while index c <= n_cols:
xmeans[index c] = xmeans[index c] / n_rows

index c += 1

std
index = 0
while index < n_rows:
arr_c = arr_r[index]
index c =1
while index ¢ <= n_cols:
xsds[index c] += (arr_c[index c] - xmeans[index c])**2
index c += 1
index += 1

index ¢ =1

while index c¢ <= n_cols:
xsds[index c] = (xsds[index c] / (n_cols - 1)) ** 0.5

index c += 1

Means, Max, Std, CV output file

medsd_file = open(arch_medsd, 'w')

columns names

index c =1

while index c <= n_cols:
medsd file.write('$s %s %s ' % ('Col' + str(index c), testata[index c], "\t"))
index c += 1

medsd file.write('%s' % ('\n'))

means
index ¢ =1
while index c <= n_cols:
valore = str(xmeans[index_c])
valore = valore[0:6]
medsd file.write('$s %s %s ' % ('Mean' + str(index c), valore, "\t"))
index c += 1

medsd file.write('%s' % ('\n'))

max
index ¢ =1
while index c <= n_cols:
valore = str(xmaxs[index_c])
valore = valore[0:6]
medsd file.write('$s %s %s ' % ('Max' + str(index c), valore, "\t"))

index c += 1

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 94 di 112

medsd_file.write('%$s' % ('\n'))

std
index c =1

while index c <= n_cols:

valore = str(xsds[index c])
valore = valore[0:6]
medsd file.write('$s %s %s ' % ('Std' + str(index c), valore, "\t"))
index ¢ += 1
medsd_file.write('%$s' % ('\n'))
Ccv
index ¢ =1
med cv_gen = 0.0 # cv average of all columns / variables
while index c¢ <= n_cols:
if xmeans[index c] == 0:

medial = 0.000001

else:

medial = xmeans[index c]
xcv[index c] = xsds[index c] / abs(medial)
valore = str(xcv[index_c])

med cv_gen += xcv[index c]
valore = valore[0:6]
medsd _file.write('$s %s %s ' % ('CV_' + str(index c), valore, "\t"))
index ¢ += 1
med_cv_gen = med_cv_gen / n_cols
str_med cv_gen = str(med_cv_gen)
str_ med cv_gen = str_med cv_gen[0:6]
medsd_file.write('%$s' % ('\n'))

medsd_file.close()

input standardization

standardization on max

if tipo norm == 'M':
index = 0
while index < n_rows:
arr_c = arr_r[index]
index ¢ =1

while index_c <= n_cols:

if xmaxs[index c] == 0.0:
xmaxs[index c] = 0.00001
arr_c[index_c] = arr_c[index_c] / xmaxs[index c]

index ¢ += 1

index += 1

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 95 di 112

standardization on std

if tipo norm == 'S':
index = 0
while index < n_rows:
arr _c = arr_r[index]
index ¢ =1
while index ¢ <= n_cols:
if xsds[index c] == 0.0:

xsds[index c] = 0.00001

arr_c[index c] = (arr_c[index c] - xmeans[index _c]) / xsds[index c]
if arr c[index c] < xmins[index c]: ### aggiunto Roberto 4/03/2012
xmins[index_c] = arr_c[index_c] ### aggiunto Roberto 4/03/2012

index ¢ += 1
index += 1
aggiungo xmins per eliminare i valori negativi (aggiunto da Roberto 4/03/2012)
index = 0
while index < n_rows:
arr_c = arr_r[index]
index ¢ =1
while index ¢ <= n_cols:
arr_c[index c] = arr_c[index c] - xmins[index_c]
index ¢ += 1
index += 1

fine aggiunta da Roberto 4/03/2012

start of kohonen algorithm
n = len(arr_r) - 1
m = len(arr_c) -1
nx = gruppi_num
ny = gruppi_num
rmax = nx
rmin = 1.0
grid = [] # training grid
index = 0
while index < nx * ny * m:
grid.append(0.0)
index += 1

n=ndim(nx,ny,m,3)

carico la Grid di addestramento da arch_grid
for line in open(arch grid).readlines():

linea = line.split()

index = int(linea[0])

index c = int(linea[l])

index_k = int(linea[2])

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 96 di 112

valore = float(linea[3])
ig = n.getcellindex((index,index_c,index_k))

grid[ig] = valore

from the starting row to the ending row
i=0
while i < n_rows:

find the best grid coefficient

ihit = 0

jhit = 0

dhit = 100000.0
igx =0

igy = 0

while igx < nx:
igy = 0
while igy < ny:
d = 0.0
neff = 0
k=0
arr_c = arr_r[i]
while k < m: # update the sum of squared deviation of input
value from the grid coefficient
ig = n.getcellindex((igx,igy,k))
d =d + (arr_c[k+1] - grid[ig]) ** 2
k+=1

d

d / float(m)
d=d/m
if d < dhit:
dhit = d
ihit = int(igx)
jhit = int(igy)
igy += 1
igx += 1

i+=1
computing results

catalog input by min grid
ii =0
while ii < n_rows:
ihit = 0
jhit = 0
dhit = 100000.0
from 1 to numbers of groups
ir = 0
while ir < nx: # from 1 to numbers of groups

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 97 di 112

jc =0

while jc < ny: # from 1 to numbers of groups
d =0.0
neff = 0
k=0

while k < n _cols: # update the sum of squared deviation of input
value from the grid coefficient
arr_c = arr_r[ii]

ig = n.getcellindex((ir,jc,k))

d =d + (arr_c[k+1] - grid[ig]) ** 2
k +=1

d=d/m

if d < dhit: # save the coordinates of the best coefficient
dhit = d

ihit = ir
jhit = jc
je +=1
ir += 1
mtchx.append(ihit)
mtchy.append(jhit)

ii +=1

write arch_catal file
arch catal file = open(arch catal, 'w')
ii=0

while ii < n_rows:

arch catal file.write("%.61i %s %.61 %s %.6i %s" % (ii, ' ', mtchx[ii], ' ', mtchy[ii],
"\n"))
ii +=1

arch catal file.close()

matrix of statistics

arr_cv =[] # CV array of the Groups and Total

arr med = [] # means array of the Groups

riga cv = [] # CV row in arr_cv

arr_col = [] # group temporary array

arr_grsg = [] # input data array (normalized)
arr_grsg ¢ = [] # copy of arr_grsg (for file out sort)

input matrix sort in group sequence

while ii < n_rows:
ix 4= 1
grl = str(mtchx[ii])

if mtchx[ii] < 10:

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 98 di 112

grl = '0' + str(mtchx[ii])

sgl = str(mtchy[ii])
if mtchy[ii] < 10:

sgl = '0' + str(mtchy[ii])

riga_norm = arr_r[ii]
im =0
riga norml = []

while im <= m:

riga norml.append(str(riga norm[im]))

im += 1
riga norm2 = " ".join(riga_norml)
gr_sg _txt = "G_" + grl + " " + sgl + " " + str(ix) + " " + riga norm2

arr_grsg.append(gr_sg_txt)

ii += 1
arr_grsg.sort()
ii =0

while ii < n_rows:

arr_grsg_c.append(arr_grsg[ii])

ii +=1

setup of arr_cv matrix
num gr = 0

gruppo0 = ""

ir = 0

while ir < n_rows:

grsg_key = arr_grsg_c[ir].split()

if not grsg _key[0] == gruppoO:

gruppo0 = grsg key[O0]
num_gr +=1
ic =1

rigal = []

rigal.append(grsg_key[0])

while ic <= m + 2:
rigal.append(0.0)
ic += 1
arr_cv.append(rigal)
ir += 1
rigal = []
rigal.append("*Means*")
ic =1
while ic <= m + 2:
rigal.append(0.0)
ic += 1

arr_cv.append(rigal)

def found(x):

adding new columns for row mean and n° of records

cv row

adding new row for cv mean

adding new column for row mean and n° of records

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 99 di 112

ir =0
while ir < len(arr_cv):
linea cv = arr_cv[ir]
key cv = linea cv[0]
if key_cv == x:
return ir

ir += 1

ir =0

irx = len(arr_grsg _c)
ic =3

linea_cv = arr_cv[0]
icx = len(linea_cv)

val col = []

while ic < icx:
ir =0
gruppo = ""

[1]

while ir < irx:

val col

linea = arr_grsg c[ir].split()

if linea[0] == gruppo or gruppo == "":
gruppo = linea[0]
val col.append(float(linea[ic]))

else:

i_gruppo found (gruppo)
linea cv = arr_cv[i_gruppo]
media_v = abs(mean(val_col))
if media v == 0.0:

media v = 0.0000000001

std_v = sd(val_col)

cv_v = std v / media v

linea cv[ic-2] = cv_v # cv value
linea_cv[len(linea cv)-1] = len(val_col) # number of records
val col = []

val col.append(float(linea[ic]))
gruppo = linea[0]

ir 4= 1

i_gruppo found(gruppo)
linea_cv = arr_cv[i_gruppo]
media v = abs(mean(val_col))
if media v == 0.0:

media_v = 0.0000000001
std_v = sd(val_col)
cv.v = std v / media v

linea_cv[ic-2] = cv_v # cv value

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 100 di 112

linea_cv[len(linea_cv)-1] = len(val_col)
ic += 1

ir =0

irx = len(arr_cv)

linea_cv = arr_cv[0]
icx = len(linea cv) - 2
ic =1

num_recl = 0

while ir < irx:
media riga = 0.0
ic =1
num coll = 0
linea_cv = arr_cv[ir]
while ic < icx:
media_riga += float(linea _cv[ic])
num _coll += 1
ic += 1
linea cv[icx] = media_riga / num_coll
num _recl += linea_cv[icx + 1]
ir += 1
ir =0

ic =1

while ic < icx:
media col = 0.0
ir = 0
num recl = 0
while ir < irx - 1:

linea cv = arr_cv[ir]

number of

rows mean

weighted mean of columns

media_col = media_col + linea cv[ic] * linea cv[icx+l]

of records

num recl = num recl + linea cv[icx+l]
ir += 1

linea_cv = arr_cv[irx - 1]

linea cv[ic] = media col / num recl

ic += 1

updating mean of the row
linea_cv = arr_cv[irx - 1]

linea_means = linea_cv[1l:icXx]

media riga = mean(linea means)
linea_cv[icx] = media riga # Total mean
linea cv[icx + 1] = num recl # n°

cv_media gen after = str(media riga)

cv_media gen_after = cv_media gen_after[0:6]

of records

records

linea cv[icx+l]

number

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 101 di 112

write cv file

testata_cv = testata
testata_cv[0] = "*Groups*"
testata_cv.append("*Mean*")
testata_cv.append("N_recs")
arch_cv_file = open(arch _cv, 'w')
ic =0
while ic <= icx + 1:
arch cv_file.write('%s %s ' % (testata_cv[ic], " "*(9-len(testata_cv[ic]))))
ic += 1
arch_cv_file.write('%s' % ('\n'))
ir = 0
while ir < irx:
ic =0
linea_cv = arr_cv[ir]
while ic <= icx + 1:
if ic ==
arch _cv_file.write('%s %s ' % (linea_cv[0], " "))
else:
if ic <= icx:
arch cv_file.write('%7.4f %s ' % (linea_cv[ic], " "))
else:
arch_cv_file.write('%6i %s ' % (linea_cv([ic], " "))
ic += 1
arch cv_file.write('%s' % ("\n"))
ir += 1

ic =0

media_xcv = mean(xcv[l:icx])

while ic <= icx : # print CV input (before catalogue)
if ic ==
arch cv_file.write('%s %s ' % ("*CVinp*", " "))
else:

if ic < icx:

arch cv_file.write('%7.4f %s ' % (xcv[ic]l, " "))
else:
arch_cv_file.write('%7.4f %s ' % (media_xcv, " "))
arch cv_file.write('%6i %s ' % (linea_cv[ic+l], " "))
ic +=1

arch_cv_file.write('%s' % ("\n"))

$=========istruzioni aggiunte Roberto Bello 29/02/2012

#know_index = str(l.0 - float(cv_media_gen_ after) / float(str_med cv_gen))

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 102 di 112

#know_index = know_index[0:6]

tarch_cv_file.write('$s %s %s' % ('*KIndex* ', know_index, '\n'))

$=========fine istruzioni aggiunte da Roberto Bello 29/02/2012

arch_cv_file.close()

writing out catalog file
testata_catl = []
testata_catl.append("*Group*")
arch output file = open(arch output, 'w')
ic= 0
while ic < icx:
testata catl.append(testata cat[ic])
ic += 1
ic= 0
while ic < len(testata catl):
arch_output file.write('%s %s ' % (testata_catl[ic], " "*(l5-len(testata_catl[ic]))))
ic += 1
arch output file.write('%s ' % ("\n"))
index = 0
while index < len(arr_orig):
riga _orig = arr_orig[index]
ic =0
while ic < len(riga_orig):
if not(isinstance(riga orig[ic],str)):
riga_orig[ic] = str(riga_orig[ic])
ic += 1
place before 0 if gr / sg < 10
grl = str(mtchx[index])
if mtchx[index] < 10:
grl = '0' + str(mtchx[index])
sgl = str(mtchy[index])
if mtchy[index] < 10:
sgl = '0' + str(mtchy[index])
arr_rig0 = "G_" + grl + "_" + sgl + " "*8
arch output file.write('%s ' % (arr_rig0))
ie= 0
while ic < len(riga_orig):
arch output file.write('%s %s ' % (riga_orig[ic], " "*(15-len(riga_orig[ic]))))
ic += 1
arch _output file.write('$s ' % ("\n"))
index += 1
testata_catl = []
testata_catl.append("*Group*")
testata_catl.append("*RecNum*")
arch _sort file = open(arch sort, 'w')

ic= 0

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 103 di 112

while ic < icx:
testata catl.append(testata_cat[ic])
ic += 1
ic= 0
while ic < len(testata catl):
arch sort file.write('%s %s ' % (testata catl[ic], " "*(1l5-len(testata_catl[ic]))))
ic += 1
arch_sort file.write('$s ' % ("\n"))
index = 0
while index < len(arr_grsg c):
riga_grsg = arr_grsg_c[index].split()
ic =0
while ic < len(riga_grsg):
val _txt = riga_grsg[ic]

val _txt = val _txt[0:13]

arch_sort file.write('%s %s ' % (val_txt, " "*(1l5-len(val_txt))))
ic += 1
if index < len(arr_grsg c) - 1:

arch_sort file.write('%s ' % ("\n"))
index += 1

arch_sort file.close()

writing out catalog and sorted file
arr_outsrt = []
index = 0
while index < len(arr_orig):
riga_sort = []
place before 0 if gr / sg < 10
grl = str(mtchx[index])
if mtchx[index] < 10:
grl = '0' + str(mtchx[index])
sgl = str(mtchy[index])
if mtchy[index] < 10:
sgl = '0' + str(mtchy[index])
riga_sort.append("G_" + grl + "_" + sgl)
ic =0
riga _orig = arr_orig[index]
while ic < len(riga_orig):
val riga = riga_orig[ic]
riga_sort.append(val_riga)
ic += 1
arr_outsrt.append(riga_ sort)

index += 1

for line in arr outsrt:

line = "".join(line)

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 104 di 112

arr_outsrt.sort()

testata_srt = []
testata_srt.append("*Group*")
arch outsrt file = open(arch outsrt, 'w')
ic= 0
while ic < icx:
testata srt.append(testata orig[ic])
ic += 1
ic= 0
while ic < len(testata srt):
arch_outsrt_file.write('%s %s' % (testata_srt[ic], " "*(l5-len(testata_srt[ic]))))
ic += 1
arch outsrt file.write('%s' % ("\n"))
index = 0
key_gruppo = ""
while index < len(arr_outsrt):
riga_sort = arr_outsrt[index]
index ¢ = 0
while index c < len(riga_sort):
if index c == 0:
if riga_sort[0] != key gruppo:
arch outsrt file.write('$s ' % ("\n"))
key gruppo = riga_sort[0]
valore = riga_sort[index_c]
arch outsrt file.write('%s %s' % (valore, " "*(1l5-len(valore))))
index c += 1
if index < len(arr_grsg c) - 1:
arch outsrt file.write('%s' % ("\n"))
index += 1

arch_outsrt_file.close()

print ("H#A####HHHAAAEHEHHAEAHARHHHAESHH R R BB LA H AR R B A AR AR AR AR R R R)

print("# KB _CLA KNOWLEDGE DISCOVERY IN DATA MINING (CLASSIFY PROGRAM) #")
print("# by ROBERTO BELLO (COPYRIGHT MARCH 2011 ALL RIGHTS RESERVED) #")
print("# Language used: PYTHON #")

print ("H#HH4H A EA AR AR BRI R FRFHFHAHAFAFHFHFHFHEFHFEA S A SIS)

arch_log file = open(arch_log, 'w')

arch_log file.write("%s %s" %
("HEHERHEAAES AR A AR RS AR AR AR R R A R R R R R, "\n"))

arch_log file.write("$s %s" % ("# KB _CLA KNOWLEDGE DISCOVERY IN DATA MINING (CLASSIFY
PROGRAM) ", "\n"))

arch log file.write("$s %s" % ("# by ROBERTO BELLO (COPYRIGHT MARCH 2011 ALL RIGHTS
RESERVED) #", "\n"))

arch_log file.write("%s %s" % ("# Language used: PYTHON

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 105 di 112

#u' u\nu))

arch_log file.write("%s %s" %

("HEHERHEAAES AR A AEA RS A AR A E AR AR R A R R R R, "\n"))
arch_log file.write("%s %s %s" % ("Input File ->
", file input, "\n"))

arch log file.write("%s %s %s" % ("Numer of Groups (3 - 20) ->
", str(gruppi_num), "\n"))

arch_log file.write("%s %s %s" % ("Normalization (Max, Std, None) ->
", tipo_norm, "\n"))

arch_log file.write("%s %s %s" % ("File Training Grid ->
", arch grid, "\n"))

arch _log file.write("%s" %

" OUTPUT

\n"))

arch log file.write("%s %s %s" % ("Output File Classify.original ", arch_output,
"\n"))

arch_log file.write("%s %s %s" % ("Output File Classify.sort ", arch_outsrt,
n\nu))

arch_log file.write("%s %s %s" % ("Output File Summary sort ", arch_sort, "\n"))
arch_log file.write("%s %s %s" % ("Output File Matrix Catal. ", arch_catal,
n\nu))

arch_log file.write("%s %s %s" % ("Output File Means, STD, CV. ", arch_medsd,
n\nu))

arch log file.write("%s %s %s" % ("Output File CV of the Groups ", arch cv, "\n"))
arch_log file.write("%s %s %s" % ("Output File Training Grid ", arch _grid, "\n"))
arch_log file.write("%s %s %s" % ("Output File Run Parameters ", arch_log, "\n"))
$=========istruzioni aggiunte Roberto Bello 29/02/2012

know_index = str(1.0 - float(cv_media _gen_ after) / float(str_med cv_gen))

know_index = know_index[0:6]

arch log file.write('%s %s %s' % ('*KIndex* ', know_index, '\n'))
$=========fine istruzioni aggiunte da Roberto Bello 29/02/2012==
print

print 'Output File Classify.original ' + arch_output

print 'Output File Classify.sort ' + arch_outsrt

print 'Output File Summary sort ' + arch_sort

print 'Output File Matrix Catal. ' + arch_catal

print 'Output File Means, STD, CV. ' + arch_medsd

print 'Output File CV of the Groups ' + arch cv

print 'Output File Training Grid ' + arch_grid

print 'Output File Run Parameters ' + arch_log

print 'CV after Catalog ' + cv_media gen_after

know_index = str(1.0 - float(cv_media _gen_ after) / float(str_med cv_gen))
know_index = know_index[0:6]
print 'Knowledge Index ' + know_index

print

Elapsed time
tl = datetime.datetime.now()

elapsed time = tl - tO0

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 106 di 112

print "Elapsed time (seconds) : " + str(elapsed time.seconds) + "." +
str(elapsed_time.microseconds)

print

Appendix 4 — KB_RND source

-*- coding: utf-8 -*-
import os

import random

import copy

import datetime

print ("H#A####HHAAEFHEHHAAAH AR HHHEESHS B R B A LA FHH BB HEEAH S B AR LA S SRR R R)

print("# KB_RND KNOWLEDGE DISCOVERY IN DATA MINING (RANDOM FILE SIZE REDUCE) #")
print("# by ROBERTO BELLO (COPYRIGHT MARCH 2011 ALL RIGHTS RESERVED) #")
print("# Language used: PYTHON #")

print ("H#HH4H 4 E AR R R R R HHHHHHEHEH A)

input and run parameters

error = 0

while True:
arch_input = raw_input('InputFile : ")
if not os.path.isfile(arch_input):
print("Oops! File does not exist. Try again... or CTR/C to exit")
else:

break

while True:
arch_output = raw_input('OutputFile : ")
if os.path.isfile(arch_output):
print("Oops! File does exist. Try again... or CTR/C to exit")
else:

break

while True:
try:
num _cells out = int(raw_input('Out number of cells (<= 90000) "))
except ValueError:
print("Oops! That was no valid number. Try again...")
else:
if(num_cells_out > 90000):
print("Oops! Number of Cells too big. Try again...")
else:

break

start time

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 107 di 112

t0 = datetime.datetime.now()

read input file

arr_r =11
arr_rnd = []
arr out = []
Xnomi = 1]
index =0

for line in open(arch_input).readlines():
linea = line.split()
if(index == 0):
xnomi.append(linea)
else:
arr_r.append(linea)
index += 1
rec_input = index - 1
num cols = len(linea)
num_records_out = int(num cells out / num cols)

print "Nun. Records Input " + str(rec_input)

if rec_input < num_records_out:

num_records_out = rec_input

random values sequence

ix = 950041 # integer as random seed

random.seed (ix) # initial value of random seed to obtain the
same sequences in new runs

index = 0

while index < num_records_out:
val _rnd = int(random.random()*rec_input)
doppio = 0

for index_rnd, item in enumerate(arr_rnd): # check for duplicates

if item == val_rnd:
doppio =1
if doppio == 0:

arr_rnd.append(val_rnd)

index += 1
arr_out writing
index = 0

arr_out.append(xnomi[0]) # header

while index < len(arr_rnd):

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 108 di 112

keyl = arr_rnd[index]
arr_out.append(arr_r[keyl]) # from source to random output

index += 1

write arch out file
arch out file = open(arch output, 'w')
index = 0
while index < len(arr_out):
line = arr out[index]
ncol = 0
while ncol < len(line):
field = line[ncol].strip()
if ncol < len(line) - 1:
arch out file.write('%s%s' % (field, "\t"))
else:
arch out file.write('%s%s' % (field, "\n"))
ncol += 1
index += 1

arch_out_file.close()

Elapsed time

tl = datetime.datetime.now()

elapsed time = tl - tO0

print "Elapsed time (microseconds) : " + str(elapsed time.microseconds)

print

KB - Guarantee and copyright

The author guarantees that the work is without viruses and malicious codes also
considering:
» the textis in pdf format
» the python programs are in txt format and do not contain malicious code, as
easily verifiable by a simple reading of their
+ the test files are in a txt format
» the language for the processing of the programs (python) is of Open Source
type and is universally recognised as reliable and safe.

As regards the copyright, the author does not intend to renounce his legal rights on
the algorithms and on the method of computing and analysis contained in the KB
programs.

Roberto Bello

Graduate in Economics and Commerce with specialization in Operations Research
Data Scientist, expert in Knowledge Mining, in Data Mining and in Open Source
ICT Strategist of the ClubTI of Milan (www.clubtimilano.net)

Researcher of the AISF (www.accademiascienzeforensi.it)

Expert (CTP) and ex CTU (Technical Office Consultant) of the Court of Milan

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 109 di 112

http://www.accademiascienzeforensi.it/
http://www.clubtimilano.net/

Author of professional publications available on www.lulu.com/spotlight/robertobb
Founding associate of AlIPI (ltalian Professional Computer Association)

In the past CIO of Plasmon, of Wrangler in Italy and consultant for the most
important Italian food companies

Linkedin: it.linkedin.com/pub/roberto-bello/4/1a5/677

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 110 di 112

Table of contents

KB — Neural Data Mining with Python SOUICES..........c.ceouiiiiiiiiiiieiiieie et 1
INEEOAUCTION. ...ttt ettt et a e bt et e e st e bt eaee s st e bt enbeeenbeeenteeennaeenneens 1
Business Intelligence and the bad use of StatiStiCS.......cueiuieriiiiiiiiiieiiee e 2
Learning by induction and the neural NEtWOTKS.............cccviiriiiriieiieeii e eiaee e 3
S 2SS 6
Python fOr KBo......oeiieee e ettt et e e st e e st e e st e e e tbeeeateeennaeeeeennns 6
DIELAILS. ...ttt ettt ettt e h et e e bt e eab e e bt e eate e bt e eabeetee e nbteeeanbeeeean 7
Collecting and arranging INPUL Ata.............eecuieiieeiiieiiieeieeie et e e eaeesaeeebeeseneeeens 7
General warnings for using the KB programs............cocccoeiiiiiiniiiiiniiniineeceecseeeeeeee e 10
KB CAT Knowledge Data Mining and cataloging into homogeneous groupsc.cccveeenenee.. 10
Generality, aims and fUNCLIONS.cc.ooiiiiiiiiiiee et 10
Source of KB CAT (se€ attaChment 1)........cccuvieruiieiiiiiiiieeiieeieeeeeeeite e e e e 11
Test Input file (copy and paste then save with name vessels.txt); fields separated by
17210101 18 (o) s FO OO P PR RPRRPR 11
HOW 10 TUNL ¢ttt ettt e et e e sttt e e e e sabtb e e e e s eneeees 12
INPUL FIle = VESSCISEXL. . eeiiiiieeiiieci ettt et et e e ae e e e et eee e e enenes 12
Number of Groups (3 —20) = 3.ttt sttt et et e b 12
Normalization (MaxX, Std, NONE) = M..ccc.eeriieiiiiiieiieeie ettt e e seaeeeeeaeeenne 13
Start Value of alpha (from 1.8 t0 0.9) = 0.9.....coiiiii e 13
End Value of alpha (from 0.5 to 0.0001) = 0.001.......ccoceivieiiieiiieieeieeieeieee e 13
Decreasing step of alpha (from 0.1 t0 0.001) = 0.001.......ccceeiiiiiiiiieiieiee e 13
Forced shut dOWn Of PrOCESSING......c.ceevieriiiiiieiieeiierie ettt et e aaeesbeeseaeenene 13
KB CAT produce the following OULPUL:.........cociiiiiiiriinieieicreecetcee e 14
In the window DOS Windows (or the Terminal Linux)........c.cccceeeieriieniienieniienieeieesee e 14
File - Output/Catalog.original (vessels M g3 OUt.tXt)......coceeveriiinieniniiiniiiieieenieeieeeieee 18
File of Output/Catalog.sort (vessels M @3 OULSIE.EXE)....cccvieirierieiiiieniieieeeie e 18
Output/Means, Std, CV (vessels M g3 medsd.tXt)......cccecerieririiniiniiienieenieneeieeeeseene 19
Output/CV files (VESSEIS M @3 CVEXL)..iiiuiiiiiiiieiiieiieeie ettt ettt ee et e seae e saaeeeenneeas 20
Output/Training Grid (vessels M 23 grid.tXt)......coceeveriiiriiniiiiiiceeeeeeeee e 20
Statistical analysis of the results of the cataloging............ccccccuveviieriiieriieniiieieee e 22
Other input files to KB CAT (animalS.tXt).....c.c.coeevuerieniininiineeieeieniecie e 30
Processing of animals.txt file with KB CAT..........cccoooiiiiiiiiiiiieeeeee e 32
Output file/Catalog.sort ordered by group using animals.tXt.........ccceveeverviinieneeiineeneeeieens 32
Verify the validity of @ manual cataloging............cceeeveeiiieriieiieniieieeeie e 34
Input file to KB CAT (animals_ d.tXt)....ccceeveriiriiiieiinieiineieeeeteieee et 35
The processing was carried out with the following parameters:.........c.cccceevvereeerieecieeneeennnnn. 37
Results obtained processing animals_d.txt (Output/Catalog.sort).......ccceecververiervienieeniieennenenne 37
Comparison of the results of the automatic cataloging of iris.txt to those recognized by
DOTAMISES. ...ttt ettt et e ettt e et e et e et e et e eat e e bt e e ab e e bt e ent e e e nbeeeenbeeeenbeeeenneens 39
Clinical trials on hepatitiS B VITUSccceeiuiiiiiiiiiiiiieiecie ettt et 42
Not good, but better! (2006 MAil).......cceoriiiiiiiiiieie e 43
KB _STA — the statistical analysis of the result of the catalogingcccceceevverciieniieniereeennn. 44
Generalities, aimS and fUNCHONS.c..eiiiiiiiiie ettt e e e e e e e e e 44
Source of KB STA (see attaChment 2)........c.coeouiieiiiieiiieeiie e 45
HOW 10 USE.c.nitieei ettt et e bt e e bt e e ettt e e e e saibtbeeeeeeanees 45
KB STA TUNNING.viiieiiieeeiie ettt ettt e et e ettt e s aaeesataeesbeeesaseeessseeesnseeesnseesnnseeennssnes 46
Analysis of the results of the cataloging of vessels.tXt........ccoorieriieniiniiinieeee e, 46
Analysis of the results of a political poll 0f 2007..........ccveeiieiiiiiiieieeeeecee e 47
KB CLA — Classification 0f NEW IECOTAS.couiiiiriiriiiiiniiniteieeteseeteet e 49
Generalities, aIMS ANd TUNCEIONS.coiiiiiieeieee ettt e e ettt e e e e e s e e e e eaae e aeenns 49
Source of KB CLA (attachment 3)........coouiiiiiiiiiiiieiiesie ettt 49
HOW 10 TUDNL ..ttt et st e sttt e e st e e sbbeeesbaeeas 49

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 111 di 112

Input files =1 VESSCIS.IXt it 49

Contents of the file N VESSEIS.IXt.....ccuiiiiiiiiieiecie et eeaae e 49
Number of Groups (3 —20) i FOT USSR 50
Normalization(Max, Std, None) el 1 (OSSO O PO RO RTRUUOPUUPUPPPPRPPPPRRIR 50
File Training Grid =vessels M g3 grid.tXt....ccooiiriiiiiiiiiieeeeee e, 50
KB CLA TUNNING....cutiiiiiiiieiieeieeieeete et e ete et e saeeteessaeeseessseessaessseesseessseenseessseesseesnnsseesnnsns 50
Analysis of the results of the classification of n_vessels.tXt........ccoeeviiriiiniiiiiiiniieiereeee 50
Political opinions in Facebook (January 2013).........ccceeiiiiiiiiniieiiieiieeieenie e 51
Know4Business (Cloud version in Google App Engine).........ccoecueevuieiiiiiniiiiiiniieeiieeiee e 54
APPENDIXESttt et sttt et b ettt s et ettt e bt e be e e e e enreeeas 56
Appendix 1 — KB CAT SOUICE........oiitiiiiieiieeiie ettt ettt ettt et et e st e e enaeeesnneeas 56
Appendix 2 — KB STA SOUICE.......ccciieiieiieiiieiieeieesteeeiteesieesereeseesaeeseessseenseessseenseessssseesnnnns 79
Appendix 3 — KB CLA SOUICE.ceiiiiiieiieeiieeie ettt ettt ettt ettt stee et e et e e eaneeeeennees 88
Appendix 4 — KB RND SOUICE.......cccuieiiieiiieiieniieeieeeie et esiteeteeseesreeseneeesnreeesnnaeeennsseeennns 107
KB — Guarantee and COPYIIZNL......cc.ooiiiiiiiiiieie e 109
RODETEO BEIL0. ...t ettt ettt s e 109

KB — Neural Data Mining with Python sources — Roberto Bello - Pag. 112 di 112

	KB – Neural Data Mining with Python sources
	Introduction
	Business Intelligence and the bad use of statistics
	Learning by induction and the neural networks
	KB
	Python for KB
	Details
	Collecting and arranging input data
	General warnings for using the KB programs
	KB_CAT Knowledge Data Mining and cataloging into homogeneous groups
	Generality, aims and functions
	Source of KB_CAT (see attachment 1)
	Test Input file (copy and paste then save with name vessels.txt); fields separated by tabulation
	How to run
	Input File = vessels.txt
	Number of Groups (3 – 20) = 3
	Normalization (Max, Std, None) = m
	Start Value of alpha (from 1.8 to 0.9) = 0.9
	End Value of alpha (from 0.5 to 0.0001) = 0.001
	Decreasing step of alpha (from 0.1 to 0.001) = 0.001
	Forced shut down of processing
	KB_CAT produce the following output:
	In the window DOS Windows (or the Terminal Linux)
	File - Output/Catalog.original (vessels_M_g3_out.txt)
	File of Output/Catalog.sort (vessels_M_g3_outsrt.txt)
	Output/Means, Std, CV (vessels_M_g3_medsd.txt)
	Output/CV files (vessels_M_g3_cv.txt)
	Output/Training Grid (vessels_M_g3_grid.txt)
	Statistical analysis of the results of the cataloging
	Other input files to KB_CAT (animals.txt)
	Processing of animals.txt file with KB_CAT
	Output file/Catalog.sort ordered by group using animals.txt
	Verify the validity of a manual cataloging
	Input file to KB_CAT (animals_d.txt)
	The processing was carried out with the following parameters:
	Results obtained processing animals_d.txt (Output/Catalog.sort)
	Comparison of the results of the automatic cataloging of iris.txt to those recognized by botanists
	Clinical trials on hepatitis B virus
	Not good, but better! (2006 mail)

	KB_STA – the statistical analysis of the result of the cataloging
	Generalities, aims and functions
	Source of KB_STA (see attachment 2)
	How to use
	KB_STA running
	Analysis of the results of the cataloging of vessels.txt
	Analysis of the results of a political poll of 2007

	KB_CLA – Classification of new records
	Generalities, aims and functions
	Source of KB_CLA (attachment 3)
	How to run
	Input files = n_vessels.txt
	Contents of the file n_vessels.txt
	Number of Groups (3 – 20) = 3
	Normalization(Max, Std, None) = m
	File Training Grid = vessels_M_g3_grid.txt
	KB_CLA running
	Analysis of the results of the classification of n_vessels.txt

	Political opinions in Facebook (January 2013)
	Know4Business (Cloud version in Google App Engine)
	APPENDIXES
	Appendix 1 – KB_CAT source
	Appendix 2 – KB_STA source
	Appendix 3 – KB_CLA source
	Appendix 4 – KB_RND source

	KB – Guarantee and copyright
	Roberto Bello

