
Execution Primitives for Scalable Joins and Aggregations

in Map Reduce

Srinivas Vemuri, Maneesh Varshney, Krishna Puttaswamy, Rui Liu

LinkedIn

Mountain View, CA

ABSTRACT
Analytics on Big Data is critical to derive business insights
and drive innovation in today’s Internet companies. Such
analytics involve complex computations on large datasets,
and are typically performed on MapReduce based frame-
works such as Hive and Pig. However, in our experience,
these systems are still quite limited in performing at scale.
In particular, calculations that involve complex joins and
aggregations, e.g. statistical calculations, scale poorly on
these systems.

In this paper we propose novel primitives for scaling such
calculations. We propose a new data model for organizing
datasets into calculation data units that are organized based
on user-defined cost functions. We propose new operators
that take advantage of these organized data units to signifi-
cantly speed up joins and aggregations. Finally, we propose
strategies for dividing the aggregation load uniformly across
worker processes that are very e↵ective in avoiding skews
and reducing (or in some cases even removing) the associ-
ated overheads.

We have implemented all our proposed primitives in a
framework called Rubix, which has been in production at
LinkedIn for nearly a year. Rubix powers several applica-
tions and processes TBs of data each day. We have seen
remarkable improvements in speed and cost of complex cal-
culations due to these primitives.

1. INTRODUCTION
Analytics on large data sets to extract insights is criti-

cal in today’s world to make key business decisions. Typi-
cal batch-computation use cases for big data processing on
MapReduce-based platforms involve joining massive datasets
and performing aggregations on them. The state-of-the-art
computation platforms, such as Pig [6], Hive [12], Cascading,
Tenzing [8] etc, translate such data transformations down to
physical level operators. The two significant operators are
Join and Group By, and in our experience, the performance
of these operators in existing platforms is sub-optimal.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 13
Copyright 2014 VLDB Endowment 2150-8097/14/08.

Consider two datasets, dataset A with the schema (sales-
man, product) and dataset B with the schema (salesman,
location). Both the datasets are big and hence cannot be
completely loaded into all the mappers/reducers to perform
replicated join. Consider the execution of the following
query on these two datasets:
SELECT SomeAggregate() FROM A INNER JOIN B ON
A.salesman = B.salesman GROUP BY A.product, B.location

Common implementations to execute this query, in Hive
and Pig, do the following: Mappers load the two dataset
and shu✏e the datasets on the join key (salesman). The
reducers perform the joins on (parts of) the two datasets
they receive on the join keys, one unique join key at a time.
The problem with this approach is that in order to compute
the final aggregate, the joined data must be written to disk
first, loaded in the next MR job and shu✏ed on the group
by keys (product, location) to compute the aggregate.

An optimization that Hive provides to improve this exe-
cution is to compute the partial aggregate on the reducers,
in the first job, right after join. This works well if the car-
dinality of the group by fields is low, which means that the
hash table needed for partial aggregates is small and fits in
memory. However, in practice, we see that the cardinali-
ties of the keys seen are quite large, and we also see many
more fields to group by. Together this explodes the hash
table (HT) size requirement, which means the HT is flushed
very frequently. In practice, this leads to spilling of raw join
results to disk (taking us back to the previous problem).

Broadly speaking, both the key operators, join and group
by, have two flavors of execution: merge-style which requires
the data sets to be both partitioned and sorted on relevant
keys (join keys and group by keys, respectively); and hash-
style, which make use of in-memory hash-table and only
requires the data to be partitioned on the said keys.

Computations on big data in contemporary systems, using
a combination of above operators, su↵er from several, and
not infrequently all of the following problems. The intuition
behind the cause of these problems goes back to the query
execution example we gave above.

• Joining massive datasets generates data that is too
large to be materialized (that is, writing to filesystem
at the end of reducer phase or shu✏ing at the end of
map phase). The only viable strategy is to perform
inline aggregations along with joining the data.

• The merge-style group by operator is ine�cient in big
data contexts, since the output of the join must be
materialized and shu✏ed on the group by keys – recall

1462

that the merge-style operator requires (and produces)
data is sorted order of join keys and not the sorted or-
der of group by keys. Hash-based group by is a better
candidate; however, it typically happens that the size
of hash-table is too large that it must be either spilled
to hard-disk or flushed prematurely. In either cases,
the e↵ectiveness of hash group by deteriorates to that
of merge-style (spilling of raw join results).

• Typically, it is not a single group by aggregate that
must be computed. Rather multiple aggregates - called
grouping sets - are computed. One strategy is to com-
pute each group by within the set as a separate work
flow, however this needs loading the input data as
many times, which is usually impractical due to large
size of the datasets. Another strategy is using the
CUBE operator, as implemented in Pig or Nandi et
al [11]. This strategy is also impractical as the CUBE
operator generates all “ancestors” of each input row,
which is simply too large to be processed.

• The aggregation process typically generates partial ag-
gregates in one phase of the program (say, in mapper),
shu✏es them on the grouping keys, and aggregates
them in the next phase (say, in the reduce). How-
ever, for a large datasets with large number of grouping
keys, the volume of the partial aggregates is occasion-
ally too large to be materialized.

• Finally, existing merge-style and hash-style operators
are prone to the skew problem: wherein a subset of
mappers or reducers can see a set of high frequency
keys. This leads to disproportional distribution of
work among the mappers/reducers leading to longer
overall job run times.

The aforementioned problems are inherent in any non-
trivial computation over big datasets. For example, the A/B
testing platform at LinkedIn processes large datasets having
100s of Billions of records each day. Such systems perform
complex statistical calculations via joins and aggregations
on these datasets. In our experience, such calculations are
not even feasible to perform using existing technologies even
after optimizations (details in §6).

In this paper, we present Rubix: a framework for complex
calculations over big data. Rubix is built on novel model of
data organization using Data Units, and a novel computa-
tion paradigm using new operators: MeshJoin and Cube.
By organizing datasets in calculation units, and processing
them using the operators built to work on these units, Rubix
is capable of avoiding all the problems listed above. To our
knowledge, Rubix is the only framework capable of doing
so. We describe our proposed primitives to accomplish this
in this paper.

The rest of the paper is organized as follows. We de-
scribe our data organization framework in Section 2, and
the operators and calculation paradigm in Section 3. In
Section 4, we describe primitives for further improving the
e�ciency of our operators for complex calculations. Sec-
tion 5 describes the implementation of Rubix, and Section
6 describes a case study of an application of Rubix within
LinkedIn. We present performance measurements of Rubix
in Section 7, and finally discuss related work.

2. DATA MODEL
In this section we describe the basic unit of data in Rubix,

the reasons for designing them and how to create them.

2.1 Data Unit
Rather than tuple-oriented processing, Rubix defines a

notion of Data Unit (a.k.a Block), which is the primary or-
ganizational unit of data, and operators work on these units.
Data unit (DU) is the distinguishing feature of Rubix com-
pared to related data flow and relational paradigms (such as
Pig, Hive). DUs have the following important properties.

• A data unit is a subset of rows from the original data
set partitioned by one or more keys of the data set,
called partition keys, with data unit boundaries gener-
ated according to a user specified criteria. The parti-
tioning scheme produces data units that are complete
sub-set of the original data set such that all tuples
from the original relation with the same value of the
partitioning key are guaranteed to be present in the
same data unit.

• Data units are further sorted on one or more columns,
called sort keys. Note that only the data within a data
unit is sorted (rather than globally sorted across the
data units). By default, the data units are sorted on
the partition keys; however, it is possible to sort the
data units on other columns as well.

• Data units are created such that they satisfy a user-
defined cost-functions. For e.g., that the data units
created be no more than a certain size threshold. Set-
ting the threshold at less than or equal to a few hun-
dred MB would ensure that the data unit is of a size
suitable for in memory processing. More sophisticated
criteria of data unit generation can be chosen based on
the specialized needs of an application.

• Finally, data units are named entities, each unit has a
data unit ID (DUID). They can be stored and loaded
individually.

2.1.1 Why Data Units?
There are several reasons why data units are attractive.

Data units bound the amount of work done by a worker,
which balances the skew seen by the workers in a job. User-
defined costs functions can be used to ensure that a data
unit can be loaded in memory thus executing computations
at memory speeds. Most importantly, it helps us in per-
forming the calculation by loading the right data unit at
the right place at the right time. All these properties lead
to remarkable performance improvements, as we show in §7.

2.2 DUGen
The process of generating data units from input data

source is called DUGen operation. Each generated data unit
comprises of a range of partition keys and is uniquely iden-
tified by a data unit ID (DUID). A key di↵erence between
DUGen and file based partitioning is that the former prefers
to co-locate data units into the same physical file as much as
possible (so in theory, there is no direct relationship between
the count of data units and the count of files). This is done
by design in order that the file count is kept minimal, since
it is known to have high meta-data overheads in file sys-
tems like the Hadoop Distributed File System (HDFS). The

1463

a" 10"

b" 15"

c" 12"

d" 20"

e" 5"

a" 10"

c" 12"

b" 15"

e" 5"

d" 20"

JK# GK#
DUGEN# Data#Unit##1# Data#Unit##2#

The"blocks"are"par33oned"on"JK."
"

Each"block"is"internally"sorted"on"a"sort"key"GK.""

Figure 1: DUGen Illustrated.

DUGen is implemented in Map-Reduce; the Mapper shuf-
fles rows by the partition key. The sort key for the shu✏e is
set based on the DUGen configuration. On the reducer, we
bundle rows into manageable (in-memory) segments based
on the specified cost function, which are primarily sorted
by the sort keys. When the data unit boundary criterion
is satisfied (e.g. size exceeds the specified threshold), the
data unit is written to disk on the reducer. The pseudo
code for DUGen is described in Algorithm 1. We can rely
on Hadoop’s sorting during shu✏e if the partition key is a
prefix of the sort key; otherwise we create data units and
sort the tuples within on the sort keys before giving them
to the subsequent operator.

Data Unit Index. For every data set that is organized us-
ing the DUGen operation, there is an associated index that
tracks data unit boundaries and the physical locations of
data units on disk. When a data unit is written on the re-
ducer, along with it, an index entry is updated which tracks
the partition key range, as well as the unique DUID, cor-
responding to this particular data unit. The index entry
also tracks the physical HDFS file name and beginning o↵-
set within this file that marks the start of the data unit.
This index is very small in size as there is only one meta-
data entry in the index per data unit. Typically the index
is in the order of KBs and hence can be cached in memory.

Cost Function. The DUGen operation also supports a
pluggable cost function that determines where data unit
boundaries are drawn. The framework provides built-in
cost functions, for example, based on data unit size or row
count that users can leverage without writing custom code.
However, sophisticated criteria can be specified using the
pluggable interface to perform custom calculations e.g. for
graph calculations or cube computation. For instance, lets
say we are interested in performing an aggregation such as a
GROUP BY on a single large data set. A custom cost func-
tion can determine the data unit boundaries to be drawn
when the number of distinct GROUP BY keys within a sin-
gle data unit exceeds a memory threshold (say, 1MB) be-
yond which the results can no longer be kept/accumulated
in memory.

The process of DUGen is illustrated in the figure 1. In this
example, the data units are created by using the partition
key to be the join key (JK), and the sort key to be the group
by key (GK).

2.3 DUGen By Index
DUGen by index is the process of co-dependent organiza-

tion of datasets using the Index based on the DUGen of a
di↵erent dataset. Here, we have a first data set A that is

Algorithm 1 DUGen Pseudocode.

1: Input = dataset A;
2: Let SK be the sort key for data units of A;
3:
4: function map ():
5: for row r of A do

6: let PK = partition key of r
7: emit (PK, r)
8: end for

9:
10: function reduce (PK, list< r >):
11: for each PK do

12: add list< r > to the current block;
13: if current block reached cost function threshold then

14: sort current block on SK;
15: store current block;
16: start a new block;
17: end if

18: end for

partitioned on keys PK, along with some cost function. We
also have IndexA, which is the index that demarcates data
unit boundaries for this data set. Now, we can take a second
data set B, which has the same partition keys PK and ask
that data units be created on this data set using the same
index, IndexA.

The insight here is that the Index can be viewed as a
function from arbitrary partition key to Data Unit ID. Note
that list< r > need not be stored in memory on the reducer.

In order to perform DUGen by index, the Rubix frame-
work loads the compact IndexA index into memory, assigns
each tuple of data set B a data unit ID (DUID) column com-
puted by looking up the value of partition key PK from the
IndexA index, and shu✏es tuples to the reducer based on
the assigned DUID column. On the reducer, all tuples that
map to the same DUID are accumulated and assembled into
the same data unit. Note that the tuples corresponding to
a data unit of B need not be kept in memory on the reducer
and can be streamed to disk as the memory bu↵ers keep fill-
ing up. In addition, we can use the sorting performed by the
shu✏e phase of MapReduce to keep the data sorted on sort
keys, by setting the sort key to be the combination of (ID,
SK). Note that we have no control over size of data units of
dataset B, as indeed we did for the DUGen of the original
data set A. The data unit sizes of the data units for dataset
B are output parameters i.e. determined by the pre-existing
data unit boundaries indicated by the IndexA index.

The DUGen by index Pseudocode is in Algorithm 2.

2.4 Pivoting Data Units
Given a data unit created on a set of sort keys, it is often

necessary to obtain the rows that have identical values for
the sort keys. For instance, to compute a group by on the
sort keys. The process of accepting one data unit and a set
of keys (called pivot keys) as input, and generating multiple
output (sub-)data units where each output data unit con-
sists of rows with identical pivot keys, is called Pivoting the
data units. We will use this operator to write pseudocode of
other operators in the paper. A key insight here is that the
sub-data units output from the pivotBlock operation can be
treated as a data unit by itself. Typically such sub data
units can be fully contained in memory and thus leads to

1464

Algorithm 2 DUGen by index Pseudocode.

1: Store IDX = Index of A in Dist Cache
2: Input = dataset B;
3: Let SK be the sort key for data units of B;
4:
5: function map ():
6: for row r of B do

7: let PK = partition key of r
8: let ID = DUID of PK from IDX
9: emit (ID, r)
10: end for

11:
12: Shu✏e on ID and sort on (ID, SK);
13:
14: function reduce (ID, list < r >):
15: store list < r > as one block;

speed up in computations. The pseudocode is presented in
Algorithm 3. The user of this API calls morePivotBlocks()
as long as it returns true and calls pivotBlock() to obtain a
pivoted sub-block within the loop.

Algorithm 3 pivotBlock Pseudocode.

1: Input = block1 of a dataset;
2: function pivotBlock(pivotCols):
3: let pivot be pivotCols of block1’s currentTuple
4: initialize a new subblock
5: while block1.currentTuple.get(pivotCols)==pivot do
6: add currentTuple to subblock;
7: advance to next tuple
8: end while

9: return subblock
10:
11: function morePivotBlocks():
12: return (currentTuple==null)

2.5 Common Calculation Patterns on Data Units
We will now describe how data units can be used to solve

common problems seen in processing relational queries.

2.5.1 Joins On Two Data Sets
Consider two tables: TableA has member Id and the di-

mension values for the member such as the country, industry,
education, etc (memberId, dim0, dim1, dim2, dim3). The
second table, TableB, has details about the pages viewed by
a member, including the memberId, pageId, and other page
view attributes such as the date of view, device from which it
was viewed, browser viewed, etc. (memberId, pageId, att0,
att1, att2). Assume that these two tables are large and
do not qualify for replicated joins (which loads one dataset
completely on all the mappers/reducers) or its variants.

In this setup, we are interested in counting the number
of page views by the members on a given day, but we want
to filter out the records only based on certain dimensions or
UDFs (user defined functions) on some dimensions. In this
example, the partition, the group by, and the join key are
all the same – memberId.

Using data units, this can be accomplished by performing
a DUGen on TableA first to have, say 10M, members per
data unit. Then we can do a DUGen by index on TableB.

The sort and partition keys are both memberId in this case.
Then we can simply load the corresponding data units (as
in the data units that have the same set of members) and
perform a merge-join followed by filter and aggregation on
the mappers of the subsequent job.

A main advantage of creating data units is that the cost
function bounds the amount of work done by each mapper
for join and hence avoids skews during join. We will describe
how the cost of DUGen can be reduced (or even removed)
later in this section.

In Pig/Hive one could perform this by doing a shu✏e join
on the join key and aggregate on the reducer. But they are
prone to skews.

2.5.2 Group Bys on a Single Fact Table
If we need to perform a group by computation on a single

fact table, even then using DUGen has advantages over ex-
isting implementations. Pig, for e.g., shu✏es the fact table
on the group by key and then would compute the aggregate
on the reducer. There are a couple of issues with this ap-
proach: One is skew, and the other problem is due to lack
of sort order on the tuples. For a group of tuples in the
same group by key, the tuples need not be in any particular
order and hence aggregate computations can be ine�cient.
Count distinct computation, for instance, would require a
hash table per group.

Rubix, on the other hand, would do a DUGen on the
group by keys. Aggregates could be computed e�ciently by
setting the appropriate sort keys. And if there are multiple
group bys to be computed, we could store the data units
perform the aggregate computation on all the group bys in
the follow on job (using the operators described next). Data
unit cost function avoid skews in the work done by these
worker nodes.

2.5.3 DUGen for Group Bys
Building on the previous example, suppose that the query

is to count the number of page views, broken down by di↵er-
ent combinations of dimensions. a) broken down by member
dimensions dim0, and dim1. b) broken down by dim0 and
att0. c) broken down by att0 and att1. In these cases, the
partition and the join key is the memberId, but the group
by keys are combinations of keys from the two tables and
they are di↵erent from the join key.

Performing this aggregation on Pig/Hive would require
materializing the join results and then shu✏ing them on the
group by keys, which leads to the problems described in §1.

We can avoid such problems in Rubix by organizing the
data into data units by having di↵erent sort keys and this
can speed up aggregation (as described in the next section)
and avoid shu✏ing join data. The organization of the data
is as follows: first we perform a DUGen on TableA with
memberId as the partition key. But we would have sort
keys to be the keys that are contributed by this dataset into
the group by keys. Then we extract the index of these data
units and use it to perform a DUGen by index on TableB
again using memberId as the partition key. But we set the
sort keys for TableB to be the keys it contributes to the
group by keys. We will show how aggregation is done next.

3. COMPUTATION MODEL
We introduce two new operators: Mesh join as an alter-

native to traditional join, and Cube as an alternative to

1465

Data"Unit"of"B"

Y"""""""""""X"

Z"""""""""""X"

Join"Key"="X"
Aggrega3on"Keys"="Y,"Z"

Matching"
Data"Unit"of"A"

Sub"Unit"
for"a"value"of"Y"

Sub"Unit"
for"a"value"
Of"Z"

Memory#
Resident#

Streamed#from#
#File#System#

2"

Figure 2: MeshJoin Illustrated.

traditional group bys on big data. These operators are de-
signed to take advantage of the Data Unit organization and
significantly reduce the overheads involved in aggregation.

3.1 Mesh Join (or Cyclic Join)
Recall the SQL query we introduced earlier where group

by keys were coming from di↵erent data sets.
SELECT SomeAggregate FROM A INNER JOIN B ON
A.j1 = B.j2 GROUP BY A.g1, B.g2.

MeshJoin Requirement. Traditional merge and hash-
style operators are not e�cient at processing such queries.
Merge join requires the two data sets to be partitioned and
sorted on join keys, and it retains the sort order on the join
keys for the output. The hash join neither requires sort order
on input datasets nor provides any sort order on the output,
as a result, computing group bys on the results requires a
(large) hash-table for aggregation or requires a shu✏e and
aggregation on the reducer.

The MeshJoin operator, on the other hand, is capable of
computing the final aggregate without requiring a shu✏e
or hash-based aggregation. The MeshJoin operator requires
data partitioned on join keys, but allows data to be primar-
ily sorted on other keys, lets call them prefix keys, and
secondary sorted on the join keys. The generated output
is sorted on combined prefix and join keys. By setting the
prefix keys to be that of the following group by keys, we can
compute the results of the group by immediately after the
join. This is merge-style operator, as in, it does not require
in-memory hash table, it benefits from cache locality, and
can compute group by results with O(1) memory.

Consider the Example:
Table A: [g1, j1], col3
Table B: [g2, j2], col4. (bracket indicates sort order)
Output: [g1, g2, j1], col3, col4

The prerequisite for applying MeshJoin operator is the one
data is DUGen-ed and partitioned on join keys but sorted on
prefix keys of this data (g1 in the e.g.). The size constraint
on the blocks are set to ensure that the blocks of A (or
one dataset) can reside completely in memory. The other
dataset is DUGen BY INDEX on the join key and sorted on
corresponding prefix keys (g2 in the e.g.). This requirement
has been illustrated earlier in §2.5 with the examples where
group by keys were combinations of the non-join keys from
the two tables.

MeshJoin Operator Execution. Figure 2 illustrates the
process in which MeshJoin operates with an example. The
operator works by loading a block of A into memory on each

mapper, then it streams the matching block of the other
dataset, so each mapper is processing exactly one pair of
matching blocks from A and B. We stream the block from B
(as we do not have control on its size). For each set of records
which correspond to one distinct value of the pivot column
on B (i.e a distinct value of g2), we load all of the records into
memory and perform the join with the in-memory records of
A. Since the result is sorted on A.g1, B.g2, we need to join
the pivoted sub-block of B with each batch of As records
corresponding to a distinct value of A.g1. So the join is
actually on sub-blocks generated from the main block by
pivoting along the prefix keys. And this join has to be per-
formed iteratively for every unique combination of (A.g1,
B.g2).

If we need to compute a group by on (A.g1, B.g2), we can
immediately aggregate the results of the join and generate
a partial result for this combination with O(1) memory re-
quirement. This is output to the reducers for further aggre-
gation to produce the final result (from di↵erent mappers).

Then we move onto the next batch of As records. Once
we reached the end of block for A, we advance the input
stream for Bs block, to obtain a new value for B.g2, reset
the block of A to the beginning (this can be done as it is in
memory) and repeat the steps outlined above for the new
batch. The Pseudocode for the MeshJoin operator is shown
in Algorithm 4.

The above strategy is a nested loop join in which a sin-
gle pass is made over the unbounded block from B, while
multiple in-memory scans are done on the memory-bounded
block of A. While the idea of partitioning data on the hash
of the join key and joining the partitions are proposed in the
past [10], MeshJoin is di↵erent due to the sort order of the
tuples and the nested loop join on the sub-blocks.

Algorithm 4 MeshJoin Pseudocode.

1: Input = blocks of dataset B;
2: function map (block1 of datasetB):
3: blockA1 = LOAD-BLOCK FROM datasetA MATCH-

ING block1.blockId
4: for block2 = block1.pivotBlock(B.g2) do
5: for block3 = blockA1.pivotBlock(A.g1) do
6: block5 = JOIN block3, block2 ON A.j1 = B.j2
7: results = GROUP block5 BY A.g1, B.g2 agg()
8: emit results
9: end for

10: blockA1.rewind()
11: end for

To further reduce the data loaded in memory, note that
we can actually partition the sub-block of B (generated from
DUGen by index) by the join key. As in, instead of loading
all the tuples of a unique value of B.j2, we could load only a
sub-set of these tuples at the boundary of B.j2 (this subset
can be bound by the size of memory available). We just
need to ensure that all the tuples for a value of B.j2 are all
in this subset. This can be accomplished by extending the
pivotBlock pseudocode to take a partition key (which is B’s
join key in MeshJoin).

3.2 Cube Operator
Definition. In this paper we use the term Cube to en-
compass the traditional OLAP cube operator, which com-
putes the group bys on all the combinations of dimensions

1466

(cuboids) as well as the idea of grouping sets, where a sub-
set of the cuboids are explicitly specified for computation. A
grouping set is a list of group by key combinations. For in-
stance, a grouping set with two group by entries or cuboids
is specified as: ((g1), (g1, g2)). The output of the compu-
tation has three columns: g1, g2, aggregate. The values for
g2 would be NULL for the group by results corresponding
to the cuboid (g1). If the grouping set has a single grouping
set entry, then it degenerates into a single group by compu-
tation. If the grouping set is empty, then the entire OLAP
cube is computed.

Ancestor enumeration. Based on the definition above,
cube operator is capable of generating results for the group-
ing sets, as in multiple group bys can be computed, in a sin-
gle job. As a result, each tuple “contributes” data to a set
of grouping key entries. Given a tuple, the “ancestors” for
this tuple are all the parent cuboids of the dimensions in the
tuple. In the case of full OLAP cube, each tuple contributes
to all 2D ancestors, where D is the number of dimensions.
In the case of a grouping set, each tuple contributes to as
many entries present in the grouping set.

For executing the Cube operators we need both the map-
per and reducer tasks. The mapper does most of the work:
The ancestors are maintained in a hash table keyed on the
ancestor (dimension values for the ancestor cuboid), and the
corresponding value stored in the HT is the aggregation re-
sults for that cuboid. For each tuple, this HT is updated
based on which ancestors a tuple contributes to (we will
describe why this hash-table size in Cube operator is not
prohibitive in §4). The mapper then shu✏es the partial ag-
gregates with the ancestor as the key. The reducer simply
computes the final aggregate using the partial aggregates
from the di↵erent mappers for a given ancestor.

3.2.1 Additive Cube Operator
Aggregation functions. Additive aggregates include func-
tions such as sum, min, max, count, etc. The notation of
the operator is: CUBE ADDITIVE dataset on measure

BY GROUPING SET aggregate().

Requirement. The additive cube operator does not require
any partitioning or sorting on the data as additive operators
are algebraic.

Operator execution. The operator execution is as follows.
For each tuple in the input data unit, the operator enumer-
ates the ancestors based on the input grouping set. The hash
table maintained for the ancestor is checked for the presence
of each ancestor. The partial result for the ancestors present
in the hash table is updated and a new entry is created in
the HT for the ancestors not present already. After process-
ing a tuple, if the HT size exceeds the user-specified memory
threshold, then the results computed so far are flushed and
the HT is cleared before proceeding to the next tuple. The
Pseudocode for the Additive Cube operator is shown in Al-
gorithm 5.

3.2.2 Partitioned-Additive Cube Operator
Aggregation functions. Partitioned-additive aggregates
are aggregation functions such as count distinct, and other
complex aggregates (as described in detail in §6) typically
needed for statistical calculations. When partitioned ap-
propriately, these functions become additive across partial
results and hence the name.

Algorithm 5 Additive Cube Operator Pseudocode.

1: function map (block of datasetB):
2: let H = hashtable grouping keys => (Aggregator)
3: for tuple r in block do

4: let G = grouping keys in r
5: let E = set of “ancestors” for G
6: for each e in E: do
7: invoke Aggregator
8: end for

9: flush and clear the HT if it exceeds the threshold
10: end for

We can model such aggregates using two functions: inner-
Aggregate() (which is a per-member aggregate) and a outer-
Aggregate() (which is a cross member function). For count
distinct, for instance, the inner aggregate is countOnce()
and outer aggregates is a sum(). For variance calculation
on per-member sum (see §6), the inner aggregate is a sum,
while the outer is a sum of the squares.

For partitioned-additive aggregates, we only focus on queries
where measure (memberId, for e.g.) is the partition key and
on which aggregates are computed. In most of the queries we
see in LinkedIn, memberId is the typical measure on which
aggregates are computed and it is the partition key. Rubix
came out of the use cases of computing complex aggregates
for memberId data. As a result, we made this decision. Ex-
tending our operators to work for measures that are not
partition keys is left for future work.

The notation of the operator is: CUBE dataset on mea-

sure BY GROUPING SET innerAggregate(), outerAggre-
gate().

Requirement. Our partitioned-additive Cube operator re-
quires data to be partitioned and sorted on the measure
(memberId). The input is the data units after DUGen on
the measure. This is a basic approach without considering
the type of dimensions. In the next section we will show how
to optimize this further by considering the type of dimension
into account.

Operator execution. The Cube operator works as follows.
Each mapper in a job takes a data unit as input. Then
the operator creates a pivoted block of the data unit on the
measure (e↵ectively gets a sub-data unit with rows having
the same measure). For each tuple in the sub-data unit we
enumerate the ancestors. In this operator, the hash table is
keyed on the ancestor but the value stored is the results of
the two aggregation functions. While processing each tuple
in the sub-block, if an ancestor is found in the hash-table,
then the (inner) aggregate values are updated otherwise a
new key and value is inserted into the hash table. When
a sub-data unit is done processing, the outer aggregate is
updated for the ancestors in the hash table. After process-
ing each sub-block of the measure the hash table size is
checked, and it is emitted out of the mapper if the threshold
is crossed. Then we move on to the next sub-block. Af-
ter the mapper is done, the combiner aggregates the results
flushed to the disk by the mapper (with the same key) and
then the results are sent to the reducer. The Pseudocode
for the Cube operator is shown in Algorithm 6.

We noted earlier in the introduction section, that a typical
problem with big data is that the hash table size explodes
and it needs to be spilled to disk or flushed too often. Even

1467

Algorithm 6 Partitioned-Additive Cube Operator Pseu-
docode.
1: function map (block of datasetB):
2: let H = hashtable grouping keys => (Inner Aggregator,

Outer Aggregator)
3: P = pivotedBlock of B on measure
4: while P.morePivotBlocks() == true: do
5: Q = P.pivotBlock()
6: for tuple r in Q do

7: let G = grouping keys in r
8: let E = set of “ancestors” for G
9: for each e in E: do
10: invoke InnerAggregator(r)
11: end for

12: end for

13: invoke OuterAggregator
14: flush and clear the HT if it exceeds the threshold
15: end while

though the Cube operator uses hash table, we will show in
the next section how we avoid this problem, by creating the
hash table only on a subset of the grouping key values.

4. SCALING MULTI-DIMENSIONAL CAL-
CULATIONS INVOLVING COMPLEX JOINS
AND AGGREGATIONS

In this section we describe our primitives for improving
the e�ciency of computing the aggregates by taking into
account the type of dimensions involved in aggregation. We
start with a a few definitions, followed by a model for cal-
culating and comparing the cost of di↵erent algorithms and
then propose our primitives for bringing down the cost.

Types of Dimensions We classify the dimensions into two
groups: member dimensions and context dimensions. Mem-
ber dimensions are the dimensions that describe member
attributes. A member has a single value for each dimen-
sions. For e.g., country of a user. Context dimensions, on
the other hand, describe the context of events. For e.g.,
PageView. When a user views a page, there are dimension
values such as the browser and the device type used to view
the page, etc. A member can have many values for such
dimensions. Context dimension is used in a general sense
here: some datasets have grouping keys that are not dimen-
sions in the traditional sense but can have multiple values
for a member. We refer to them also as context dimensions.

md0 md1 cd0 cd1
(10) (10) (10) (10)

GS1 x x x
GS2 x x
GS3 x x
GS4 x x x

Table 1: An example grouping set with four entries.

4.1 Metrics
Given a set of (member and context) dimensions and the

cardinality of these dimensions, they together determine the
(a) total number of dimension keys generated in the hash
table for aggregation, as well as (b) the total number of

dimension keys shu✏ed across the mappers/reduces. These
are the two main metrics that determine the overhead and
performance of the operators. Our goal is to minimize both
these values so that computations can be done e�ciently.

This cost can be derived using a matrix of dimensions and
grouping sets. Table 1 shows an example with 4 dimensions
and 4 grouping sets. 2 of these dimensions (md0, md1)
are member dimensions and 2 are context dimensions (cd0,
cd1). We can use this matrix to gain an intuition on how
dimension cardinality and grouping sets have an impact on
the two metrics.

Given a grouping set entry (say GS1) with a set of dimen-
sions, the total number of entries created in the hash table
for computing the grouping set entry is equal to the product
of the cardinality of the dimensions in it. This is also equal
to the number of keys emitted from the mappers to the re-
ducers. Note, however, that this estimation of the number
of keys is a lower bound. If the in-memory size of the keys
generated by a mapper is bigger than the available memory
capacity of the mappers, then it requires frequent flushing
of the partial results to the reducers leading to increase in
the total number of keys shu✏ed.

Following the logic above, the total number of keys to
be maintained in the hash table and shu✏ed, across all the
grouping set entries, is simply the sum of the cardinality of
each entry. More formally: Let d be the set of dimensions,
and gs be the grouping set. The number of keys in the hash
table for a grouping set entry gsi is s(gsi) =

Q
dj2gsi

|dj |,

where dj is the cardinality of the dimension dj in gsi. The
total number of HT keys, and the keys shu✏ed, for the entire
grouping set is: ts =

Pn
i=1 s(gsi).

Our objective is to bring down these numbers. Next we
propose three strategies for organizing and partitioning the
data before using the MeshJoin and Cube operators that
can lead to remarkable reduction in these numbers.

4.2 Promoting a Key to MeshJoin Prefix Key
If all the grouping set entries to be computed have a cer-

tain grouping key in them, then this key can be moved to
be a prefix key of the mesh join. This means that the blocks
input to the MeshJoin operator is sorted using this prefix
key as the sort key. By moving this key to be the part
of the MeshJoin, the aggregates can be computed after the
join for each sub-block containing the mesh prefix key. This
means that the hash table size needed to store the aggregates
is equal to the product of the cardinality of the remaining
dimensions (excluding the mesh prefix). This is because
MeshJoin processes the sub-block with the same prefix and
this means that the hash table for aggregation is keyed only
on non-prefix keys. In many cases, this strategy, in fact,
makes it feasible to do the calculation and keep the keys in
the hash table. This strategy does not, however, lead to a
reduction in the volume of keys shu✏ed though.

Example. In the example in Table 1, cd0, the first context
dimension is present in all of the grouping set entries. As
a result, we can apply this strategy and move it to be a
part of the MeshJoin key. This brings down the HT size
requirement by a fact of 10, which is the cardinality of cd0.
To compute GS1, for e.g., for a sub-block of the two blocks,
during MeshJoin, the HT only needs to store the number of
keys equal to the cardinality of |md0| ⇤ |md1| which is 100
(coming down from 1000).

1468

4.3 Member Dimension-Aware Partitioning
Partitioning the dataset on the member dimensions leads

to a significant reduction in both the costs. By partition-
ing on the member dimensions, the range of the member
dimensions calculated in each mapper is constrained to a
small part of the entire dimension range. As a result, each
mapper needs to keep a much smaller number of keys in its
hash table for aggregation.

We can perform member dimension partitioning of the
dataset as follows. Consider two datasets, TableA for mem-
ber data and TableB for fact data to be partitioned on mem-
ber dimensions. We first do a DUGen on TableA on mem-
berId, then DUGen by index on TableB, then we join the ap-
propriate Data Units of TableA and TableB on the mapper
of the subsequent job and perform a DUGen with member
dimensions as partition and sort keys. During this DUGen,
by setting appropriate cost functions, we can roughly assign
equal amount of work to the mappers/reducers.

This partitioning brings down the cost on both the metrics
by a significant factor. If N is the total number of member
level dimension key combinations and B is the total number
of data units, the number of member dimension combina-
tions per unit is reduced to N/B. Typically B is in 1000s,
which means if there are a million unique dimension key
combinations, they come down to 1000s per mapper (as we
usually assign a small number of data units per mapper).

An important property of partitioning on the member di-
mensions is that it also partitions the memberId space. That
is, the set of member Ids are disjoint in di↵erent data units.
As a result, computation of holistic (partitioned-additive)
aggregates becomes additive across di↵erent data units. We
take advantage of this property in the next primitive also.

Given that context dimensions of a member can have
many di↵erent values, partitioning on context dimensions
generally leads to a huge skew as well as it is useless for
computing holistic measures (because a member can end up
in multiple mappers and we cannot combine holistic aggre-
gates across mappers). As a result, when data is partitioned
on dimensions, we only partition them on member dimen-
sions and not on context dimensions.

Example. Continuing with the example in Table 1, when
the dataset is not partitioned on the member dimensions,
potentially each mapper can generate a key for each of the
member dimension combinations – and there are 120 of those
(100 for GS1, 10 for GS3, 10 GS4). When we partition
the dataset on the member dimensions, we can bring this
down by a significant factor (proportional to the number of
mappers). In fact, we can set the cost function such that
the generated keys can fit in the memory of the mapper,
thus speeding up the computation. This partitioning also
partitions the ancestor keys and thus leads to proportional
reduction in the number of keys shu✏ed.

4.4 Cubing on Context Dimensions using Staged
Aggregation

Cube computation can be made more e�cient by breaking
down the computation into stages. By computing the Cube
on the product dimensions in one MR job, and then cubing
the member dimensions in a subsequent job, we can signif-
icantly reduce the memory requirement and the volume of
the keys shu✏ed across M/R stages.

Consider, for e.g., a cube computation on dimensions (md0,
md1, cd0, cd1). Assuming all of them have a cardinality of

part>00000.rubix#

Data#Unit#0#

Data#Unit#1#

."

."

Data#SecEon#

Trailer#SecEon#

Trailer#SecEon#Size#(4#bytes)#

File#Meta#data#
Data#Unit#0:#ParEEon#key,#offset,#length#
Data#Unit#1:#ParEEon#key,#offset,#length#

3"

Figure 3: Rubix file format.

10, the Cube on md0 and md1 will have totally 122 unique
keys. Similarly (cd0, cd1) cube will have 122 keys. If the
Cube on all four dimensions are calculated, the total number
of keys in the hash table, and the number of keys shu✏ed,
would be about 14644 (per mapper).

Assume that the previous strategy of member dimension
partitioning is applied and the blocks are created by parti-
tioning and sorting on (md0, md1). Now in the mapper we
can cube only on (cd0, cd1). By doing so, we have e↵ec-
tively brought down the hash table to 122 keys per unique
key value of (md0, md1) seen. This is much smaller memory
explosion compared to full cube on all four dimensions. As a
result, this job can aggregate the results for the product di-
mension cube much better in the available memory without
having to flush partial results frequently.

Since we know that the member dimension aggregates
(even partitioned-additive) across data units can be com-
bined. In the second job, we compute the cube on (md0,
md1). Here also we have small memory requirement com-
pared to full cube computation. Because of better aggrega-
tion, we can expect significantly smaller number of keys to
be shu✏ed in both the jobs combined compared to single-
stage execution. The final number of result tuples produced,
though, would be the identical in both the approaches.

5. IMPLEMENTATION
So far we have described the data units and the main

operators that lead to improved e�ciency. Now we describe
our implementation of the framework, how these operators
are executed and how a user can program in our framework.

We have implemented the Rubix framework in Java, us-
ing Hadoop [4] 1.1.2 with MapReduce [9] APIs. The entire
framework is about 65K lines of code. In the framework we
have implemented (a) the operators for creating data units
and the operators for join and aggregation on these units,
and (b) an executor service that takes in a script consisting
of the operators to run, compiles it to a sequence of map
reduce jobs and executes the jobs on Hadoop. We describe
the key highlights of our platform implementation starting
with the custom file format we use to store data units.

5.1 Rubix File Format
We have implemented Custom RubixInputFormat and Ru-

bixOutputFormat classes in Hadoop. This enables us to
store the data generated after DUGen in our custom for-
mat, called the Rubix File Format. This is only for the

1469

intermediate DUGen data, though. The final results can be
in whichever format the user desires (AVRO, TEXT, etc.).

Using this custom output format, all the data the reducer
of DUGen receives is stored by creating a Rubix file. The
data it receives is organized into data units, which are all
stored in a single output file. The file has enough index
information for us to learn the boundaries of the block or
data units. The Rubix file format is shown in the Figure 3.

Each Rubix file has data section (containing data units)
and a trailer section (containing partition key range, o↵-
set within file and length of each unit). The data section
has data units written as a byte stream of serialized tuples.
Whenever a data unit ends, we add an entry in the index
indicating the end of the previous data unit. The current
position in the file is the start o↵set for the new data unit
created. The index that is maintained while writing the
data units is stored in the trailer section. After writing the
index section, we reserve four bytes to indicate the size of
the trailer section.

When a Rubix file is read, using the custom input format,
we read the last four bytes first to figure out the size of
the trailer section. We seek to the begin of this section and
then read the metadata (or the index) to learn the data unit
locations in the Rubix file. This index is then used to either
figure out the number of splits for MapReduce job execution
or to read a specific data unit (for load block operation).

5.2 Rubix Job Specification and Execution
Specification. Our framework implements the following
operators: load, store, join, group by, cube, dugen, dugen-
by-index. A user can specify the operations to perform on a
data set via a Rubix script consisting of a series of job. Each
Rubix job consists of two stages: Map stage and Reduce
stage. The input script specifies the sequence of operators
for both these stages.

In addition to specifying the sequence of operators, the
script also specifies the various inputs and output files for
the jobs, as well as specify how the data is partition and
sorted between the Map and Reduce stages.

An example job is shown in the Algorithm 7. The code
specifies a single map-reduce job, with 100 mappers and
50 reducer processes. The paths to datasets for input and
output are specified, along with the storage format (AvroS-
torage and Rubix in this example). Two set of operator se-
quences are defined, for mappers and reducers, respectively.
The output of mapper operator sequence is partitioned on
(colA) and sorted on (colB, colA) before delivering it as in-
put to the reducer operator chain.

A computation may comprise of multiple jobs, and each
job can be represented by a block of code between begin and
end job. Dependencies between the jobs can be established
by their input and output requirements.

Execution. A job executor parses the input script and exe-
cutes these jobs, in the order of their dependencies on each
other, as separate Map-Reduce programs. First, the job ex-
ecutor determines the order in which the jobs need to be
run by performing a topological sort based on the input and
output of the jobs. Once the order of the jobs is determined,
the execution of each job is the responsibility of the phase
executor. Independent jobs are run in parallel.

The phase executor first topologically sorts the (directed
acyclic graph of) operators with in a phase. That is, the
operators themselves are ordered in the order in which they

Algorithm 7 Example job specification

1: Begin Job
2: Name “example job”
3: Num-Mappers 100
4: Num-Reducers 50
5: Input inputpath Using AvroStorage
6: Output outputpath Using Rubix
7: Begin Map // sequence of operators to execute
8: b1 = LOAD Input
9: End Map
10: PARTITION b1 ON colA SORT ON colB, colA
11: Begin Reduce // reducer operator sequence
12: b2 = CREATE BLOCK FROM b1 BYSIZE 100MB ON

colA;
13: STORE b2 as Output;
14: End Reduce
15: End Job

need to be run (for instance, in a left to right ordering, an
operator can depend only on the operators to its left in the
ordering).

The phase executor instantiates the operators in order of
the topological sort of the operator sequence. The order-
ing ensures that when an operator is instantiated, all its
parent operators are already instantiated. The phase execu-
tor then determines the last operator, which is the output
of this sequence, and now it pulls data from this operator;
and this operator, in turn, pulls data from its parent oper-
ators. The data is, therefore, successively pulled from child
operator from their respective parent operators. The phase
executor pulls data from the last operator, until no more
data is available. When this happens, the phase executor
determines that the operator sequence is exhausted and the
current phase is terminated.

6. CASE STUDY: LINKEDIN’S EXPERIMEN-
TATION PLATFORM

Rubix is actively used in production by various use cases.
We describe one particular use case in detail where we have
applied the proposed primitives and used all aspects of the
system describe so far.

Rubix is a key component powering LinkedIn’s experi-
mentation platform. This is the A/B testing platform for
experimenting with new features on the site and measure
their impact on various di↵erent metrics. We describe the
problem at an abstract level to keep the description simple.

Rubix is used to address joins and aggregations over two
large (independent) streams of datasets. One stream of data
set, let us call it, Table A, has information about various
metrics measured on the site and the value of these met-
rics. These metric values are at a per member level, and
hence contain (metric, value, memberId, date). The second
stream, called Table B, contains details about the members’
assignment to experiments and associated attributes, such
as the variant of the experiment (control/treatment), seg-
ment, and date (experiment, segment, variant, memberId,
date). Experiments are added and retired daily, and each
experiment chooses a set of users based on various dynamic
conditions. These tables already have data aggregated on a
per-day basis (by upstream jobs).

1470

Jo
b$
Pr
ofi

le
$

Execu.on$Time$

#MRJobs$

Re
so
ur
ce
s$

In
te
rm

ed
ia
te
$$

&
$F
in
al
$$I
/O

$

M/R$Slots$

Total$
Task$Time$

2hr$

30min$

29$
6$

19219$
3679$

576.95hr

332.31hr

Bytes$Read$

Bytes$WriDen$

7.7TB
4.5TB

1.5$TB$$

6.39$GB$$

agg_rolling7_unique_searchers_697_699_700$

PIG$

RUBIX$

Figure 4: Performance comparison of a script in production running on Pig vs Rubix.

Analyzing an A/B test involves statistical calculations
such as mean, variance, etc. These calculations are run not
just on a daily basis, but also run across days, even up to
months. These calculations are driven by another dataset,
Table C, which includes the (multiple) date ranges for which
an experiment’s impact needs to be measured: (experiment,
start date, end date). While joining the first two datasets
is complex enough, due to the dimensionality of the fields,
this third dataset e↵ectively leads to another explosion in
the joins along time dimension. Finally, the time ranges we
process the total data for can go as far back as three months.

To give an idea of the number of records, Table A and B
contain about 70 Billion (about .5TB in size) and more than
500 Billion records (about 10TB in size) over three months.
There are about 6000 entries in Table C. Ultimately we need
to compute mean and variance to generate (experiment, seg-
ment, variant, metric, start date, end date, mean, variance).
Lift and statistical significance calculation for a set of met-
rics for all members who were exposed to multiple variants of
the same test involves a join on memberId and time range.
Variance involves the sum of square calculation (which is
quite well-known). In this case when generating lift and
statistical significance reports for multiple time ranges, the
correct way to perform the calculation is to compute the to-
tal member response for each time range and then take the
sum of squares since the memberId is both the randomiza-
tion and analysis unit [13]. This requires going back to the
base dataset and hence cannot be done using daily aggre-
gates. This means that we need to process all these datasets
each day in entirety.

Experience Running on Hive Before building the Rubix
framework, in fact, we tried to compute these aggregates on
Hive (about a year ago). Despite months of e↵ort by several
developers and heavy optimizations, Hive did not process all
these queries successfully, even though the data was much
smaller back then. At the time, even optimized hive queries
on a smaller dataset took over 40 hours and still did not
finish successfully. In order to execute these queries faster,
we started building out the basics of a framework, which
lead to Rubix.

Performance on Rubix. To give an intuition on the sav-
ings in memory size of the hash table during computation,
here are some concrete numbers. We see about 500 distinct
metrics, about 2000 unique (experiment, segment, variant)
combination, about 30 date ranges per grouping key. This
means that we see about 30M unique grouping keys. This is
without any dimension-based drill downs. 30M keys do not
fit in 1GB of memory (usual configuration we use for mapper
and reducers). MeshJoin brings down the memory require-
ment to O(1). In another flow, we perform the same compu-
tation with member dimension drill downs. With 5 di↵erent
dimensions, each having about 10 values on an average, even
if we assume only 10% of the values are seen, we see a 5x
explosion of the hash table size in naive joins/aggregations.
In other flows we see drill downs on 2-level and 3-level com-
binations of dimensions which further increase the number
of entires by 10s of times.

Rubix is able to perform these computations in the or-
der of hours. About 2 hours are spent in doing DUGens
on the two datasets. The calculation of the aggregates take
between 1.5 hours to 4 hours depending on the level of drill
downs. All the mappers and reducers are configured to con-
sume only 1GB of memory. The times reported include quite
a bit of wait time for mappers and reducers to get scheduled
(which depends on the load on the cluster). These calcu-
lation jobs have been in production since August 2013 on
Rubix, as a key component powering the A/B testing plat-
form.

7. EVALUATION
We present evaluation results from two applications that

are using Rubix.

7.1 Join and Grouping Set Computation
We translated an existing script that used to run on Pig

into Rubix and then ran the two scripts on identical datasets.
The script mainly involved joining two large datasets (after a
set of filters) on memberId and computing 8 group bys with
count distinct aggregate on memberId. The input datasets
were of sizes 2TB and nearly 200 GB. These datasets had

1471

about 20B records and over 350M records respectively. We
present a comparison of the resources consumed and the
time taken by the two scripts in Figure 4.

When we executed the script in Pig, it compiled our script
down into a series of 29 MapReduce jobs. Notably, each
group by was computed in a separate job where each job read
the results of the join. Rubix, on the other hand, was able
to perform everything in the script in 6 MR jobs by packing
the operators more compactly. As a concrete example, our
Cube operator could compute the 8 group bys in a single
job, there by reducing the 7 jobs just from aggregation part
of the script. Other optimizations include not materializing
the join results to disk, and avoiding duplicate reads of the
same dataset, which Pig performed due to what seemed like
a sub-optimal plan generation.

In terms of the total execution time, Rubix was about 4x
faster than Pig. The reasons for this speed up includes fewer
jobs spawned, less data read, less data written, and much
fewer overall number of map and reduce slots. Reducing the
number of jobs not only eliminates the job run time, but
also the wait times in the queue. The MR slots were sig-
nificantly reduced to 3.6K from nearly 20K, a big chunk of
that was due to avoiding separate jobs for group bys and
avoiding unnecessary reads. Only final results and DUGen
results were written out by Rubix, while Pig wrote tempo-
rary results from each job. The total task time was only cut
down by about half because computing the group bys were
quite time consuming compared to reading or writing the
data (in this script).

We have seen similar advantages in other scripts we have
translated to Rubix. As a result, Rubix is seeing faster
adoption to replace such Pig scripts within LinkedIn.

7.2 Cube Computation
This application is using Rubix to run OLAP Cube on a

fact table with 10 dimensions to compute count distinct on
the measure. This team started using Rubix after Pig was
unable to complete this query in under a day despite signif-
icant optimizations. We took a sample data, of about 100M
tuples, from this application and ran it for varying num-
ber of dimensions on both the optimized Pig script and the
corresponding Rubix script to compare their performance.

Figures 5 and 6 show the run time and the number of
tuples shu✏ed between the M/R stages during cube compu-
tation. Note that both the graphs are in log scale. Rubix
script used the Cube operator for this query. Even though
Rubix had an additional job to do DUGen on the fact ta-
ble, the run time taken was nearly 2 orders of magnitude
smaller. For 8 dimensions, Rubix took about 13 mins in-
cluding DUGen but Pig took over 5 hours. For 10 dimen-
sions, Rubix took a little less than an hour, but Pig was
projected to take over 43 hours. Rubix’s remarkable perfor-
mance is due to in-memory aggregation performed by the
Cube operator using the hash table before flushing partial
results to the reducer. This aggregation reduces the number
of tuples shu✏ed between M/R stages by about 2 orders
of magnitude as seen in Figure 6, which leads to the cor-
responding improvement in run time. For instance, for 8
dimensions, Pig shu✏ed about 15B tuples while Rubix only
shu✏ed 82M tuples. We had set the hash table size to be
2M entries (with 1GB memory for the mappers), but this
can be increased to improve aggregation (and hence reduce
the tuples shu✏ed and improve performance) further.

 0.1

 1

 10

 100

 4 5 6 7 8 9 10

of

 H
ou

rs

of Dimensions

Pig
Rubix

Figure 5: Time taken for Cube computation.

 10
 100

 1000
 10000

 100000
 1e+06
 1e+07
 1e+08

 4 5 6 7 8 9 10

of

 K
ey

s
Sh

uf
fle

d
(K

)
of Dimensions

Pig
Rubix

Figure 6: Number of Keys shu✏ed across M/R.

8. DISCUSSION
Data Units need to be created first in our model before

running computations. There are common scenarios where
we can reduce or even remove the overhead of DUGen.

Incremental DUGen. When a calculation processes data
spread over weeks or even months, the time spent during
DUGens re-organizing the data can be expensive. To alle-
viate this we can adapt an incremental strategy that only
re-organizes the data generated for the current day using
the same index as the consolidated and re-organized data
set inclusive of all days other than the current day. Thus we
have matching pairs of DUs, a large unit from the original
consolidated data set, and a small unit from the daily delta
which was DUGen-ed using the same index. We then pro-
vide a merged Input format, which o↵ers an abstraction of
a unified data unit that contains tuples from both the large
and the small data unit in the order corresponding to the
sort key.

The incremental delta DUs created on a daily basis, how-
ever, should be merged into one consolidate unit at some
point. This could either be done after the daily calculation
or on a periodic basis (once every week, etc.). This way the
DUGen overhead is removed form the path of the calculation
SLA.

Data Units using Persistent Indices. Shu✏e join is a
commonly used operator and we can completely avoid the
jobs needed for DUGen and DUGen by Index by caching
indices on frequently seen join keys and datasets. We can
maintain these indices on join keys as persistent objects (cre-
ated upon first run) and use them to shu✏e the two datasets
(member data and another fact table for join, for e.g.), we
can then dynamically create DUs on the reducer and join the

1472

DUs. The index used for DUGen constrains the size of the
DUs of the primary data set to be memory resident. This
primary data unit tuples appear first on the reducer (ac-
complished by setting appropriate comparator properties).
Then an in memory block is created for the primary. The
secondary data unit tuples are streamed and we can do a
merge join.

9. RELATED WORK
Hive [12, 5] and Pig [6] have a few optimization to im-

prove the e�ciency of joins on large tables. Hive’s “skewed”
join aims to reduce the skew in joins by sampling the data
first and computing a histogram of the key space. Then it
partitions one of the tables using this histogram to parti-
tion the key space in a skew-aware manner, and streams the
other table. Hive’s bucket map join is an optimization where
the tables are divided into buckets (or partitions), and the
appropriate buckets from the two data sets are loaded on
the mappers to perform the join. Both these optimizations,
however, are not e↵ective in improving the performance of
aggregation. Due to lack of control on the sort order of the
data within a bucket or partition, they still require a shu✏e
of the joined data in order to compute the aggregates.

A recent paper, Nandi et al. [11] proposed partitioning
strategies for scaling the computation of OLAP Cubes in
MapReduce setting. Specifically, they proposed value par-
titioning for semi-algebraic aggregates, where in a sampling
program estimates the number of records for di↵erent re-
gions of the cube and uses it to partition the tuples shu✏ed
to avoid over-burdening a reducer. While this is an improve-
ment over the naive cubing implementation on MapReduce,
this still requires shu✏ing a large number of tuples (each
tuple explodes to as many tuples as the number of ancestors
to compute) across mappers and reducers. Our proposed
operators, on the other hand, performs aggregation on the
mappers and shu✏es only partially aggregated results.

Cascading [1] and Scalding [2] are frameworks designed
with a focus on making it easier to program MapReduce
jobs via simple Java and Scala APIs. While there are a few
optimizations specifically on join strategies, the primitives
in Rubix are more general and can improve the e�ciency of
join and aggregation operators.

Apache Tez [7] is a framework that aims to improve the
performance of the Hadoop framework itself by o↵ering pat-
terns such as Map-Reduce-Reduce, and providing the abil-
ity to run a DAG of jobs etc. The primitives o↵ered by
Rubix and Tez are complimentary in nature. While Ru-
bix currently works on Hadoop, by implementing the same
primitives on Tez, we believe, that the applications can see
amplified performance improvements.

Apache Spark [3] is a framework specifically designed for
interactive and iterative computations such as machine learn-
ing and graph computations. Resilient Distributed Datasets
(RDDs) in Spark, are particularly e�cient when the cached
data fits in memory and it is reused in future iterations.
Rubix on the other hand has focused on the problem of per-
forming joins and aggregations on large data sets, that do
not fit in memory, e�ciently. To our knowledge, Spark, as
is, will shu✏e datasets for joins and afterwards before group
bys, there by hitting the same limitations as that of Hive or
Pig. Rubix blocks, on the other hand, might be useful for
iterative computations, which we plan to explore as a part
of future work.

10. CONCLUSIONS
We have described Rubix, LinkedIn’s contribution to Big

Data analytics platforms. Rubix has several novel primi-
tives for scaling complex joins and aggregations on Big Data.
We described the data organization primitives, computation
primitives, and primitives for partitioning the data to reduce
skews and aggregation overheads. We have shown how these
primitives help in reducing the cost of aggregation inherent
in existing implementations of Map Reduce-based frame-
works for query execution. We are leveraging the advantages
of Rubix in production at LinkedIn for various applications.
We wish to o↵er these advantages to a larger community
and are working on open-sourcing Rubix in the near future.

11. ACKNOWLEDGMENTS
We are grateful to many folks who have helped us in build-

ing Rubix. We wish to thank the Data Analytics Infrastruc-
ture team and the management for all their support. We
specially want to thank our early adapters in the company:
the XLNT team, the Plato team, and the SPI team.

12. REFERENCES
[1] Cascading.

https://github.com/Cascading/cascading.
[2] Scalding.

https://github.com/twitter/scalding/wiki.
[3] Spark. http://spark.apache.org/.
[4] Apache. Apache hadoop.

http://hadoop.apache.org/.
[5] Apache. Apache hive. http://hive.apache.org/.
[6] Apache. Apache pig. http://pig.apache.org/.
[7] Apache. Apache tez.

http://hortonworks.com/hadoop/tez/.
[8] B. Chattopadhyay, L. Lin, W. Liu, S. Mittal,

P. Aragonda, V. Lychagina, Y. Kwon, and M. Wong.
Tenzing a sql implementation on the mapreduce
framework. In Proceedings of VLDB, 2011.

[9] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. In Proceedings of
OSDI, 2004.

[10] M. Kitsuregawa, H. Tanaka, and T. Moto-Oka.
Application of hash to data base machine and its
architecture. New Generation Computing, 1(1):63–74,
1983.

[11] A. Nandi, C. Yu, P. Bohannon, and R. Ramakrishnan.
Data cube materialization and mining over
mapreduce. Knowledge and Data Engineering, IEEE
Transactions on, 24(10):1747–1759, 2012.

[12] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
N. Zhang, S. Antony, H. Liu, and R. Murthy. Hive-a
petabyte scale data warehouse using hadoop. In
Proceedings of ICDE. IEEE, 2010.

[13] L. Wasserman. All of statistics: a concise course in
statistical inference. Springer, 2004.

1473

