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ABSTRACT

Column-oriented database systems have been a real game
changer for the industry in recent years. Highly tuned and
performant systems have evolved that provide users with the
possibility of answering ad hoc queries over large datasets
in an interactive manner.

In this paper we present the column-oriented datastore
developed as one of the central components of PowerDrill'.
It combines the advantages of columnar data layout with
other known techniques (such as using composite range par-
titions) and extensive algorithmic engineering on key data
structures. The main goal of the latter being to reduce the
main memory footprint and to increase the efficiency in pro-
cessing typical user queries. In this combination we achieve
large speed-ups. These enable a highly interactive Web UI
where it is common that a single mouse click leads to pro-
cessing a trillion values in the underlying dataset.

1. INTRODUCTION

In the last decade, large companies have been placing an
ever increasing importance on mining their in-house data-
bases; often recognizing them as one of their core assets.
With this and with dataset sizes growing at an enormous
pace, it comes as no surprise that the interest in column-
oriented databases (column-stores) has grown equally. This
spawned several dozens of research papers and at least a
dozen of new column-store start-ups, cf. [2]. This is in ad-
dition to well established offerings, e.g., by MonetDB [25],
Netezza [26], or QlikTech [30]. Since 2011 all major commer-
cial database vendors actually provide column-store tech-
nologies (cf. [25]).

Typically, these products are deployed to import existing
databases into the respective column-store. An OLAP or
OLTP, i.e., SQL, interface is provided to then mine the data
interactively. The key advantage shared by these systems is
that column-oriented storage enables reading only data for

nternal project name only, following a Google tradition of
choosing names of wood-processing tools for “logs” analysis.
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relevant columns. Obviously, in denormalized datasets with
often several thousands of columns this can make a huge dif-
ference compared to the the row-wise storage used by most
database systems. Moreover, columnar formats compress
very well, thus leading to less I/O and main memory usage.

At Google multiple frameworks have been developed to
support data analysis at a very large scale. Best known and
most widely used are MapReduce [13] and Dremel [23]. Both
are highly distributed systems processing requests on thou-
sands of machines. The latter is a column-store providing
interactive query speeds for ad hoc SQL-like queries.

In this paper we present an alternative column-store de-
veloped at Google as part of the PowerDrill project. For
typical user queries originating from an interactive Web Ul
(developed as part of the same project) it gives a perfor-
mance boost of 10-100x compared to traditional column-
stores which do full scans of the data.

Background

Before diving into the subject matter, we give a little back-
ground about the PowerDrill system and how it is used for
data analysis at Google. Its most visible part is an interac-
tive Web UI making heavy use of AJAX with the help of the
Google Web Toolkit [16]. It enables data visualization and
exploration with flexible drill down capabilities. In the back-
ground, the “engine” provides an abstraction layer for the UI
based on SQL: the user constructs charts via drag’n’drop op-
erations, they get translated to group-by SQL queries, which
the engine parses and processes. It can send out such queries
to different backends, e.g., Dremel, or execute them directly
on data stored, e.g., in CSV files, record-io files (binary for-
mat based on protocol buffers [29]), or in Bigtable [10]. The
third large part of the project is the column-store presented
in this paper.

The Web Ul is very versatile; it allows to select arbitrary
dimensions, measures, and computed values for grouping
and filtering. The dimensions can have a large number of
distinct values, such as strings representing Google searches.
A user can quickly drill down to values of interest, e.g., all
German searches from yesterday afternoon that contain the
word “auto”, by restricting a set of charts to these values.
For these reasons, pre-aggregation or indexing of data does
not help and we need to query the raw data directly.

The nature of the use cases enabled by this Ul demand
for high availability and low latency. Examples of such use
cases include: Responding to customer requests, spam anal-
ysis, dealing with alerts in highly critical revenue systems,
or monitoring and assessing changes to production systems.

The system has been in production since end of 2008 and



was made available for internal users across all of Google
mid 2009. Each month it is used by more than 800 users
sending out about 4 million SQL queries. After a hard day’s
work, one of our top users has spent over 6 hours in the
UI, triggering up to 12 thousand queries. When using our
column-store as a backend, this may amount to scanning as
much as 525 trillion cells in (hypothetical) full scans.

The column-store developed as part of PowerDrill is tai-
lored to support a few selected datasets and tuned for speed
on typical queries resulting from users interacting with the
UI. Compared to Dremel which supports thousands of dif-
ferent datasets (streaming the data from a distributed file
system such as GF'S [15]), our column-store relies on having
as much data in memory as possible. PowerDrill can run
interactive single queries over more rows than Dremel, how-
ever the total amount of data it can serve is much smaller,
since data is kept mostly in memory, whereas Dremel uses
a distributed file system.

This and several other important distinctions, enable han-
dling very large amounts of data in interactive queries. Con-
sider a typical use case such as triggering 20 SQL queries
with a single mouse click in the Ul In our production sys-
tem on average these queries process 782 billion cells in 30-40
seconds (under 2 seconds per query), several orders of mag-
nitude faster than what a more traditional approach as used
by Dremel could provide.

Contributions
The main contributions presented in this paper:

e We describe how—unlike in most column-stores—the
data is partitioned and organized in an import phase
(Section 2.2). This enables skipping and caching large
parts of the data: on average in production 92.41% is
skipped and 5.02% cached, leaving only 2.66% to be
scanned (see also Section 6).

Their main goal is to support the partitioned layout
of the data and to enable quick skipping of chunks of
data. For optimal usage it is assumed they can be held
in memory.

Experiments show that these simple data-structures
also directly give performance benefits of around 100x
or more on full scans, compared to two row-wise stor-
age formats and Dremel’s column-store (Section 2.5).
Note that for these experiments we do not partition
the data at import.

When dropping the “in memory” assumption, a still
impressive factor of 30x can be achieved.

In Section 3 we present several successive “algorithmic
engineering” choices to improve key data-structures.
The aim being to reduce the memory footprint for cer-
tain typical cases. We pin-point the effects of individ-
ual optimizations with experiments measuring mem-
ory usage. E.g., for the important case of a field with
many distinct values, we obtain a reduction of 16x.

In Section 4 we describe how queries may be computed
in a distributed manner on a cluster of machines. In
Section 5 we present selected extensions and finally
in Section 6 the highly distributed setup of the actual
productionized system running on over 1000 machines.

We present the basic data-structures used in Section 2.3.
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We give measurements concerning the usage in prac-
tice which show the positive effect of the partitioning
(enabling to skip or cache large parts of the data).

Related Work

For an introduction to OLAP and basic techniques ap-
plied in data-warehouse applications, see the Chaudhuri and
Dayal [11].

To obtain an overview of recent work on column-store
architectures, please see the concise review [2] and references
therein. The excellent PhD thesis by Abadi [1] can serve as
a more in-depth introduction and overview of the topic.

Recent research in this area includes, e.g., work on how
super-scalar CPU architectures affect query processing [9],
tuple reconstruction [17], compression in column-stores [34,
9, 3], and a comparison to traditional row-wise storage [4].
Kersten et al. [20] give a more open ended outlook on inter-
esting future research directions.

The plethora of open-source and commercial column-store
systems, e.g., [34, 25, 26, 30, 36] further demonstrates the
effectiveness of this paradigm.

Melnik et al. [23] recently have introduced Dremel to a
wider audience. As mentioned, its power lies in providing
interactive responses to ad hoc SQL queries over thousands
of datasets. It achieves this by streaming over petabytes
of data (stored, e.g., on GFS [15]) in a highly distributed
and efficient manner. This is also a key difference to the
column-store presented in this paper which heavily relies on
having as much data in memory as possible and therefore
only is used for a few selected data sources. Melnik et al.
also give a nice overview of data anlysis at Google and how
interactive approaches like Dremel’s complement the offline
MapReduce [13] framework.

Skipping over data in the context of colum-stores has been
explored by other authors, e.g., Slezak et al. [32] or Mo-
erkotte [24]. We give some details on these approaches in
comparison to ours in Section 2.1.

Reordering rows to improve the compression of column-
wise stored data has been investigated, e.g., by [18, 21, 3].
We give some details on this at the end of Section 3.

Notation and Simplifying Assumptions

For the remainder of the paper we will only consider im-
porting and processing data from single tables; which, e.g.,
correspond to log files at Google in the “protocol buffers”
format [29] or result from denormalizing a set of relational
tables in a database. We refer to such an instance as table
or just the data which has columns (also referred to as fields)
and rows (also referred to as records). In order to store pro-
tocol buffer records with nested and repeated records (i.e.,
lists of sub-records), PowerDrill supports a nested relational
model, cf. [5]. For ease of exposition, in the following we
focus on unstructured / flat records as opposed to records
which may, e.g., contain lists.

2. BASIC APPROACH
2.1 The Power of Full Scans vs. Skipping Data

As mentioned previously, the main advantage column-
stores have over traditional row-wise storage, is that only
a fraction of the data needs to be accessed when process-
ing typical queries (accessing often only ten or less out of
thousands of columns). Another important benefit is that



columns compress better and therefore reduce the I/O and
main memory usage.

A common characteristic of these system is that they are
in most cases highly optimized for efficient full scans of data.
In data mining use cases, such as ours, the queries are too
diverse for traditional indices being used effectively. The
where clause can be free form, allowing to restrict on arbi-
trary dimensions or even computated values (e.g., all web-
searches that contain the term “cat”).

As a rule of thumb, even in large database systems if more
than a certain, often small percentage of the data is touched,
a full scan is performed as opposed to using any indices.
The obvious benefits being less random access 1/0O, simpler,
easier to optimize inner loops, and very good cache local-
ity. The latter already easily accounts for a factor of 10 for
data which is in memory and when comparing scanning vs.
random access: an L2 cache access usually costs less than
1/10th of a main memory access, see, e.g., [12].

The logical next step is to try to combine the benefits of an
index data-structure (making it possible to skip data) with
the power of full scans. This can be achieved by splitting
the data into chunks® during import and providing data-
structures to quickly decide which chunks can be skipped
at query processing time. On each active, i.e., not skipped,
chunk a full scan is performed. For our application, par-
titioning is much more powerfull than traditional indices,
since partitions allow indexing by multiple dimensions and
enable covering lookups without duplication the data (such
costly duplication is, e.g., used by C-Store / Vertica as pro-
posed in [3]). Also, they can take advantage data corre-
lation, e.g., partitioning by country also helps to look for
web-searches that contain the term “cat”, since mostly En-
gish speaking countries would contain that word.

This is a generally applicable approach. Consider, e.g.,
the work of Bast and Weber [7] on a system for interactive
literature searches: the underlying data is preprocessed into
“blocks” such that for each search only one block needs to
be scanned.

The Brighthouse column-store [32] splits the data into
“packs” at the import stage. A “knowledge grid” data struc-
ture (also built during import) enables skipping such packs
when processing queries.

Moerkotte [24] describes “small materialized aggregates”
which also allow skipping chunks and is used in Netezza [26].
The approach is rather limitted, since it is only based on
comparing with min and max values per chunk. Moerkotte
points out that this works well for what he coins as “im-
plicit clustering”: the order of dates (like delivery-dates) is
often increasing when records are appended over time. E.g.,
restrictions such as WHERE delivery_date > "2012-01-01"
can be used to limit the chunks to scan. Compared to the
approach described in the present paper, this only covers
some very specific cases.

Slezak et al. [32] explicitly avoid complex preprocessing of
data during import for speed and data freshness. They give
references to other column-stores with similar approaches,
which include partitioning of data. The latter is more ex-
pensive at import time, but may enable skipping more data.

This is also the approach chosen for the column-store pre-
sented in this paper. In the next section we describe a simple
partitioning scheme which we apply at import time.

Zaka. blocks, packs, or parts
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2.2 Partitioning the Data

Most modern database systems provide multiple options
for partitioning tables, see [28] for an overview. In our case
we perform a composite range partitioning [28] to split the
data into chunks during the import.

Put simply, the user chooses an ordered set of fields which
are used to split the data iteratively into smaller and smaller
chunks. At the start the data is seen as one large chunk. Suc-
cessively, the largest chunk is split into two (ideally evenly
balanced) chunks. For such a split the chosen fields are con-
sidered in the given order. The first field with at least two
remaining distinct values is used to essentially do a range
split, i.e., a set of ranges are chosen for the field which de-
termine the first and the second chunk. The iteration is
stopped once no chunk with more rows than a given thresh-
old, e.g., 50’000, exists. This “heaviest first” splitting gen-
erally leads to very evenly distributed chunk sizes (for an
analysis in a theoretical framework see [8]).

In practice, a good heuristic is to let a domain expert
choose 3-5 fields which amount to a “natural” primary key
of the table. As an example, for PowerDrill’s own query-
logs the date, country, user name, and SQL query may be
a good choice. Note that after the partitioning these fields
are not treated specially in any way. Principally, any other
technique of splitting up the data would work as well.

In Section 6 we give experimental results for how well the
described partitioning scheme performs in our production
environment on actual user queries.

2.3 Basic Data-Structures

In this section we describe the basic layout used to rep-
resent the values of an entire column of the underlying ta-
ble. Since we are discussing a column-store system, each
column is stored and can be accessed independently of the
others. It is important to note that the order of the data
for all columns is the same and corresponds to the (possi-
bly reordered) rows of the original table. In other words,
when “synchronoulsy” iterating over all columns, the origi-
nal rows can be reconstructed. This property of having the
same order is important to correctly compute SQL queries
for the original table.

Let us now focus on a single column, say search_string,
and describe the basic data-structures with the help of a con-
crete example. We assume that the partitioning described
in the previous section has been performed and resulted in
3 chunks.® In chunk 0 we have the fictious queries [“ebay”,
“cheap flights”, “amazon”, ...]. The values of a column are
stored in a doubly indirect way using two dictionaries:

1. We introduce a global-dictionary which contains all dis-
tinct values of the original column, see the leftmost box
in Figure 1 for an example. The values are stored in
a sorted manner and can be accessed by their integer
rank also referred to as global-id (e.g., 9 — “la red-
oute”). Conversely, the global-dictionary can also be
used to look up the global-id of a given value (e.g.,
“ebay” — 5).

Per chunk we store a chunk-dictionary containing n en-
tries, one for each value / global-id occurring in that
chunk. The chunk-dictionary can be used to map oc-
curring global-ids to and from integer chunk-ids. These

3In the production system the data is also pre-split into
shards as a first step. See Section 4 for details.



Data Column: search_string

global-dictionary dict chunk 0 chunk 1 chunk 2
id search string chunk-dict elements chunk-dict elements chunk-dict elements
0 | ab in den Urlaub || cho.dict cho.elems chy.dict chy.elems cho.dict chs.elems
% 2&2@0&1{@5 id [ global-id id [ global-id id [ global-id
3 chaussures o 1 3 o 0 5 o 1 0
4 | cheap flights 1| 2 2 1|1 2 1| 3 0
5 |eba 2| 4 0 21 5 1 2] 5 2
6 faschingskostiime 3] 5 4 3| 6 4 31 10 4
7 immobilienscout 41 12 0 41 7 3 41 11 3
8 | karnevalskostiime 0 5] 8 0 4
9 | la redoute 2 0 4
10 | pages jaunes 1 1 5
11 | voyages snfc 3 5 2
12 | yellow pages 2 5 1

Figure 1: Fictious example illustrating the layout of the data in a single data column

are in the range {0,...,n — 1} and are assigned to the
sorted global-ids in an ascending manner, see the three
boxes to the right in Figure 1.

The actual values of the column are then represented by a
long sequence of chunk-ids per chunk, the so-called elements.

For example chunk 0 consists of elements [3, 2, ...] which
can be dereferenced by lookup in the chunk- and then the
global-dictionary to [“ebay”, “cheap flights”, ...]. With the

notation in the figure, to retrieve the element 3 in chunk 0
we find that dict(cho.dict(cho.elems[3])) = “yellow pages”.

There are numerous advantages of this special “double
dictionary encoding”. It makes it easy to determine which
chunks are not active (can be skipped) when processing a
query, see next section. Dictionary encodings are a common
approach to compress data. Therefore, it is not surpris-
ing that our basic data-structures have small memory foot-
prints. See Section 2.5 for experiments which show that this
is achieved even for the case where the entire data is treated
as one large chunk. These experiments also show that the
encoding is particularly well suited for efficiently computing
group-by computations over a single field. The second indi-
rection introduced by the chunk-dictionaries has the effect
that the elements are comprised of values from a small range
of consecutive integers. This is advantageous when further
optimizing the memory footprint, see Section 3.

So far we have introduced the general layout of the data
structures used. The actual underlying representation of the
data depends on the data type and some other factors. It
can be as different as a trie (prefix tree) or bit compressed
representations tuned to storing numerical values, see Sec-
tion 3 for more details on this.

For the following two sections we consider simple, “canon-
ical” implementations: For strings like search_strings we
use sorted arrays for the global-dictionaries. With this, a
lookup by global-id is an array access. For determining the
rank of a string, one may use binary search. Global-ids and
chunk-ids can be stored as 32 bit int values. The chunk-
dictionaries are then sorted int arrays of global-ids and the
elements are ordered (but not necessarily sorted) int arrays
of chunk-ids.

To go from a ch;.elem value e; to the underlying value of
the data column one can then first determine the global-id
of e; by a simple lookup in the ch;.dict array followed by
a lookup in the dc.dict array. For the other direction, for
a given search_string ¢s do a binary search in dc.dict to
determine the rank / global-id of gs, followed by a binary
search in ch;.dict to determine the element’s chunk-id.
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2.4 How to Evaluate a Query

With the help of the following example query we wish to
convey the general idea of how to compute SQL queries on
the basic data-structures introduced in the previous section.

SELECT search_string, COUNT(*) as ¢ FROM data
WHERE search_string IN

("la redoute", "voyages sncf")
GROUP BY search_string ORDER BY c¢ DESC LIMIT 10;

First it is determined which chunks are active, i.e., contain
data that matches the where condition. A lookup of the
global-ids for the strings in the IN statement gives (9, 11).
Now the chunk-dictionaries are checked for these two global-
ids with the finding that 9 is not contained in any chunk
and 11 only in chunk 2. In other words, there is only one
active chunk.

To evaluate the group-by statement per chunk, an integer
array counts with the same size as the chunk-dictionary,
say n, is created (here n = 5). We then add up the counts
in a loop over the elements, i.e., counts[elements [row]]++
with row in {0,...,n — 1} and elements[row] IN (4), the
chunk-id corresponding to the global-id 11. This gives the
COUNT(*) values for one chunk. For the overall result a
hash-table storing global-id to counts is updated. In the
end, the order of all occurring global-ids is determined, the
limit applied, and finally the original values looked up in
the global-dictionary. Here this gives only one result row:
(“chaussures”, 3). As we will see in the next section, using
a simple array for incrementing counts in the inner loop has
important performance benefits.

In the discussion of the example above we introduced the
special treatment of IN expressions when deciding which
chunks and which rows are active. To cover many typical
cases resulting from users “drilling down” into subsets of the
data, the system provides special support of the following
operators: AND, OR, NOT, IN, NOT IN, =,

2.5 Basic Experiments

In this section we present some initial experiments on
canonical implementations of the basic data-structures de-
scribed in Section 2.3. For these experiments (and for all
others except the results presented for the production sys-
tem in Section 6) we measure the performance of full scans.
Le., we do not measure the effect of skipping / caching data
by making use of the partitioning scheme described in Sec-
tion 2.2. In effect, for this section we actually do not parti-
tion the data at all and instead treat it as one large chunk.



We compare latency and memory usage of the basic data-
structures with other data formats and backends: CSV,
record-io (binary format based on protocol buffers [29]), and
Dremel (as mentioned in the introduction, Dremel is a high
performance column-store developed at Google). The for-
mats CSV and record-io are evaluated by backends devel-
oped as part of the PowerDrill project.

We have performed the same experiments on each of the
successive optimizations presented in Section 3. This way we
can nicely pin-point which effects on the memory footprint
individual “algorithmic engineering” choices had.

Let us start by introducing the data and SQL queries used
for the experiments. For realistic input data we decided to
simply use our own logs as source. PowerDrill is used by
many teams across Google; in the last years the system has
processed more than 60 million queries. We log various facts
and metrics for each of these queries. For our experiments
we have extracted 5 million rows with the fields timestamp,
table name, latency, and country. Since our system is
used over a large variety of data-sets, the table name is ac-
tually a field with many distinct values (several 100K; note
that these logs contain queries against all backends, includ-
ing Dremel which provides access to many different tables
and for which table-names usually include the date). Such
fields deserve special attention: they are a lot more resource
intensive than others. The experimental results will high-
light some of the characteristics of these fields. The field
country on the other hand of course has only few distinct
values, 25 to be concrete. Note, this is the country in which
the user’s office is located.

On this data we issue three different SQL queries which
exhibit distinct properties of the corresponding backends for
typical corner cases.

Query 1: top 10 countries
SELECT country, COUNT(*) as c FROM data
GROUP BY country ORDER BY c DESC LIMIT 10;

Query 2: number of queries and overall latency per day

SELECT date(timestamp) as date, COUNT(*),
SUM(latency) FROM data

GROUP BY date ORDER BY date ASC LIMIT 10;

Query 3: top 10 table-names
SELECT table_name, COUNT(*) as c FROM data
GROUP BY table_name ORDER BY ¢ DESC LIMIT 10;

For each of the backends we ran the queries 5 times on
a single commodity machine (2.6 GHz, 8GB RAM, Linux
0S) in a single thread, flushing the disk caches before each
run. This simulates a realistic streaming situation for CSV,
record-io, and Dremel. For the basic data-structures de-
scribed in 2.3 we assume they fit entirely in memory (note
that this is one of the key differences of our system and
motivates the extensive optimizations presented in 3). Ad-
ditionally to the average latency of these 5 runs, we mea-
sured the memory usage. l.e., for Dremel and our own data-
structures this reflects only the columns present in the indi-
vidual queries. For CSV and record-io the entire data size is
reported, since these are row-wise formats and therefore the
entire data needs to be streamed over to compute results.

Discussion of Results

Table 1 shows the results for CSV, record-io, Dremel, and
our basic data-structures. We will start by discussing the
first three systems and then give some explanations for the

1440

at first glance surprising outcome concerning our own data-
structures.

Table 1: Comparing CSV, record-io, Dremel, and
our own, basic data-structures

Latency in ms Memory in MB
Query 1 2 3 1 2 3
CSV 55’099 75’207 71778 | 573.3 573.3 573.3
rec-io 27’134 50’587 39’235 | 551.1 551.1 551.1
Dremel 7874 18191 48628 | 279 604  90.8
Basic 20 214% 686 | 20.0 41.5 91.2

Comparing the latencies for CSV, record-io, and Dremel,
the superiority of Dremel is clearly visible for Query 1 and
Query 2 with speed-ups of 2.7-7x. Interestingly, for Query 3
the difference is basically negligible. The overhead of the
actual group-by computation for table name dominates ev-
erything else. Note that the field has many distinct values,
leading to large internal hash-tables; computing the hashes
themselves on possibly large strings is already computation-
ally quite expensive.

Notice the increase in latency comparing Queries 1 and 2
across all backends / formats. This stems from the some-
what expensive computation of the function date(..) and
the additional sum in the group-by statement.

It is important to point out that I/O—i.e., streaming from
disk—is not the main bottleneck for any of the queries. Con-
sider for instance that the latencies for Query 3 are relatively
similar, but that CSV and record-io need to stream more
than 500 MB compared to Dremel which only needs to load
90 MB. Generally speaking, it is reasonable to assume a
streaming rate of at least 100 MB /second for pure I/O dur-
ing these experiments. This gives an overhead of at most 1
second for all of the queries in Dremel and about 5 seconds
for CSV and record-io.

Let us now have a closer look at the results for our basic
data-structures. The first big surprise is that Query 1 can
be computed in 20 milliseconds where the other backends
take at least 7 seconds. The reason for this is quite sim-
ple. By choice the encoding we use is extremely beneficial
for group-by statements over single fields. The inner loop
basically boils down to executing the following statement 5
million times: counts[elements[row]]++, where row is the
current row, elements[row] gives the chunk-id stored in
country’s elements array for that row (see also Section 2.3),
and counts is a relatively small array (with the number of
distinct countries as cardinality). This compares favorably
to more generic implementations which use hash-tables and
can cope with multiple group-by fields®. The increase in
speed for Queries 2 and 3 is similar.

To obtain these extreme speed-ups, it is crucial to have
the data-structures in memory. Consider Query 3: after

40n first access, expressions such as date(timestamp) are
computed and materialized in the datastore as virtual
fields. We assume that this has happened before computing
Query 2. For more details see below and Section 5.

5In PowerDrill multiple group-by fields are combined into
one expression which is materialized in the datastore as an
additional “virtual” column. Such columns can be used in
the same manner as original columns.



identifying the top 10 chunk-ids for table_name integers (by
sorting all chunk-ids by their counts after the inner loop),
the original table name string values need to be looked up
in the dictionary. If the entire dictionary would need to be
loaded into memory only to look up these 10 integers, we
would lose a large part of the advantage.

But even if we drop this “in memory” assumption, we
would still see performance boosts greater than 30x com-
pared to Dremel (assuming an I/O streaming rate of 100
MB/second).

Interestingly, the memory usage of the uncompressed, ba-
sic data-structures is about the same as the memory usage
of Dremel’s compressed format. In other words, in these ex-
amples the simple dictionary encoding we use is already as
compact as the output of the generic compression algorithm
used by Dremel. The self-built encoding has the important
advantage of being ready to use (no need to decompress it
before usage).

As a final observation, notice that the latency of Query 2
for “Basic” is very small even though the expensive function
date(..) mneeds to be computed. This would be an over-
head that is basically the same across all backends. Here
our column-store profits from an important design decision:
all expressions on fields are materialized in the datastore.
I.e., on first execution a “virtual field” corresponding to
date(timestamp) is computed and stored in the same for-
mat as all other fields. This not only ensures reuse of data for
complex and costly expressions, it also enables using restric-
tions on such expressions to potentially skip entire chunks
(by using the chunk dictionaries), see also Section 5.

3. KEY OPTIMIZATIONS

Data-structures with small memory footprints are essen-
tial for the overall performance of our system: Compared to
other column-stores which can focus on efficiently stream-
ing (possibly from disk) all columns accessed by a query, we
heavily rely on as much data being in memory as possible.

Intuitively speaking, a column-store which does full scans,
accesses every entry of every column needed to process a
query. In a sense, all of the data is “touched” and there-
fore it is usually affordable to actually stream the data from
disk. The streaming incurs an overhead in the same order
of magnitude as the actual evaluation of the query.

In contrast, in our case we may only access a fraction
of the data represented, e.g., by the global- and chunk-
dictionaries. Loading these from disk for each query would
lead to a disproportionate overhead. To give a concrete ex-
ample, loading an entire dictionary for the table_name field
(from our experiments) from disk, would essentially bring
down the performance to the level of streaming all data,
i.e., doing full scans. In other words, to really profit from
the “basic data-structures” described in Section 2.3, we rely
on them being in memory whenever possible.

In this section we describe a selection of step-wise im-
provements we made to these data-structures. For each of
the steps we perform the same experiments as described in
Section 2.5; measuring latency and memory usage. This
enables us to nicely point out the effect of each of the opti-
mization in the various cases covered.

Partitioning the Data into Chunks
As a first step we measure the effect of partitioning the
data into chunks with the scheme described in Section 2.2.
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Recall that for our basic experiments we treated the entire
dataset as one large chunk. For the partitioning we use the
field order country, table name and we set the threshold
for the maximum chunk size to 50’000 rows. This leads to
about 150 chunks. The following table shows the memory
usage compared to Dremel and our basic data-structures
with a single chunk. Here and in all further experiments we
do not show the corresponding latencies, since they do not
change significantly (the main goal is to reduce the memory
footprint).

Query 1 2 3
Dremel 27.94 60.37 90.79
Basic 20.00 41.45 91.23
Chunks 20.07 47.99 91.32

The slight increase in size stems mainly from the many more
chunk-dictionaries which are now present. For Query 1
and 3 the increase in size is significantly smaller than for
Query 2. The reason being that the corresponding fields
country (Query 1) and table name (Query 3) are in the
field order used for the partitioning, therefore each chunk
has relatively few distinct values for these fields and hence
small chunk-dictionaries. In contrast Query 2 accesses the
latency field which has many distinct values for each of the
chunks.

Optimize Encoding of Elements in Columns

So far we took the simple approach of storing the “ele-
ments” (the chunk-ids which describe the actual values for
a column in a single chunk) as 32 bit integers. An obvious
optimization is to choose a better encoding which depends
on the size of the chunk-dictionary. If there is only 1 dis-
tinct value, we only need the size of the chunk, say n, and
the chunk-dictionary to “reconstruct” the original values.
This gives a constant O(1) overhead independent of n. Sim-
ilarly, in case there are two distinct values a bit-set suffices;
resulting in [n/8] bytes. We complete the picture by us-
ing 1, 2, and 4 bytes per chunk-id for the cases of at most
28 2'6 and 23? distinct values, respectively. Table 2 shows
the resulting improvement comparing the memory usage of
the elements and chunk-dictionaries only (left side) and the
memory usage overall (right side).

Table 2: Memory usage with optimized columns

Elements in MB Overall in MB
Query 1 2 3 1 2 3
Basic 20.00 40.73 24.21 | 20.00 41.45 91.23
Chunks  20.07 47.26 24.29 | 20.07 47.99 91.32
OptCols 0.08 22.26 14.29 0.08 22.99 81.32

The effect of this simple optimization is quite dramatic
for Query 1. 80 KB suffice to encode the entire column with
5 million values. The reason for this is that there are only
25 distinct countries in the dataset and the country field
is the first field in the order used for partitioning the data.
Therefore, most of the resulting chunks contain only 1 or
two distinct values giving a very compact encoding. IL.e., for
fields with few distinct values this gives big wins, which is
basically obvious by construction.

For the other two queries the savings are also significant,
but for the particularly important (and hard) case of a field



with many distinct values (table name in Query 3), the over-
all saving is still relatively small: from 91 MB down to 81
MB. In other words, the global-dictionary dominates the size
of the encoding. This gives rise to the next optimization.

Optimize Global-Dictionaries

As pointed out, the basic encoding of dictionaries may
be very large, they e.g., contain the verbatim strings of all
table-names. We made use of two properties when choosing
an improved encoding: the dictionaries are sorted (alpha-
numerically for strings) and in practice the stored values
often have long common prefixes. The requirements for
the desired small-footprint data-structure were to support
lookups in both directions, i.e., from string value to inte-
ger global-id and vice versa. For the former direction, tries
(prefix trees) seemed like an ideal choice. See, e.g., [31] for
a description of tries. We have implemented a high perfor-
mance trie data-structure which is built on a handcrafted
encoding stored in a large byte array. It relies heavily on
finetuned bit manipulations. In order to support efficient
lookups from global-id to string without incurring a large
memory overhead, the inner nodes are chosen to represent 4
bit parts of the represented strings (as opposed to the more
standard choice of characters). On lookup one can afford
to iterate over all children of each node along the path to
decide into which child to descend. This results in at most
16 operations per node.

In our experiments this trie data-structure drastically re-
duces the size of the global-dictionary for table name from
67.03 MB down to 3.37 MB. The overall memory usage of
Query 3 goes down from 81.32 MB (see “OptCols” in Ta-
ble 2) to 17.66 MB.

Generic Compression Algorithm

Let us now look at the easy and obvious optimization of
applying a generic compression algorithm on the encoding.
This is basically done by all column-stores, cf. [2]. As men-
tioned, the resulting excellent compression rates of column-
wise storage in comparison to row-wise storage constitutes
one of the key advantages of the columnar format. We use
Google’s own high speed compression algorithm Zippy, ex-
ternally available as Snappy [33]. In order to put the (so
far) successively introduced optimizations into perspective,
we apply Zippy to each of the resulting encodings: Ba-
sic, Chunks, OptCols, and the optimized global-dictionaries
OptDicts. The results are shown in Table 3 with the un-
compressed memory usage on the left for comparison and
the compressed memory usage on the right.

Table 3: Applying Zippy to the individual encodings

Uncompressed in MB | Compressed in MB
Query 1 2 3 1 2 3
Basic 20.00 4145 91.23 | 3.02 17.35 17.70
Chunks 20.07 4799 91.32 | 0.28 16.34 12.19
OptCols 0.08 2299 81.32 | 0.04 16.32 12.19
OptDicts 0.08 2298 17.66 | 0.04 16.32 12.40

The first point to notice is that Zippy achieves very good
compression ratios out of the box and can additionally profit
a lot from the partitioning. The reason being that the re-
sulting chunks each contain fewer distinct values. This is
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particularly visible for Query 1 where Zippy can compress
20 MB down to 0.28 MB after the partitioning was applied.
Another very interesting observation is that our further op-
timizations have virtually no effect on the size of Zippy’s
output for Queries 2 and 3. Consider the latter where our
own encodings reduce the size from 91.23 MB to 17.66 MB
and Zippy appears to hit a wall around 12 MB.

Qualitatively speaking, our OptCols and OptDicts encod-
ings exploit similar properties as a generic dictionary based
compression algorithm would (which does not use any ex-
pensive, entropy based techniques like Huffman codes). But
it is still surprising to see that in these cases the final size
almost seems like an invariant.

One relevant question to ask is why not just rely on the
good compression ratio of Zippy instead of going to the trou-
ble of hand-crafting encodings. The answer is that our en-
codings are ready to use without any preprocessing and are
even designed to allow random access; both to the elements
describing the columns and the dictionaries. This is a big
advantage, since, as pointed out, only small portions of the
data may be accessed.

Nevertheless, the additional gains of 1.4x—2x in compres-
sion ratio are significant. To avoid the performance penalty
(up to 2x in latency for these experiments), we decided to
use a hybrid approach with two “layers” of data-structures
held in-memory: uncompressed and compressed. Moving
items between these layers or finally evicting them entirely
can be done, e.g., with the well-known LRU cache eviction
heuristic.

Reordering Rows

The next step is to “help” Zippy in compressing the el-
ements (chunk-ids) representing the data columns. An ob-
servation made by Johnson et al. [18] and others is that by
reordering the rows one may improve the compression ratio.
In the setting studied by Johnson et al. reordering the rows
does not influence the results of computations. The same of
course also holds for SQL queries. They have proven that
the problem of finding an optimal reordering is NP-hard,
present heuristics, and test them on real-world data.

In the following we will describe how to apply this observa-
tion, give a qualitative explanation of why this can improve
the compression ratio, and recapitulate a somewhat surpris-
ing connection to the well-known traveling sales person prob-
lem, stated by Johnson et al. Finally, we will present the
simple heuristic we have chosen and give the corresponding
results in our experimental setup.

00—>00
13 00
02 02
13 12
00 13
12 13

Figure 2: Example of reordering 6 rows with two
columns. The reordered version on the right would
result in better compression when, e.g., using run-
length encoding

Figure 2 gives an example of how reordering can help com-
pression for two columns of elements / chunk-ids. Consider
the basic compression algorithm run-length encoding (RLE)
which replaces consecutive identical values with a counter



and the value itself. E.g., the column 0,0,0,1,1,1 would be
encoded as (3,0), (3,1).

For simplicity we now restrict to the case of columns with
only two values as bits 0 and 1. For this case the RLE
can be simplified to only storing the counters and not the
values themselves. Each time a bit is flipped, a new counter
is added, see Figure 3 for an example. This directly gives
an interesting characterization of the size of the encoding:
for row r the number of bits that differ compared to row
r + 1 give that row’s “contribution” to the total number of
counters. Consider the last row in the figure: for columns 1
and 3 two new counters are added on the right.
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Figure 3: Three columns of bits compressed with a
simplified RLE

In other words, the encoding sizeis ) ., distn(r,7+1),
where distp(r,r + 1) gives the Hamming distance between
two rows, i.e., the number of differing bits. One can interpret
each row of the input as a vector / point in Hamming space,
the d-dimensional space {0,1}?. The distance between two
points in Hamming space is the Hamming distance between
the two vectors. Each ordering of the original rows corre-
sponds to a path with these points. Figure 4 depicts three
rows and the corresponding path in Hamming space. The
weights on the edges give the Hamming distance between
two points.
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Figure 4: Three rows of bits and the corresponding
points in Hamming space and the path given by the
ordering

The objective of finding the ordering with the smallest
encoding can now be rephrased as finding the path of short-
est length. This corresponds to the well-known travelling-
salesperson problem (in Hamming space). Johnson et al. [18]
show that this problem is NP-hard. Earlier, Trevisan [35]
has proven that this problem is even hard to approximate
within a constant factor for d > logn. Johnson et al. in-
vestigate nearest neighbor heuristics and split the data into
ranges to deal with the otherwise quadratic runtime (in the
number of rows).

For our purposes we chose a very easy to implement heuris-
tic which in practice gives good results: we sort lexicograph-
ically by the field order chosen for the partitioning. This
has been investigated in more detail, e.g., by Lemire and
Kaser [21] or Abadi et al. [3]. The latter describes C-Store’s
/ Vertica’s approach of storing columns in multiple sort or-
ders in order to improve the query performance at the cost
of storing complete copies of the data.

In our experiments when considering the encoding of the
elements and chunk-dictionaries only (without the global-
dictionaries), this gives us an improvement of factors 1.2,
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1.3, and 2.8 for Queries 1, 2, and 3, respectively. This is
compared to compression without reordering.

Summary

In Table 4 we show an overview of the step-wise improve-
ments presented in this section, including Dremel for com-
parison.

Table 4: Summary of the step-wise optimizations
presented in Section 3, giving the overall memory
usage in MB for each of the variants

Query 1 2 3
Dremel 27.94 60.37 90.79
Basic 20.00 41.45 91.23
Chunks 20.07 47.99 91.32
OptCols 0.08 22.99 81.32
OptDicts 0.08 22.98 17.66
Zippy 0.04 16.32 12.40
Reorder 0.03 12.13 5.63

4. DISTRIBUTED EXECUTION

Distributing Data to many Machines

As described in the introduction, the column store pre-
sented in this paper is set up to run in a highly distributed
manner. For simplisity of exposition, we have so far only
considered a setup on one machine with a relatively small
amount of data. To scale up to be able to process billions
of rows, the data can be distributed to many machines and
processed in parallel.

We are mostly interested in group-by queries and for these
it is important that the individual machines do most of the
work rather than sending data to a central server. To achieve
that, we organize the machines as a computation tree and do
the grouping and aggregation on each level of the tree. For
this to work, we need to execute the aggregations on mul-
tiple levels. This is possible for SUM, MIN, and MAX, i.e. ag-
gregations that can be expressed by associative, binary op-
erations (e.g. SUM(a, b, c, d) = SUM(SUM(a, b), SUM(c,
d))). Or, if aggregations can be expressed by such associa-
tive ones, e.g. count(*) = SUM(1) and AVG(x) = SUM(x) /
SUM(1). We cannot support count distinct by that. There-
fore, we use use an approximative technique described in
Section 5.

To illustrate how we execute a group-by-query in parallel,
consider this simple query over two tables S1 and S2 (S1,
S2 could also represent parts of a table, also referred to as
shards):

SELECT a, SUM(x)
FROM (S1 UNION ALL S2) GROUP BY a;

we rewrite the query to:

SELECT a, SUM(x)
FROM (SELECT a, SUM(x) as x FROM S1 GROUP BY a)
UNION ALL
(SELECT a, SUM(x) as x FROM S2 GROUP BY a)
GROUP BY a;



Now the leaf level machines execute the inner select in
parallel and send the result to the root of the execution
tree. The root executes the outer select. This rewrite can be
applied recursively, to support deeper trees. The servers at
the leaf level execute “where” clauses and the root executes
any “having” statements.

One approach to distribute data may be to distribute the
chunks resulting from the partitioning. This is very bad
for load-balancing though, since machines that contain ac-
tive chunks may be heavily loaded while others—which only
contain chunks that can be skipped—are idle. A better and
actually very common approach is to start by sharding (i.e.,
distributing) the data quasi randomly across the machines.
Each shard is on one machine and is then partitioned into
chunks as described in Section 2.2. This achieves very good
load balancing across machines. It has the additional advan-
tage that the partitioning algorithm can be tuned to work
well for a bounded amount of input data. In practice each
PowerDrill shard has about 5-7 million rows.

Reliable Distributed Execution of a Query

In a cluster of commodity machines that may run arbi-
trary computations spawned by many users, the load on
individual machines may vary dramatically. In effect, in-
dividual machines may be completely blocked or may evict
processes on demand. One of the greatest challenges of mak-
ing a distributed column-store production ready is handling
these fluctuations well.

An important ingredient to getting this right for our setup
was to choose a good replication scheme. A query being
distributed to many machines is split up into sub-queries,
each being responsible for a certain, distinct part of the data.
Instead of sending each sub-query out to only one machine,
for reliability we send it out to two machines: the primary
and a replica. As soon as one of the two repsonses returns,
the sub-query is treated as “answered”.

Since the data is loaded dynamically to a machine the
first time it receives a query for it, it is important to keep
the primary and the replica as much in-sync as possible.
The overhead of not having the data fresh in memory on
the replica would otherwise be too large and would make
the replication scheme inefficient. Therefore, we chose to
always compute sub-queries entirely both on the primary
as well as on the replica, even if one of them returns early
(but we of course do not wait for the slower machine before
returning the overall result).

S. EXTENSIONS

In this section we briefly touch aspects and extensions of
the presented column-store which are important for the pro-
ductionized system, but for which detailed treatment would
be out of scope of this paper.

Complex Expressions

As previously mentioned, expressions such as in Query 2 of
our experiments date(timestamp) are computed once and
then materialized in the underlying datastore as “virtual
fields”. This has important performance benefits. The ex-
pression only needs to be computed once, consecutive ac-
cess can reuse the materialized data. Moreover, the spe-
cial support for the operators AND, OR, NOT, IN, NOT IN,
, !'= when deciding whether a chunk can be skipped, also
applies to such expressions. For example, for the expres-
sion date(timestamp) IN (’2012-02-29°, ...) the left
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side of the IN statement is materialized including the chunk-
dictionaries. For an individual chunk one can then quickly
check whether it is active, i.e., actually contains data for the
given dates at all.

In practice, having special support for AND, OR,... also
ensures that the number of expressions which are stored as
virtual fields is relatively small. User-given expressions are
split apart by these special operators as far as possible, be-
fore actually materializing an expression. Note that a lot of
the expressions resulting from typical interactions with the
Web Ul are actually conjunctions of IN statements, when
users are “drilling down” into subsets of the data. What re-
mains after splitting away the special operators are mostly
fields and in many cases common “building blocks”, i.e., ex-
pressions that are re-used frequently.

Count Distinct

For many analyses it is important to be able to quickly
compute the number of distinct values of a field grouped by
another field. As an example, consider counting the number
of distinct table_names per country. This can be a very
costly operation for fields with large numbers of distinct
values, both with respect to memory and runtime.

We have implemented an approximation algorithm for this
problem which was originally introduced in [14]. For an
elegant description (and analysis) of the variation which we
use, see the first algorithm in [6]. The basic idea of the
algorithm is to compute hash values of the field to count
distinctly. Of these hashes, the m smallest are determined
in a single pass. The threshold m is given by the user and is
typically in the order of a couple of thousand. The largest of
these m hashes, say v, can be used to approximate the count
distinct results by m/v, assuming that the hash values are
normalized to be in [0, 1], cf. [6].

We can profit from a very useful property of both the
global- as well as the chunk-dictionaries: the underlying val-
ues are sorted ascendingly. This helped in designing and im-
plementing a highly optimized data-structure for collecting
and storing the smallest m hash values. The data-structure
enables us to support count-distinct queries with compara-
tively small overhead.

Other Compression Algorithms

Additionally to the algorithm used for our experiments in
Section 3, we have tested 4 other commodity compression
algorithms, including variants provided by the standard li-
braries ZLIB and LZO. For ZLIB we tested settings with
and without additional Huffman coding. The latter gave
a perhaps surprising gain of additional 20-30% in experi-
ments, but came with the expected cost of being up to an
order of magnitude slower. As result of these experiments
we chose a variant of LZO for production, since it gave an
about 10% better compression ratio and was up to twice as
fast when decompressing compared to Zippy.

Further Optimizing the Global-Dictionaries

Even with the trie data-structure described in Section 3,
these dictionaries still can be huge in practice. When only
few chunks are active for a query, there is actually no need
to have the entire dictionary in memory. To this end, we
split a dictionary up into sub-dictionaries. One of these
representing the most frequent values, each of the others
representing values from several chunks combined. When
processing a query with few active chunks, only a few of



these sub-dictionaries need to be loaded into memory.

To further reduce the situations where a (sub-) dictio-
nary needs to be loaded into memory, we additionally keep
Bloom-filters for each dictionary. With these Bloom-filters
one can quickly check whether certain values are present in
a dictionary at all.

Improved Cache Heuristics

It is a known problem in disk-cache / paging algorithms
that one-time scans of large files may invalidate the entire
cache of pages when the LRU strategy is used, cf. [27]. Sim-
ilar effects can happen in our system when a single query
which accesses a lot of data is processed. We wish to avoid
cases where a such a query can negatively impact the caches
and therefore the performance of other queries. To this end,
we have implemented a more sophisticated cache eviction
policy, replacing LRU. We chose an approach similar to the
adaptive-replacement-cache presented in [22] and the 2Q al-
gorithm presented in [19].

6. PERFORMANCE IN PRODUCTION

Our productionized system is running on well over 1000
machines, the distributed servers altogether using over 4T
of main memory.

In a typical use case, a user triggers about 20 SQL queries
with a single mouse click in the Ul. On average these queries
process data corresponsing to 782 billion cells from the un-
derlying table in 30-40 seconds; under 2 seconds per query.
An individual server on average spends less than 70 millisec-
onds on a sub-query. These measurements and those given
below are collected over all queries processed during the last
three months of 2011.

The good performance is enabled by the optimized data-
structures and by a partitioning of the data which works well
for most restrictions used in queries. In practice, it actually
turns out that choosing the field-orders for the partitioning
scheme is quite straightforward. We never had to go back
and finetune the selection of fields and we strongly benefit
from correlations in the data.

On average 92.41% of underlying records were skipped
and 5.02% served from cached results, leaving only 2.66%
to be scanned. Note that additionally to skipping over inac-
tive chunks, we also cache results for chunks which are fully
active, i.e., for which the where clause evaluates to true for
all rows of the chunk.
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Figure 5: The average latency of queries in seconds
(y-axis) by the amount of data to be loaded from
disk in GB (x-axis, as log2-buckets)

Another interesting question to ask is how many queries
could be answered from data-structures which were in mem-
ory. On average over 70% of the queries do not need to ac-
cess any data from disk. They have an average latency of
25 seconds. 96.5% of the queries access only 1 GB or less
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(cumulative over all servers) of data on disk. The average
latency naturally increases with the amount of data which
needs to be read from disk into memory, see Figure 5.

7. CONCLUSIONS

Column-stores have become very popular in the last years
because they allow interactive exploration of large datasets.
Take Dremel [23], the column-store used internally at Google.
It allows exploration of billions of rows (or, log records)
within seconds and its Google-internal usage has almost ex-
ploded in the last years. However, there always seems to
be a gap between the achievable and desired interactivity—
even for “best-of-breed” column-stores running in parallel
on thousands of machines (like Dremel).

The column-store presented in this paper pushes the “in-
teractivity limit” out significantly. Our approach is based
on two crucial assumptions: (1) The majority of queries are
fairly discriminative, similar, and uniform (such as those
coming from our Web UI which allows free form queries,
but makes it easy to reuse expression “building blocks” and
promotes certain interactions such as adding conjunctions
of IN statements) and (2) the store has only a few but of-
ten explored tables (as opposed to many tables that are not
used very often).

Fairly discriminative, similar, and uniform queries enable
us to use partitioning on top of the column-wise storage.
This helps avoiding full scans of the data. Our deployed
scheme based on composite range partitioning of three to
five fields works very well in practice: Most queries have
restrictions on closely correlated fields which results in skip-
ping of 95% of the input data on average.

Having only a few but frequently accessed tables together
with a greatly compactified data-storage allows us to keep
most of the data in main memory. Our compaction tech-
niques utilize a dictionary-based data representation together
with some more key optimizations (bit-wise element encod-
ings, usage of tries for dictionary-storage, Zippy encoding
of values, row-reorderings). Combined, these techniques re-
duce the data size by up to a factor of 50x.

Summarizing, for usage scenarios like the ones outlined
above, our techniques push the limit of interactivity out by
one or two orders of magnitude. That is, the amount of data
that can be examined interactively increases by a factor of
10-100 compared to traditional column-store technologies.
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