
What is the Truck Factor of Popular GitHub

Applications? A First Assessment

Guilherme Avelino, Marco Tulio Valente, Andre Hora

Department of Computer Science, UFMG, Brazil

{gaa,mtov,hora}@dcc.ufmg.br

Abstract

The Truck Factor designates the minimal number of developers that have to be hit by

a truck (or quit) before a project is incapacitated. It can be seen as a measurement of

the concentration of information in individual team members. We calculate the Truck

Factor for 133 popular GitHub applications, in six languages. Results show that most

systems have a small truck factor (46% have Truck Factor=1 and 28% have Truck

Factor=2).

1 Introduction

The Truck Factor designates the minimal number of developers that have to be hit by a truck

(or quit) before a project is incapacitated [1]. The Wikipedia defines that it is a “measurement

of the concentration of information in individual team members. A high Truck Factor means

that many individuals know enough to carry on and the project could still succeed even in

very adverse events.”1 The term is also known by Bus Factor/Number.

In this paper, we report the first results of a study conducted to estimate the Truck

Factor of popular GitHub applications. Our results show that most systems have a small

truck factor (46% have Truck Factor=1 and 28% have Truck Factor=2). Section 2 reports our

study setup, including a description of the technique we used to calculate code authorship, the

dataset used in the paper, and the heuristic we used to estimate the Truck Factor. Section 3

presents our first results.

1https://en.wikipedia.org/wiki/Bus_factor

1
PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1233v1 | CC-BY 4.0 Open Access | rec: 14 Jul 2015, publ: 14 Jul 2015

P
re
P
rin

ts

2 Study Setup

2.1 Code Authorship

We define an author as a developer able to influence or command the implementation of a

file. Therefore, she is not a collaborator with some expertise in the file, but for example

someone who is able to lead other developers when working in the file. To define the authors

of a file, we rely on the Degree of Authorship (DOA) measure [2, 3], which is is computed as

follows:

DOA = 3.293 + 1.098 ∗ FA + 0.164 ∗ DL− 0.321 ∗ ln(1 + AC)

The degree of authorship of a developer d in a file f depends on three factors: first

authorship (FA), number of deliveries (DL), and number of acceptances (AC). If d is the

author of f , FA is 1; otherwise it is 0; DL is the number of changes in f made by D;

and AC is the number of changes in f made by other developers. Basically, the weights of

each variable assume that FA is by far the strongest predictor of file authorship. Recency

information (DL) also contributes positively to authorship, but with less importance. Finally,

changes by other developers (AC) contribute to decrease someone’s DOA, but at a slower

rate. The weights used in the DOA equation were empirically derived through an experiment

with seven professional Java developers [2]. The authors also showed that the model is robust

enough to be used in different environments and projects.

In this study we consider only normalized DOA values. For a file f , the normalized DOA

ranges from 0 to 1, where 1 is granted to the developer with the highest absolute DOA among

the developers that worked on f . A developer d is an author of a file f if its normalized

DOA is greater than a threshold k. We assume k = 0.75, which is a value that presented

reasonable accuracy in a manual validation we performed with a sample of systems.

2.2 Dataset

We evaluate systems implemented in the six languages with the largest number of reposito-

ries in GitHub: JavaScript, Python, Ruby, C/C++, Java, and PHP. We initially select the

top-100 most popular systems in each language, regarding their number of stars (starring is a

GitHub feature that lets users show their interest on repositories. Considering only the sys-

tems in a given language, we compute the first quartile of the distribution of three measures:

number of developers, number of commits, and number of files (as collected from GitHub on

February 25th, 2015). We then discard systems that are in the first quartiles of any of these

measures. The goal is to focus on the most important systems per language, implemented

2
PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1233v1 | CC-BY 4.0 Open Access | rec: 14 Jul 2015, publ: 14 Jul 2015

P
re
P
rin

ts

by teams with a considerable number of active developers and with a considerable number

of files. A similar procedure is followed by other studies on GitHub [4].

After this first selection, we remove repositories with evidences of being incorrectly mi-

grated to GitHub (from another repository, like SVN). Specifically, we remove systems having

more than 50% of their files added in less than 20 commits (i.e., less than 10% of the min-

imal number of commits we initially considered). This is an evidence that the system was

developed using another version control platform and the migration to GitHub did not pre-

serve its previous version history. Finally, we manually inspected the GitHub page of the

selected systems. As result, we decided to remove the repositories raspberrypi/linux and

django/django-old. The first is very similar to torvalds/linux and the second is an

old version of a repository already in the dataset.

Table 1 summarizes the final list of repositories we selected for the study. It includes 133

systems, in six languages; Ruby is the language with more systems (33 systems) and PHP is

the language with less systems (17 systems). Considering all systems, the dataset includes

more than 373K files, 41 MLOC, and 2 million commits.

Table 1: Dataset

Language Repositories Developers Commits Files LOC

JavaScript 22 5,740 108,080 24,688 3,661,722
Python 22 8,627 276,174 35,315 2,237,930
Ruby 33 19,960 307,603 33,556 2,612,503
C/C++ 18 21,039 847,867 107,464 19,915,316
Java 21 4,499 418,003 140,871 10,672,918
PHP 17 3,329 125,626 31,221 2,215,972
Total 133 63,194 2,083,353 373,115 41,316,361

File Cleaning: Studies on code authorship should consider only files representing the source

code of the selected systems. Therefore, files representing documentation, images, examples,

etc should be discarded. Moreover, it is also fundamental to discard source files associated

to third-party libraries, which are frequently found in repositories of systems implemented

in dynamic languages. For this purpose, we initially used the Linguist library2, which is the

tool used by GitHub to show the percentage of files in a repository implemented in different

programming languages. We excluded from our dataset the same files that Linguist discard

when computing language statistics, e.g., documentation and vendored (or third-party) files.

As a result, we automatically removed 129,455 files (34%), including 5,125 .js files, 3,099 .php

2https://github.com/github/linguist

3
PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1233v1 | CC-BY 4.0 Open Access | rec: 14 Jul 2015, publ: 14 Jul 2015

P
re
P
rin

ts

files and 2,049 .c files. After this automatic clean up step, we manually inspected the first two

top-level directories in each repository, mainly to detect third-party libraries and documen-

tation files not considered by the Linguist tool. As a result, we manually removed 10,450 files.

Handling Aliases: A second challenge when inferring code authorship from software reposi-

tories is to detect alias (i.e., different IDs, for the same developer). To tackle this challenge,

we first consider as coming from the same developer the commits identified with different

developers’ names, but having the same e-mail address. Second, we compared the names

of the developers in each commit using Levenshtein distance [5]. Basically, this distance

counts the minimum number of single-character edits (insertions, deletions or replacements)

required to change one string into the other. We considered as possible aliases the commits

whose developers’ names are distinguished by a Levenshtein distance of just one. We then

manually checked these cases, to confirm whether they denote the same developer or not.

2.3 Truck Factor

To calculate the Truck Factor, we use a greedy heuristic: we consecutively remove the author

with more authored files in a system, until more than 50% of the system’s files are orphans

(i.e., without author). Therefore, we are considering that a system is in trouble if more than

50% of its files are orphans.

3 Results

Table 2 presents the Truck Factor (TF) we calculated for the analyzed GitHub repositories.

The results in this table are summarized as follows:

• Most systems have a small truck factor:

– 61 systems have TF=1 (46%), including systems such as mbostock/d3, and

clojure/clojure.

– 37 systems have TF=2 (28%), including systems such as cucumber/cucumber,

mrdoob/three.js, mozilla/pdf.js, spring-projects/spring-framework.

• The two systems with the highest Truck Factor are torvalds/linux (TF = 90) and

Homebrew/homebrew (TF = 159). Homebrew is a package manager for the Mac

OS operating system. The system can be extended by implementing formulas, which

4
PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1233v1 | CC-BY 4.0 Open Access | rec: 14 Jul 2015, publ: 14 Jul 2015

P
re
P
rin

ts

Table 2: Truck Factor results

TF Repositories

1

activeadmin/activeadmin, alexreisner/geocoder, atom/atom-shell,
bjorn/tiled, bumptech/glide, caskroom/homebrew-cask, celery/celery,
celluloid/celluloid, clojure/clojure, codemirror/codemirror, drop-
wizard/dropwizard, dropwizard/metrics, elasticsearch/logstash,
erikhuda/thor, eugeny/ajenti, getsentry/sentry, github/android,
gruntjs/grunt, jadejs/jade, janl/mustache.js, jnicklas/capybara, jr-
burke/requirejs, justinfrench/formtastic, kivy/kivy, koush/ion, kriswall-
smith/assetic, leaflet/leaflet, less/less.js, mailpile/mailpile, mbo-
stock/d3, meskyanichi/backup, mitchellh/vagrant, mitsuhiko/flask,
mongoid/mongoid, nate-parrott/flashlight, netty/netty, nico-
lasgramlich/andengine, omab/django-social-auth, openframe-
works/openframeworks, paulasmuth/fnordmetric, phacility/phabricator,
plataformatec/devise powerline/powerline, puphpet/puphpet, py-
data/pandas, ratchetphp/ratchet, reactivex/rxjava, sampsyo/beets,
sandstorm-io/capnproto, sass/sass, sebastianbergmann/phpunit,
sferik/twitter, silexphp/silex, sparklemotion/nokogiri, sstephen-
son/sprockets, strongloop/express, substack/node-browserify, thinku-
pllc/thinkup, thoughtbot/factory girl, thoughtbot/paperclip, wp-cli/wp-
cli

2

ajaxorg/ace, ansible/ansible, apache/cassandra, bbatsov/rubocop,
bundler/bundler bup/bup, composer/composer, cucumber/cucumber,
divio/django-cms driftyco/ionic, drupal/drupal, elastic-
search/elasticsearch, excilys/androidannotations, facebook/osquery,
facebook/presto, friendsofphp/php-cs-fixer, github/linguist, haml/haml,
itseez/opencv, jashkenas/backbone, jekyll/jekyll, johnlang-
ford/vowpal wabbit, jquery/jquery-ui libgdx/libgdx, moment/moment,
mozilla/pdf.js, mrdoob/three.js, prawnpdf/prawn respect/validation,
rg3/youtube-dl, sfttech/openage, spring-projects/spring-framework,
thinkaurelius/titan, thumbor/thumbor wordpress/wordpress, xetor-
thio/jedis, yiisoft/yii2

3
bitcoin/bitcoin, boto/boto, bvlc/caffe, gradle/gradle, ipython/ipython
jquery/jquery, meteor/meteor, shopify/active merchant, spotify/luigi

4 chef/chef, cocos2d/cocos2d-x, emberjs/ember.js, iojs/io.js, ruby/ruby

5
diaspora/diaspora, django/django, joomla/joomla-cms, resque/resque,
tryghost/ghost

6 puppetlabs/puppet, scikit-learn/scikit-learn
7 rails/rails

8
git/git , jetbrains/intellij-community, seldaek/monolog, v8/v8,
webscalesql/webscalesql-5.6

9 saltstack/salt
10 fog/fog
11 odoo/odoo, php/php-src
12 android/platform frameworks base
21 fzaninotto/faker
90 torvalds/linux
159 homebrew/homebrew

5
PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1233v1 | CC-BY 4.0 Open Access | rec: 14 Jul 2015, publ: 14 Jul 2015

P
re
P
rin

ts

are recipes for installing specific software packages. Homebrew currently supports thou-

sands of formulas, which are typically implemented by the package’s developers or users,

and rarely by Homebrew’s core developers. For this reason, the system has one of the

largest base of contributors on GitHub (almost 5K contributors, on July, 14th, 2015).

All these facts contribute for Homebrew having the largest Truck Factor in our study.

However, if we do not consider the files in Library/Formula, HomeBrew’s Truck Factor

decreases to just one.

Acknowledgment

Our research is supported by CNPq and FAPEMIG.

References

[1] L. Williams and R. Kessler, Pair Programming Illuminated. Addison-Wesley, 2003.

[2] T. Fritz, G. C. Murphy, E. Murphy-Hill, J. Ou, and E. Hill, “Degree-of-knowledge: Mod-

eling a developer’s knowledge of code,” ACM Transactions on Software Engineering and

Methodology, vol. 23, no. 2, pp. 14:1–14:42, 2014.

[3] T. Fritz, J. Ou, G. C. Murphy, and E. Murphy-Hill, “A degree-of-knowledge model to cap-

ture source code familiarity,” in 32nd International Conference on Software Engineering

(ICSE), 2010, pp. 385–394.

[4] B. Ray, D. Posnett, V. Filkov, and P. Devanbu, “A large scale study of programming

languages and code quality in github,” in 22nd International Symposium on Foundations

of Software Engineering (FSE), 2014, pp. 155–165.

[5] G. Navarro, “A guided tour to approximate string matching,” ACM Computing Surveys,

vol. 33, no. 1, pp. 31–88, 2001.

6
PeerJ PrePrints | https://dx.doi.org/10.7287/peerj.preprints.1233v1 | CC-BY 4.0 Open Access | rec: 14 Jul 2015, publ: 14 Jul 2015

P
re
P
rin

ts

