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Abstract 
Conventional wisdom holds that Paxos is too expensive to use for high-volume, high-throughput, data-intensive 

applications.  Consequently, fault-tolerant storage systems typically rely on special hardware, semantics weaker than 

sequential consistency, a limited update interface (such as append-only), primary-backup replication schemes that 

serialize all reads through the primary, clock synchronization for correctness, or some combination thereof.  We 

demonstrate that a Paxos-based replicated state machine implementing a storage service can achieve performance 

close to the limits of the underlying hardware while tolerating arbitrary machine restarts, some permanent machine 

or disk failures and a limited set of Byzantine faults. We also compare it with two versions of primary-backup.  The 

replicated state machine can serve as the data store for a file system or storage array.  We present a novel algorithm 

for ensuring read consistency without logging, along with a sketch of a proof of its correctness. 

1. Introduction 
Replicated State Machines (RSMs) [31, 35] provide 

desirable semantics, with operations fully serialized 

and durably committed by the time a result is re-

turned.  When implemented with Paxos [20], they 

also tolerate arbitrary computer and process restarts 

and permanent stopping faults of a minority of com-

puters, with only very weak assumptions about the 

underlying system--essentially that it doesn’t exhibit 

Byzantine [22] behavior.  Conventional wisdom 

holds that the cost of obtaining these properties is too 

high to make Paxos RSMs useful in practice for ap-

plications that require performance.  For instance, 

Birman [4] writes: 

Given that it offers stronger failure guarantees, 
why not just insist that all multicast primitives 

be dynamically uniform [his term for what 

Paxos achieves]?  … From a theory perspec-

tive, it makes sense to do precisely this.  Dy-
namic uniformity is a simple property to formal-
ize, and applications using a dynamically uni-
form multicast layer are easier to prove cor-
rect. 

But the bad news is that dynamic uniformity is 

very costly [emphasis his]. 

On the other hand, there are major systems 
(notably Paxos…) in which … dynamic uni-
formity is the default. … [T]he cost is so high 
that the resulting applications may be unac-
ceptably sluggish. 

We argue that at least in the case of systems that are 

replicated over a local area network and have opera-

tions that often require using hard disks, this simply 

is not true.  The extra message costs of Paxos over 

other replication techniques are overwhelmed by the 

roughly two orders of magnitude larger disk latency 

that occurs regardless of the replication model.  Fur-

thermore, while the operation serialization and com-

mit-before-reply properties of Paxos RSMs seem to 

be at odds with getting good performance from disks, 

we show that a careful implementation can operate 

disks efficiently while preserving Paxos’ sequential 

consistency.  Our measurements show that a Paxos 

RSM that implements a virtual disk service has per-

formance close to the limits of the underlying hard-

ware, and better than primary-backup for a mixed 

read-write load. 

The current state of the art involves weakened se-

mantics, stronger assumptions about the system, re-

stricted functionality, special hardware support or 

performance compromises.  For example, the Google 

File System [13] uses append-mostly files, weakens 

data consistency and sacrifices efficiency on over-

writes, but achieves very good performance and scale 

for appends and reads. Google’s Paxos-based imple-

mentation [8] of the Chubby lock service [5] relies on 

clock synchronization to avoid stale reads and re-

stricts its state to fit in memory; its published perfor-

mance is about a fifth of ours
1
.  Storage-area network 

(SAN) based disk systems often use special hardware 
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such as replicated battery-backed RAM to achieve 

fault tolerance, and are usually much more costly 

than ordinary computers, disks and networks.  There 

are a number of flavors of primary-backup replication 

[4], but typically these systems run at the slower rate 

of the primary or the median backup, and may rely on 

(often loose) clock synchronization for correctness.  

Furthermore, they typically read only from the prima-

ry, which at worst wastes the read bandwidth of the 

backup disks and at best is unable to choose where to 

send reads at runtime, which can result in unneces-

sary interference of writes with reads.  Many Byzan-

tine-fault tolerant (BFT) [1, 9, 18] systems do not 

commit operations to stable storage before returning 

results, and so cannot tolerate system-wide power 

failures without losing updates. In contrast, our Pax-

os-based RSM runs on standard servers with directly 

attached disks and an ordinary Ethernet switch, 

makes no assumptions about clock synchronization to 

ensure correctness, delivers random read perfor-

mance that grows nearly linearly in the number of 

replicas and random write performance that is limited 

by the performance of the disks and the size of the 

write reorder buffer, but is not affected by the dis-

tributed parts of the system.  It performs   12%-69% 

better than primary-backup replication on an online 

transaction processing load. 

The idea of an RSM is that if a computation is deter-

ministic, then it can be made fault-tolerant by running 

copies of it on multiple computers and feeding the 

same inputs in the same order to each of the replicas.  

Paxos is responsible for assuring the sequence of 

operations.  We modified the SMART [25] library 

(which uses Paxos) to provide a framework for im-

plementing RSMs.  SMART stored its data in SQL 

Server [10]; we replaced its store and log and made 

extensive internal changes to improve its perfor-

mance, such as combining the Paxos log with the 

store’s log.  We also invented a new protocol to order 

reads without requiring logging or relying on time for 

correctness.  To differentiate the original version of 

SMART from our improved version, we refer to the 

new code as SMARTER
2
. We describe the changes 

to SMART and provide a sketch of a correctness 

proof for our read protocol. 

Disk-based storage systems have high operation la-

tency (often >10ms without queuing delay) and per-

form much better when they’re able to reorder re-

quests so as to minimize the distance that the disk 

head has to travel [39].  On the face of it, this is at 

odds with the determinism requirements of an RSM: 

If two operations depend on one another, then their 
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order of execution will determine their result.  Reor-

dering across such a dependency could in turn cause 

the replicas’ states to diverge.  We address this prob-

lem by using IO parallelism both before and after the 

RSM runs, but by presenting the RSM with fully se-

rial inputs.  This is loosely analogous to how out-of-

order processors [37] present a sequential assembly 

language model while operating internally in parallel. 

This paper presents Gaios
3
, a reliable data store con-

structed as an RSM using SMARTER.  Gaios can be 

used as a reliable disk or as a stream store (something 

like the i-node layer of a file system) that provides 

operations like create, delete, read, (over-)write, ap-

pend, extend and truncate.  We wrote a Windows 

disk driver that uses the Gaios RSM as its store, cre-

ating a small number of large streams that store the 

data of a virtual disk.  While it is beyond the scope of 

this paper, one could achieve scalability in both per-

formance and storage capacity by running multiple 

instances of Gaios across multiple disks and nodes. 

We use both microbenchmarks and an industry 

standard online transaction processing (OLTP) 

benchmark to evaluate Gaios.  We compare Gaios 

both to a local, directly attached disk and to two vari-

ants of primary-backup replication.  We find that 

Gaios exposes most of the performance of the under-

lying hardware, and that on the OLTP load it outper-

forms even the best case version of primary-backup 

replication because SMARTER is able to direct reads 

away from nodes that are writing, resulting in less 

interference between the two. 

Section 2 describes the Paxos protocol to a level of 

detail sufficient to understand its effects on perfor-

mance.  It also describes how to use Paxos to imple-

ment replicated state machines.  Section 3 presents 

the Gaios architecture in detail, including our read 

algorithm and its proof sketch.  Section 4 contains 

experimental results.  Section 5 considers related 

work and the final section is a summary and conclu-

sion. 

2. Paxos Replicated State Ma-
chines 
A state machine is a deterministic computation that 

takes an input and a state and produces an output and 

a new state.  Paxos is a protocol that results in an 

agreement on an order of inputs among a group of 

replicas, even when the computers in the group crash 
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and restart or when a minority of computers perma-

nently fail.  By using Paxos to serialize the inputs of 

a state machine, the state machine can be replicated 

by running a copy on each of a set of computers and 

feeding each copy the inputs in the order determined 

by Paxos. 

This section describes the Paxos protocol in sufficient 

detail to understand its performance implications.  It 

does not attempt to be a full description, and in par-

ticular gives short shrift to the view change algo-

rithm, which is by far the most interesting part of 

Paxos.  Because view change happens only rarely and 

is inexpensive when it does, it does not have a large 

effect on overall system performance.  Other papers 

[20, 21, 23] provide more in-depth descriptions of 

Paxos. 

2.1 The Paxos Protocol 
As SMART uses it, Paxos binds requests that come 

from clients to slots.  Slots are sequentially num-

bered, starting with 1.  A state machine will execute 

the request in slot 1, followed by that in slot 2, etc.  

When thinking about how SMART works, it is help-

ful to think about two separate, interacting pieces:  

the Agreement Engine and the Execution Engine.  

The Agreement Engine uses Paxos to agree on an 

operation sequence, but does not depend on the state 

machine’s state.  The Execution Engine consumes the 

agreed-upon sequence of operations, updates the state 

and produces replies.  The Execution Engine does not 

depend on a quorum algorithm because its input is 

already linearized by the Agreement Engine.   

The protocol attempts to have a single computer des-

ignated as leader at any one time, although it never 

errs regardless of how many computers simultane-

ously believe they are leader.  We will ignore the 

possibility that there is not exactly one leader at any 

time (except in the read-only protocol proof sketch in 

Section 3.3.2) and refer to the leader, understanding 

that this is a simplification. Changing leaders (usually 

in response to a slow or failed machine) is called a 

view change. View changes are relatively light-

weight; consequently, we set the view change 

timeout in SMART to be about 750ms and accept 

unnecessary view changes so that when the leader 

fails, the system doesn’t have to be unresponsive for 

very long.  By contrast, primary-backup replication 

algorithms often have to wait for a lease to expire 

before they can complete a view change.  In order to 

assure correctness, the lease timeout must be greater 

than the maximum clock skew between the nodes. 

Figure 1 shows the usual message sequence for a 

Paxos read/write operation, leaving out the computa-

tion and disk IO delays.  When a client wants to 

submit a read/write request, it sends the request to the 

leader (getting redirected if it’s wrong about the cur-

rent leader).  The leader receives the request, selects 

the lowest unused slot number and sends a proposal 

to the computers in the Paxos group, tentatively bind-

ing the request to the slot.  The computers that re-

ceive the proposal write it to stable storage and then 

acknowledge the proposal back to the leader.  When 

more than half of the computers in the group have 

written the proposal (regardless of whether the leader 

is among the set), it is permanently bound to the slot.  

The leader then informs the group members that the 

proposal has been decided with a commit message.  

The Execution Engines on the replicas process com-

mitted requests in slot number order as they become 

available, updating their state and generating a reply 

for the client.  It is only necessary for one of them to 

send a reply, but it is permissible for several or all of 

them to reply.  The dotted lines on the reply messages 

in Figure 1 indicate that only one of them is neces-

sary. 

 

Figure 1: Read/Write Message Sequence 

When the write to stable storage is done using a disk 

and the network is local, the disk write is the most 

expensive step by a large margin.  Disk operations 

take milliseconds or even tens of milliseconds, while 

network messages take tens to several hundred mi-

croseconds.  This observation led us to create an al-

gorithm for read-only requests that avoids the logging 

step but uses the same number of network messages.  

It is described in section 3.3.2  

2.2 Implementing a Replicated 
State Machine with Paxos 
There are a number of complications in building an 

efficient replicated state machine, among them avoid-

ing writing the state to disk on every operation.  

SMART and Google’s later Paxos implementation 

[8] solve this problem by using periodic atomic 

checkpoints of the state.  SMART (unlike Google) 

writes out only the changed part of the state.  If a 
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node crashes other than immediately after a check-

point, it will roll back its state and re-execute opera-

tions, which is harmless because the operations are 

deterministic.  Both implementations also provide for 

catching up a replica by copying state from another, 

but that has no performance implication in normal 

operation and so is beyond the scope of this paper. 

3. Architecture 
SMARTER is at the heart of the Gaios system as 

shown in Figure 2. It is responsible for the Paxos 

protocol and overall control of the work flow in the 

system.  One way to think of what SMARTER does 

is that it implements an asynchronous Remote Proce-

dure Call (RPC) where the server (the state machine) 

runs on a fault-tolerant, replicated system.  

 

 

Figure 2: Gaios Architecture 

Gaios’s state machine implements a stream store.  

Streams are named by 128-bit Globally Unique IDs 

(GUIDs) and contain of a sparse array of bytes.  The 

interface includes create, delete, read, write, and 

truncate.  Reads and writes may be for a portion of a 

stream and include checksums of the stream data.  

SMARTER uses a custom log to record Paxos pro-

posals and the Local Stream Store (LSS) to hold state 

machine state and SMARTER’s internal state.  The 

system has two clients, one a user-mode library that 

exposes the functions of the Gaios RSM and the se-

cond a kernel-mode disk driver that presents a logical 

disk to Windows, and backs the disk with streams 

stored in the Gaios RSM.   

3.1 SMARTER 
Among the changes we made to SMART

4
 were to 

present a pluggable interface for storage and log pro-

viders, rather than having SQL Server hardwired for 

both functions; to have a zero-copy data path; to al-

low IO prefetching at proposal time; to batch client 

operations; to have a parallel network transport and 

deal with the frequent message reorderings that that 

produces; to detect and handle some hardware errors 

and non-determinism; and to have a more efficient 

protocol for read-only requests.  SMARTER per-

forms the basic Paxos functions:  client, leadership, 

interacting with the logging subsystem and RSM, 

feeding committed operations to the RSM, and man-

aging the RSM state and sending replies to the client.  

It is also responsible for other functions such as view 

change, state transfer, log trimming, etc.  

The SMARTER client pipelines and batches requests.  

Pipelining means that it can allow multiple requests 

to be outstanding simultaneously.  In the implementa-

tion measured in this paper, the maximum pipeline 

depth is set to 6, although we don’t believe that our 

results are particularly sensitive to the value.  Batch-

ing means that when there are client requests waiting 

for a free pipeline slot, SMARTER may combine 

several of them into a single composite request.   

Unlike in primary-backup replication systems, 

SMART does not require that the leader be among 

the majority that has logged the proposal; any majori-

ty will do.  This allows the system to run at the speed 

of the median member (for odd sized configurations).  

Furthermore, there is no requirement that the majori-

ty set for different operations be the same.  Neverthe-

less all Execution Engines will see the same binding 

of operations to slots and all replicas will have identi-

cal state at a given slot number.  

The leader’s network bandwidth could become a bot-

tleneck when request messages are large.  In this case 

SMARTER forwards the propose messages in a chain 

rather than sending them directly as shown in Figure 

1.  Because the sequential access bandwidth of a disk 

is comparable to the bandwidth of a gigabit Ethernet 

link, this optimization is often important. 
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3.2 The Local Stream Store 
Gaios uses a custom store called the Local Stream 

Store for its data (but not for its log).  The LSS in 

turn uses a single, large file in NTFS against which it 

runs non-cached IO.   

The LSS writes in a batch mode.  It takes requests, 

executes them in memory, and then upon request 

atomically checkpoints its entire state.  The LSS is 

designed so that it can overlap (in-memory) operation 

execution with most of the process of writing the 

checkpoint to disk, so there is only a brief pause in 

execution when a checkpoint is initiated. 

The LSS maintains checksums for all stream data.  

The checksum algorithm is selectable; we used 

CRC32 [17] for all experiments in this paper, result-

ing in 4 bytes of checksum for 4K of data, or 0.1% 

overhead.  The checksums are stored separately from 

the data so that all accesses to data and its associated 

checksum happen in separate disk IOs.  This is im-

portant in the case that the disk misdirects a read or 

write, or leaves a write unimplemented [3].  No sin-

gle misdirected or unimplemented IO will undetecta-

bly corrupt the LSS.  Checksums are stored near each 

other and are read in batches, so few seeks are needed 

to read and write the checksums. 

The LSS provides deterministic free space.  Regard-

less of the order in which IOs complete and when and 

how often the store is checkpointed, as long as the set 

of requests is the same the system will report the 

same amount of free space.  This is important for 

RSM determinism, and would be a real obstacle with 

a store like NTFS [28] that is subject to space use by 

external components and in any case is not determin-

istic in free space. 

3.2.1 Minimizing Data Copies 
Because SMART used SQL Server as its store, it 

wrote each operation to the disk four times.  When 

logging, it wrote a proposed operation into a table 

and then committed the transaction.  This resulted in 

two writes to the disk: one into SQL’s transaction log 

and a second one to the table.  The state machine 

state was also stored in a set of SQL tables, so any 

changes to the state because of the operation were 

likewise written to the disk twice.   

For a service that had a low volume of operations this 

wasn’t a big concern.  However, for a storage service 

that needs to handle data rates comparable to a disk’s 

100 MB/s it can be a performance limitation.  Elimi-

nating one of the four copies was easy:  We imple-

mented the proposal store as a log rather than a table. 

Once the extra write in the proposal phase was gone, 

we were left with the proposal log, the transaction log 

for the final location and the write into the final loca-

tion.  We combined the proposal log and the transac-

tion log into a single copy of the data, but it required 

careful thinking to get it right.  Just because an opera-

tion is proposed does not mean that it will be execut-

ed; there could be a view change and the proposal 

may never get quorum.  Furthermore, RSMs are not 

required to write any data that comes in an opera-

tion—they can process it in any way they want, for 

example maintaining counters or storing indices, so 

it’s not possible to get rid of the LSS’s transaction 

log entirely.   

We modified the transaction log for the LSS to allow 

it to contain pointers into the proposal log.  When the 

LSS executes a write of data that was already in the 

proposal log, it uses a special kind of transaction log 

record that references the proposal log and modifies 

the proposal log truncation logic accordingly.  The 

necessity for the store to see the proposal log writes 

is why it’s shown as interposing between SMARTER 

and the log in Figure 2.  In practice in Gaios data is 

written twice, to the proposal log and to the LSS’s 

store. 

It would be possible to build a system that has a sin-

gle-write data path.  Doing this, however, runs into a 

problem: Systems that do atomic updates need to 

have a copy of either the old or new data at all times 

so that an interrupted update can roll forward or 

backward [14].  This means that, in practice, single-

write systems need to use a write-to-new store rather 

than an overwriting store.  Because we wanted Gaios 

efficiently to support database loads, and because 

databases often optimize the on-disk layout assuming 

it is in-order, we chose not to build a single-write 

system.  This choice has nothing to do with the repli-

cation algorithm (or, in fact, SMARTER).  If we re-

placed the LSS with a log-structured or another 

write-to-new store we could have a single-write path. 

3.3 Disk-Efficient Request Pro-
cessing 
State machines are defined in terms of handling a 

single operation at a time.  Disks work best when 

they are presented with a number of simultaneous 

requests and can reorder them to minimize disk arm 

movements, using something like the elevator 

(SCAN) algorithm [12] to reduce overall time.  Rec-

onciling these requirements is the essence of getting 

performance from a state-machine based data store 

that is backed by disks. 



                                       

 

Gaios solves this problem differently for read-only 

and read-write requests.  Read-write requests do their 

writes exclusively into in-memory cache, which is 

cleaned in large chunks at checkpoint time in a disk-

efficient order. Read-only requests (ordinarily) run on 

only one replica.  As they arrive, they are reordered 

and sent to the disk in a disk efficient manner, and 

are executed once the disk read has completed in 

whatever order the reads complete. 

3.3.1 Read-Write Processing 
SMART’s handling of read-write requests is in some 

ways analogous to how databases implement transac-

tions [14].  The programming model for a state ma-

chine is ACID (atomic, consistent, isolated and dura-

ble), while the system handles the work necessary to 

operate the disk efficiently.  In both, atomicity is 

achieved by logging requests, and durability by wait-

ing for the log writes to complete before replying to 

the user.  In both, the system retires writes to the non-

log portion of the disk efficiently, and trims the log 

after these updates complete. 

Unlike databases, however, SMART achieves isola-

tion and consistency by executing only one request at 

a time in the state machine.  This has two benefits: It 

ensures determinism across multiple replicas; and, it 

removes the need to take locks during execution.  

The price is that if two read-write operations are in-

dependent of one another, they still have to execute 

in the predetermined order, even if the earlier one has 

to block waiting for IO and the later one does not. 

SMARTER exports an interface to the state machine 

that allows it to inspect an operation prior to execu-

tion, and to initiate any cache prefetches that might 

help its eventual execution.  SMARTER calls this 

interface when it first receives a propose message.  

This allows the local store to overlap its prefetch with 

logging, waiting for quorum and any other operations 

serialized before the proposed operation.  It is possi-

ble that a proposed operation may never reach quor-

um and so may never be executed.  Since prefetches 

do not affect the system state (just what is in the 

cache), incorrect prefetches are harmless. 

During operation execution, any reads in read/write 

operations are likely to hit in cache because they’ve 

been prefetched.  Writes are always applied in 

memory.  Ordinarily writes will not block, but if the 

system has too much dirty memory SMARTER will 

throttle writes until the dirty memory size is suffi-

ciently small.  The local stream store releases dirty 

memory as it is written out to the disk rather than 

waiting until the end of a flush, so write throttling 

does not result in a large amount of jitter. 

3.3.2 Read-Only Processing 
SMARTER uses five techniques to improve read-

only performance:  It executes a particular read-only 

operation on only one replica; it uses a novel agree-

ment protocol that does not require logging; it reor-

ders the reads into a disk-efficient schedule, subject 

to ordering constraints to maintain consistency; it 

spreads the reads among the replicas to leverage all 

of the disk arms; and, it tries to direct reads away 

from replicas whose LSS is writing a checkpoint, so 

that reads aren’t stuck behind a queue of writes. 

Since a client needs only a single reply to an opera-

tion and read-only operations do not update state 

there is no reason to execute them on all replicas.  

Instead, the leader spreads the read-only requests 

across the (live), non-checkpointing replicas using a 

round-robin algorithm.  By spreading the requests 

across the replicas, it shares the load on the network 

adapters and more importantly on the disk arms.  For 

random read loads where the limiting factor is the 

rate at which the disk arms are able to move there is a 

slightly less than linear speedup in performance as 

more replicas are added (see Section 4).  It is sub-

linear because spreading the reads over more drives 

reduces read density and so results in longer seeks. 

When a load contains a mix of reads and writes, they 

will contend for the disk arm.  It is usually the case 

that on the data disk reads are more important than 

writes because SMARTER acknowledges writes after 

they’ve been logged and executed, but before they’ve 

been written to the data disk by an LSS checkpoint.  

Because checkpoints operate over a large number of 

writes it is common for them to have more sequenti-

ality than reads, and so disk scheduling will starve 

reads in favor of writes.  SMARTER takes two steps 

to alleviate this problem: It tries to direct reads away 

from replicas that are processing checkpoints, and 

when it fails to do that it suspends the checkpoint 

writes when reads are outstanding (unless the system 

is starving for memory, in which case it lets the reads 

fend for themselves).  The leader is able to direct 

reads away from checkpointing replicas because the 

replicas report whether they’re in checkpoint both in 

their periodic status messages, and also in the 

MY_VIEW_IS message in the read-only protocol, 

described immediately hereafter. 

A more interesting property of read-only operations 

is that to be consistent as seen by the clients, they do 

not need to execute in precise order with respect to 

the read/write operations.  All that’s necessary is that 

they execute after any read/write operation that has 

completed before the read-only request was issued.  

That is, the state against which the read is run must 



                                       

 

reflect any operation that any client has seen as com-

pleted, but may or may not reflect any subsequent 

writes. 

SMARTER’s read-only protocol is as follows: 

1. Upon receipt of a read-only request by a 

leader, stamp it with the greater of the high-

est operation number that the leader has 

committed in sequence and the highest oper-

ation number that the leader re-proposed 

when it started its view. 

2. Send a WHATS_MY_VIEW message to all 

replicas, checking whether they have recog-

nized a new leader. 

3. Wait for at least half of all replicas (includ-

ing itself) to reply that they still recognize 

the leader; if any do not, discard the read-

only request. 

4. Dispatch the read-only request to a replica, 

including the slot number recorded in step 1. 

5. The selected replica waits for the stamped 

slot number to execute, and then checks to 

see if a new configuration has been chosen.  

If so, it discards the request.  Otherwise, it 

executes it and sends the reply to the client. 

In practice, SMARTER limits the traffic generated in 

steps 2 & 3 by only having one view check outstand-

ing at a time, and batching all requests that arrive 

during a given view check to create a single subse-

quent view check.  We’ll ignore this for purposes of 

the proof sketch, however. 

SMARTER’s read-only protocol achieves the follow-

ing property:  The state returned by a read-only re-

quest reflects the updates made by any writes for 

which any client is aware of a completion at the time 

the read is sent, and does not depend on clock syn-

chronization among any computers in the system.  In 

other words, the reads are never stale, even with an 

asynchronous network. 

We do not provide a full correctness proof for lack of 

space.  Instead we sketch it; in particular, we ignore 

the possibility of a configuration change (a change in 

the set of nodes implementing the state machine), 

though we claim the protocol is correct even with 

configuration changes. 

Proof sketch: Consider a read-only request R sent by 

a client.  Let any write operation W be given such 

that W has been completed to some client before R is 

sent.  Because W has completed to a client, it must 

have been executed by a replica.  Because replicas 

execute all operations in order and only after they’ve 

been committed, W and all earlier operations must 

have been committed before R was sent.  W was ei-

ther first committed by the leader to which R is sent 

(call it L), or by a previous or subsequent leader (ac-

cording to the total order on the Paxos view ID).  If it 

was first committed by a previous leader, then by the 

Paxos view change algorithm L saw it as committed 

or re-proposed it when L started; if W was first 

committed by L then L was aware of it.  In either 

case, the slot number in step 1 is greater than or equal 

to W’s slot number. 

If W was first committed by a subsequent leader to 

L, then the subsequent leader must have existed by 

the time L received the request in step 1, because by 

hypothesis W had executed before R was sent.  If 

that is the case, then by the Paxos view change algo-

rithm a majority of computers in the group must have 

responded to the new view.  At least one of these 

computers must have been in the set responding in 

step 3, which would cause R to be dropped.  So, if R 

completes then W was not first committed by a lead-

er subsequent to L.  Therefore, if R is not discarded 

the slot number selected in step 1 is greater than or 

equal to W’s slot number. 

In step 5, the replica executing R waits until the slot 

number from step 1 executes.  Since W has a slot 

number less than or equal to that slot number, W 

executes before R.  Because W was an arbitrary write 

that completed before R was started SMARTER’s 

read-only protocol achieves the desired consistency 

property with respect to writes.  The protocol did not 

refer to clocks and so does not depend on clock syn-

chronization■ 

3.4 Non-Determinism 
The RSM model assumes that the state machines are 

deterministic, which implies that the state machine 

code must avoid things like relying on wall clock 

time.  However, there are sources of non-determinism 

other than coding errors in the RSM.  Ordinary pro-

gramming issues like memory allocation failures as 

well as hardware faults such as detected or undetect-

ed data corruptions in the disk [3], network, or 

memory systems [30, 36] can cause replicas to mis-

behave and diverge.   

Divergent RSMs can lead to inconsistencies exposed 

to the user of the system.  These problems are a sub-

set of the general class of Byzantine faults [22], and 

could be handled by using a Byzantine-fault-tolerant 

replication system [7].  However, such systems re-

quire more nodes to tolerate a given number of faults 

(at least 3f+1 nodes for f faults, as opposed to 2f+1 

for Paxos [26]), and also use more network commu-

nication.  We have chosen instead to anticipate a set 



                                       

 

of common Byzantine faults, detect them and turn 

them into either harmless system restarts or to stop-

ping failures.  The efficacy of this technique depends 

on how well we anticipate the classes of failures as 

well as our ability to detect and handle them.  It also 

relies on external security measures to prevent male-

factors from compromising the machines running the 

service (which we assume and do not discuss fur-

ther). 

Memory allocation failures are a source of nondeter-

minism.  Rather than trying to force all replicas to fail 

allocations deterministically, SMART simply induces 

a process exit and restart, which leverages the fault 

tolerance to handle the entire range of allocation 

problems.   

In most cases, network data corruptions are fairly 

straightforward to handle.  SMARTER verifies the 

integrity of a message when it arrives, and drops it if 

it fails the test.  Since Paxos is designed to handle 

lost messages this may result in a timeout and retry of 

the original (presumably uncorrupted) message send. 

In a system with fewer than f failed components, 

many messages are redundant and so do not even 

require a retransmission.  As long as network corrup-

tions are rare, message drops have little performance 

impact.  As an optimization, SMARTER does not 

compute checksums over the data portion of a client 

request or proposal message.  Instead, it calls the 

RSM to verify the integrity of these messages.  If the 

RSM maintains checksums to be stored along with 

the data on disk (as does Gaios), then it can use these 

checksums and save the expense of having them 

computed, transported and then discarded by the 

lower-level SMARTER code. 

Data corruptions on disk are detected either by the 

disk itself or by the LSS’s checksum facility as de-

scribed in Section 3.2.  SMARTER handles a detect-

ed, uncorrectable error by retrying it and if that fails 

declaring a permanent failure of a replica and re-

building it by changing the configuration of the 

group.  See the SMART paper [25] for details of con-

figuration change.   

In-memory corruptions can result in a multitude of 

problems, and Gaios deals with a subset of them by 

converting them into process restarts.  Because Gaios 

is a store, most of its memory holds the contents of 

the store, either in the form of in-process write re-

quests or of cache.  Therefore, we expect at least 

those memory corruptions that are due to hardware 

faults to be more likely to affect the store contents 

than program state.  These corruptions will be detect-

ed as the corrupted data fails verification on the disk 

and/or network paths. 

4. Experiments 
We ran experiments to compare Gaios to three differ-

ent alternatives: a locally attached disk and two ver-

sions of primary-backup replication.  We ran micro-

benchmarks to tease out the performance differences 

for specific homogeneous loads and an industry 

standard online transaction processing benchmark to 

show a more realistic mixed read/write load.  We 

found that SMARTER’s ability to vector reads away 

from checkpointing (writing) replicas conveyed a 

performance advantage over primary-backup replica-

tion. 

4.1 Hardware Configuration 
We ran experiments on a set of computers connected 

by a Cisco Catalyst 3560G gigabit Ethernet switch.  

The switch bandwidth is large enough that it was not 

a factor in any of the tests. 

The computers had three hardware configurations.  

Three computers (“old servers”) had 2 dual core 

AMD Opteron 2216 processors running at 2.4 GHz, 8 

GB of DRAM, four Western Digital WD7500AYYS 

7200 RPM disk drives (as well as a boot drive not 

used during the tests), and a dual port NVIDIA 

nForce network adapter, with both ports connected to 

the same switch.  A fourth (“client”) had the same 

hardware configuration except that it had two quad-

core AMD Opteron 2350 processors running at 2.0 

GHz.  The remaining two (“new servers”) had 2 

quad-core AMD Opteron 2382 2.6 GHz processors, 

16 GB of DRAM, four Western Digital 

WS1002FBYS 7200 RPM 1 TB disk drives, and two 

dual port Intel gigabit Ethernet adapters.  All of the 

machines ran Windows Server 2008 R2, Enterprise 

Edition. We ran the servers with a 128 MB memory 

cache and a dirty memory limit of 512 MB.  We used 

such artificially low limits so that we could hit full-

cache more quickly so that our tests didn’t take as 

long to run, and so that read-cache hits didn’t have a 

large effect on our microbenchmarks. 

4.2 Simulating Primary-Backup 
In order to compare Gaios to a primary-backup (P-B) 

replication system, we modified SMARTER in three 

ways: 

1. Reads are dispatched without the quorum 

check in the SMARTER read protocol, on 

the assumption that a leasing mechanism 



                                       

 

would accomplish the same thing without 

the messages. 

2. Read/Write operation quorums must include 

the leader, so for example in a 3-node con-

figuration if the two non-leader nodes finish 

their logging first the system will still wait 

for the leader. 

3. All read/write replies come only from the 

leader. 

Because we didn’t implement a leasing mechanism, 

the modified SMARTER might serve stale reads after 

a view change.  We simply ignored this possibility 

for performance testing. 

Because P-B systems read only from the primary, 

they cannot take advantage of the random read per-

formance of their backup nodes.  The consequences 

of this may be limited by having many replication 

groups that spread primary duties (and thus read 

load) over all of the nodes.  In the best case, they will 

uniformly spread their reads over all of the nodes as 

SMARTER does. 

To capture the range of possible read spreading in P-

B systems we implemented two versions: worst and 

best cases.  The worst case version is called PB1 be-

cause it reads from only one node. It assumes that 

spreading is completely ineffective and sends all 

reads to the primary.  The best case is called PBN 

and simulates perfect spreading by sending reads to 

all N nodes.  Rather than implementing multiple 

groups, we simply used SMARTER’s existing read 

distribution algorithm, but without the quorum check 

and without the check to avoid sending reads to 

nodes that are checkpointing.   

The latter point is the crucial difference between the 

two systems.  While PBN is able to use all of the disk 

arms for reads, it can’t dynamically select which arm 

to use for a particular read because it must send reads 

to the primary, and it achieves spreading only by dis-

tributing the work of the primaries for many groups.  

Moving a primary is far too heavy-weight to do on 

each read.  SMARTER, on the other hand, tries to 

move reads away from checkpointing replicas so that 

writes don’t interfere with reads.  It also adds some 

randomness into the decision about when to check-

point to avoid having replicas checkpoint in lockstep.  

In the mixed read/write transaction processing load 

measured in section 4.4 Gaios achieves 12% better 

performance tan PBN because of this ability (and is 

68% faster than PB1). 

 

4.3 Microbenchmarks 
We ran microbenchmarks on Gaios and P-B replica-

tion as well as directly on an instance of each of the 

two types of disks used in our servers, varying the 

number of servers from 1 to 5.  We expect that most 

applications would want to run with a group size of 3, 

though a requirement for greater fault tolerance or 

improved read performance argues for more replicas.  

In all of the experiments where we varied the degree 

of replication, we used the three old servers first fol-

lowed by the two new servers, so for instance the 4 

replica data point has three old and one new server. 

We used the sqlio [33] tool running on NTFS over 

the Gaios disk driver (or directly on the local drive, 

as appropriate).    Gaios exported a 20 GB drive to 

NTFS and sqlio used a 10GB file.  Gaios used two 

identical drives on each replica, one for log and one 

for the data store.  Each data point is the mean of 10 

measurements and was taken over a five minute peri-

od, other than the burst writes shown in Figure 4, 

which ran for 10 seconds.  We ran all tests with the 

disks set to write through their cache, so all writes are 

durable.  We ran the P-B variants only on two or 

more nodes because they’re identical to Gaios on one 

node, and we ran only one P-B variant on the write 

tests, since PB1 and PBN differ only for reads.  

 

Figure 3: Random IO Performance 

Figure 3 shows the performance of 8 kilobyte random 

reads and writes.  In this and the other microbench-

mark figures, we show the results for the new server 

disks at the 4 replica position both to provide visual 

separation from the old replica disks and to help point 

out that at 4 replicas we started adding new servers to 

the mix.    
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The writes were measured with a dirty cache. Write 

performance does not vary much with degree of rep-

lication or Gaios vs. P-B and is roughly 500 IO/s, a 

little more than twice the local disk’s.  This is be-

cause the server is able to reorder the writes in a disk-

efficient manner over its 512MB of write buffer 

without the possibility of loss because the data is 

already logged, while the raw disks can reorder only 

over the simultaneously outstanding operations.  The 

overhead of replication and checkpoints is negligible 

compared to disk latency, and performance is in-

creased by SMARTER’s batching.   

A simple back-of-the-envelope computation shows 

how fast we expect the disk to be able to retire ran-

dom writes, and demonstrates that SMARTER 

achieves that bound, meaning that (at least for ran-

dom writes) the bottleneck is at the disk, not else-

where.  The disks we used have tracks about ¾ of a 

megabyte in size, so the 10GB sqlio file was around 

14K tracks.  SMARTER is using 512MB of cache, 

which is 64K 8KB-sized individual writes, or about 

4.7 writes/track.  The 7200 RPM disk takes 8.3ms for 

a complete rotation.  4.7 writes per each 8.3ms rota-

tion is about 570 writes/s, which is just a little more 

than Gaios’ performance. 

The random read test used 35 simultaneous outstand-

ing reads.  Gaios’ and PBN’s random reads (also 

shown in Figure 3) scale slightly sub-linearly with 

the number of replicas.  They improve with the num-

ber of replicas because SMARTER is able to employ 

the disk arms on the replicas separately, but the im-

provement is less than linear because as it scales each 

replica has fewer simultaneous reads over which to 

reorder.  Single replica Gaios has a read rate about 

14% lower than the local disk.  PB1 didn’t vary in the 

count of replicas since it only reads from one node. 

 

Figure 4: Burst Write Performance 

Figure 4 shows the write rates for 10 second bursts of 

8K random writes with 200 writes outstanding at a 

time.  In this test, Gaios and PB logged and executed 

the writes and returned the replies to the client, but 

because the volume of data written was smaller than 

the 512MB dirty cache limit, it was bounded only by 

logging not by the seek rate of the data disk.  Because 

SMARTER answers writes when they’re written to 

the log, it does random write bursts at the rate of se-

quential writes, while the local disk does them at the 

rate of random writes. 

 

Figure 5: Sequential Bandwidth 

Figure 5 shows Gaios’ performance for sequential 

IO.  This test used megabyte size requests with 40 

simultaneously outstanding for writes and 10 eight 

megabyte requests for reads.  It’s difficult to see on 

the graph, but the (old) local disk writes at about 88 

MB/s, while Gaios is at 67 MB/s.  The difference is 

due to a difficulty in getting the data through the 

network transport.  Writes for both Gaios and PB 

slow down marginally as they’re distributed across 

more nodes (and as they need to write the slower new 

disks at 4 and 5 replicas).  PBN and Gaios’ reads are 

more interesting: unlike random IO, sequential IO is 

harder to parallelize because distributing sequential 

IO requests adds seeks, which reduces efficiency, 

sometimes more than the increase in bandwidth that’s 

achieved by adding extra hardware.  This shows up in 

the PBN and Gaios lines, which perform at the local 

disk rate on a single replica, peak at 2 replicas (but at 

only 1.3 times the rate of a local disk) and drop off 

roughly linearly after.  SMARTER probably would 

benefit from getting hints from the RSM about how 

to distribute reads. 

Figure 6 shows the operation latency for 8K reads 

and writes.  Unlike the other microbenchmarks, this 

test only allowed a single operation to be outstanding 

at a time.  For reads, Gaios is about 8% slower than a 
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local disk in the single replica case and 20% slower 

for 2-3 replicas.  The difference in going from one to 

two replicas is that there is extra network traffic in 

the server to execute the read-only algorithm (see 

Section 3.3.2). Both versions of PB are about 2% 

faster than Gaios at 2 nodes, and 10-15% faster at 5 

(where Gaios has to touch three nodes for its quorum 

check). 

 

Figure 6: Single Operation Latency 

Write latency is more interesting.  In Gaios and P-B, 

the main contributor to latency is writing into the log, 

because the write rate is slow enough that the system 

doesn’t throttle behind the replica checkpoint even 

for a 5 minute run.  Writing one item to the log, wait-

ing a little while and the writing again causes the log 

disk to have to take an entire 8.3ms rotation before 

being able to write the next log record, which ac-

counts for the bulk of the time in Gaios.  Latency 

goes down at three replicas because only 2 of three of 

them need to complete their log write for the opera-

tion to complete.  As the replication grows PB gets 

slower than Gaios because of its requirement that the 

primary always be in every quorum. 

The reason for storing data in an RSM is to achieve 

fault tolerance.  To measure how Gaios performs 

when a fault occurs we ran a 60 second version of the 

3 replica sequential read test and induced the failure 

of a replica half way through each of the runs.  The 

resultant bandwidth was 127 MB/s, roughly equiva-

lent to the 128MB/s of the non-faulty three node 

case.  However, the maximum operation latency in-

creased from 1500ms to 1960ms, because requests 

outstanding at the time of the failure had to time out 

and be retried.  The large max latency in the non-

failure case was due to the disk scheduling algorithm 

starving one request for a while and because of queu-

ing delay (which is substantial with 10 8MB reads 

simultaneously outstanding). 

4.4 Transaction Processing 
In order to observe Gaios in a more realistic setting 

(and with a mixed read/write load), we ran an indus-

try standard online transaction processing (OLTP) 

benchmark that simulates an order-entry load.  We 

selected the parameters of the benchmark and config-

ured the database so that it has about a 3GB log file 

and a 53GB table file.  We housed the log and tables 

on different disks.  In Gaios (and P-B) we ran each 

virtual disk as a separate instance of Gaios sharing 

server nodes, but using distinct data disks on the 

server.  SMARTER shared a single log disk, so each 

server node used three disks: the SMARTER log, the 

SQL log and the SQL tables. 

This benchmark does a large number of small trans-

actions of several different types, and generates a 

load of about 51% reads and 49% writes to the table 

file by operation count, with the average read size 

about 9K and the average write about 10K.  We con-

figured the benchmark to offer enough load that it 

was IO bound. The CPU load on the client machine 

running SQL Server was negligible.   

We used 64-bit Microsoft SQL Server 2008 Enter-

prise Edition for the database engine.  For each data 

point, we started by restoring the database from a 

backup, which resulted in identical in-file layout.  We 

then ran the benchmark for three hours, discarded the 

result from the first hour in order to avoid ramp-up 

effects and used the transaction rate for the second 

two hours.  This benchmark is sensitive to two 

things: write latency to the SQL Server log, and read 

latency to the table file.  The writes are offered nearly 

continuously as SQL Server writes out its check-

points and are mixed with the reads. 

Even though the load is half writes, the replicas spent 

significantly less than half of their time writing.  This 

is because the writes were more sequential than the 

reads because they came from SQL’s database clean-

er which tries to generate sequential writes, and they 

were further grouped by SMARTER’s checkpoint 

mechanism.  Because of this, Gaios usually had one 

or more replicas that were not in checkpoint to which 

to send reads.  Even though the load at the client was 

about half reads and half writes, at the server nodes it 

was ¾ writes because each write ran on all three 

nodes, while reads ran only on one.  This limited the 

effect of the increased random read performance of 

Gaios and PBN. 
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Figure 7 shows the performance of Gaios and the two 

PB versions running on a three node system in trans-

actions per second normalized to the local-machine 

performance.  Each bar is the mean of ten runs.  Gai-

os runs a little faster than the local node because its 

increased random read performance more than com-

pensates for the added network latency and checksum 

IO.  Because PBN is unable to direct its reads away 

from checkpointing nodes it is somewhat slower, 

while PB1 suffers even more due to its inability to 

extract read parallelism. 

 

Figure 7: OLTP Performance 

5. Related Work 
Google [8] used a Paxos replicated state machine to 

re-implement the Chubby [5] lock service.  They 

found that it provided adequate performance for their 

load of small updates to a state that was small enough 

to fit in memory (100MB).  It serviced all reads from 

the leader (there being no need to take advantage of 

parallel disk access because of in-memory state), and 

used a time-based leasing protocol to prevent stale 

reads, similar to primary-backup.  Their highest re-

ported update rate was 640 small operations per se-

cond and 949 KB/s on a five node configuration, 

about one fifth and one sixtieth respectively of Gaios’ 

comparable performance on 5 nodes, though because 

the hardware used was different it’s not clear how 

meaningful this comparison is.   

Petal [24] was a distributed disk system from DEC 

SRC that used two-copy primary-backup replication 

to implement reliability.  It used a Paxos-based RSM 

to determine group membership, but not for data.  

Data writes happened in two phases, first taking a 

lock on the data and then writing to both copies.  On-

ly when the writes to both copies completed was the 

lock released and the operation completed to the user.  

Much like Gaios, Petal used write-ahead logging and 

group commit to achieve good random write perfor-

mance.  Castro and Liskov [7] implemented a version 

of NFS that stored all of its data in a BFT replicated 

state machine.  However, their only performance 

evaluation was with the Andrew Benchmark [16], 

which has been shown [38] to be largely insensitive 

to underlying file system performance.  BFT replica-

tion differs from Paxos in that it tolerates arbitrary, 

potentially malicious failures of less than a third of its 

replicas.  It uses many more messages and a number 

of cryptographic operations to achieve this property. 

Several BFT agreement protocols [1, 9, 18] have 

much lower latency than Gaios.  They achieve this by 

not logging operations before executing them and 

returning results to the client.  Because of this, these 

systems cannot tolerate simultaneous crashes of too 

many nodes (such as would be caused by a datacenter 

power failure) without permanently failing or rolling 

back state.  As such, they do not provide sufficiently 

tight semantics to implement tasks that require write 

through such as the store for a traditional database.  

They also are not evaluated on state that is larger than 

memory.  Furthermore, because they tolerate general 

Byzantine faults, they need at least 3f+1 (and some-

times more) replicas to tolerate f faults (though f of 

these replicas can be witnesses that do not hold exe-

cution state [40]).  Gaios tolerates many non-

malicious (hardware or programming-error caused) 

Byzantine faults without the extra complexity of 

dealing with peers that are trying to corrupt the sys-

tem. 

The Federated Array of Bricks (FAB) [34] built a 

store out of a set of industry-standard computers and 

disks, much like Gaios.  It used a pair of custom rep-

lication algorithms, one for mirrored data and one for 

erasure-coded.  Unlike Paxos, it did not have a leader 

function or views; rather (in the mirroring case), it 

took a write lock over a range of bytes using a major-

ity algorithm.  Once the write lock was taken, it sent 

the write data to all nodes, and updated both the data 

and a timestamp.  After a majority of the nodes com-

pleted the write, it completed the operation back to 

the caller.  To read data, it sent the read to all repli-

cas, with one designated to return the data.  The other 

nodes returned only timestamps; if the returned data 

did not have the latest timestamp, it retried the read.  

This scheme achieves serializability without needing 

to achieve a total order of operations as happens in an 

RSM.  However, because its read algorithm requires 

accessing a per-block timestamp, it employed 

NVRAM to avoid the need to move the disk arms to 

read the timestamps; SMARTER’s algorithm simply 

asks for a copy of in-memory state from all of the 

replicas, and does the disk IO on only one and so 

does not need NVRAM. 

50%

60%

70%

80%

90%

100%

110%

Gaios PBN PB1

N
o

r
m

a
li

z
e
d

 T
r
a

n
sa

c
ti

o
n

s/
s 



                                       

 

Oceanstore [19] was designed to store the entire 

world’s data.  It modified objects by generating up-

dates locally and then running conflict resolution in 

the background, in the style of Bayou [11].  

Oceanstore used a Byzantine-agreement protocol to 

serialize and run conflict resolution, but stored the 

data using simple lazy replication (or replication of 

erasure coded data). 

The Google File System [13] is designed to hold very 

large files that are mostly written via appends and 

accessed sequentially via reads.  It relaxes traditional 

file system consistency guarantees in order to im-

prove performance.  In particular, write operations 

that fail because of system problems can leave files in 

an “inconsistent” state, meaning that the values re-

turned by reads depend on which replica services the 

read.  Furthermore, concurrent writes can leave file 

regions in an “undefined” state, where the result is 

not consistent with any serialization of the writes, but 

rather is a mixture of parts of different writes.  After 

a period of time, the system will correct these prob-

lems.  GFS uses write-to-all, so faults require the 

system to reconfigure before writes can proceed. 

Berkeley’s xFS [2] and Zebra [15] file systems 

placed a log structured file system [32] on top of a 

network RAID.  They worked by doing write-to-all 

on the RAID stripes, and then using a manager to 

configure out failed storage nodes.  The xFS proto-

type described in the paper did not “implement the 

consensus algorithm needed to dynamically reconfig-

ure manager maps and stripe group maps.” 

Boxwood [27] offered a set of storage primitives at a 

higher level than the traditional array of blocks, such 

as B-trees.  It used Paxos only to “store global system 

state such as the number of machines.” 

Everest [29] is a system that offloads work from busy 

disks to smooth out peak loads.  When off-loading, it 

writes multiple copies of data to any stores it can find 

and keeps track of where they are in volatile memory.  

After a crash and restart, the client scans all of the 

stores to find the most up-to-date writes, and as long 

as one copy of each write is available, it recovers.  

This protocol works because there is only ever one 

client for a particular set of data. 

TickerTAIP [6] was a parallel RAID system that dis-

tributed the function of the RAID controller in order 

to tolerate faults in the controller.  It used two-phase 

commit [14] to ensure atomicity of updates to the 

RAID stripes. 

6. Summary and Conclusion 
Conventional wisdom holds that while Paxos has 

theoretically desirable consistency properties, it is too 

expensive to use for applications that require perfor-

mance.  We argue that compared to disk access laten-

cies, the overhead required by Paxos on local net-

works is trivial and so the conventional wisdom is 

incorrect.  While replicated state machines’ in-order 

requirement seems to be at odds with the necessity of 

doing disk operation scheduling, careful engineering 

can preserve both. 

We presented Gaios, a system that provides a virtual 

disk implemented as a Paxos RSM.  Gaios achieves 

performance comparable to the limits of the hardware 

on which it’s implemented on various microbench-

marks and the OLTP load, while providing tolerance 

of arbitrary machine restarts, a sufficiently small set 

of permanent stopping failures and some types of 

Byzantine failures.  We compared Gaios to primary-

backup replication and found that it performs compa-

rable to or in some cases better than P-B’s best case.  

We presented a novel read-only algorithm for 

SMARTER, and showed that because it allows reads 

to run on any node SMARTER can often avoid hav-

ing reads and writes contend for a particular disk, 

giving significant performance improvements over 

even the best case of primary-backup replication for 

the mixed read/write workload of the OTLP bench-

mark.  
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