
Appears in the Proceedings of the 22nd International Conference on Parallel Architectures and Compilation Techniques (PACT), 2013

Jigsaw: Scalable Software-Defined Caches
Nathan Beckmann and Daniel Sanchez

Massachusetts Institute of Technology

{beckmann, sanchez}@csail.mit.edu

Abstract—Shared last-level caches, widely used in chip-multi-
processors (CMPs), face two fundamental limitations. First, the
latency and energy of shared caches degrade as the system scales
up. Second, when multiple workloads share the CMP, they suffer
from interference in shared cache accesses. Unfortunately, prior
research addressing one issue either ignores or worsens the other:
NUCA techniques reduce access latency but are prone to hotspots
and interference, and cache partitioning techniques only provide
isolation but do not reduce access latency.

We present Jigsaw, a technique that jointly addresses the
scalability and interference problems of shared caches. Hardware
lets software define shares, collections of cache bank partitions
that act as virtual caches, and map data to shares. Shares give
software full control over both data placement and capacity
allocation. Jigsaw implements efficient hardware support for
share management, monitoring, and adaptation. We propose
novel resource-management algorithms and use them to develop
a system-level runtime that leverages Jigsaw to both maximize
cache utilization and place data close to where it is used.

We evaluate Jigsaw using extensive simulations of 16- and 64-
core tiled CMPs. Jigsaw improves performance by up to 2.2×
(18% avg) over a conventional shared cache, and significantly
outperforms state-of-the-art NUCA and partitioning techniques.

Index Terms—cache, memory, NUCA, partitioning, isolation

I. INTRODUCTION

Chip-multiprocessors (CMPs) rely on sophisticated on-chip

cache hierarchies to mitigate the high latency, high energy, and

limited bandwidth of off-chip memory accesses. Caches often

take over 50% of chip area [21], and, to maximize utilization,

most of this space is structured as a last-level cache shared

among all cores. However, as Moore’s Law enables CMPs with

tens to hundreds of cores, shared caches face two fundamental

limitations. First, the latency and energy of a shared cache

degrade as the system scales up. In large chips with distributed

caches, more latency and energy is spent on network traversals

than in bank accesses. Second, when multiple workloads

share the CMP, they suffer from interference in shared cache

accesses. This causes large performance variations, precludes

quality-of-service (QoS) guarantees, and degrades throughput.

With the emergence of virtualization and cloud computing,

interference has become a crucial problem in CMPs.

Ideally, a cache should both store data close to where it is

used, and allow its capacity to be partitioned, enabling soft-

ware to provide isolation, prioritize competing applications, or

increase cache utilization. Unfortunately, prior research does

not address both issues jointly. On one hand, prior non-uniform

cache access (NUCA) work [2, 3, 8, 10, 11, 14, 18, 31,

33, 46] has proposed a variety of placement, migration, and

replication policies to reduce network distance. However, these

best-effort techniques often result in hotspots and additional

interference [3]. On the other hand, prior work has proposed a

variety of partitioning techniques [9, 25, 28, 42, 44], but these

schemes only work on fully shared caches, often scale poorly

beyond few partitions, and degrade throughput.

We present Jigsaw, a design that jointly addresses the

scalability and interference problems of shared caches. On

the hardware side, we leverage recent prior work on efficient

fine-grained partitioning [37] to structure the last-level cache

as a collection of distributed banks, where each bank can be

independently and logically divided in many bank partitions.

Jigsaw lets software combine multiple bank partitions into a

logical, software-defined cache, which we call a share. By

mapping data to shares, and configuring the locations and sizes

of the individual bank partitions that compose each share,

software has full control over both where data is placed in

the cache, and the capacity allocated to it. Jigsaw efficiently

supports reconfiguring shares dynamically and moving data

across shares, and implements monitoring hardware to let

software find the optimal share configuration efficiently.

On the software side, we develop a lightweight system-

level runtime that divides data into shares and decides how to

configure each share to both maximize cache utilization and

place data close to where it is used. In doing so, we develop

novel and efficient resource management algorithms, including

Peekahead, an exact linear-time implementation of the pre-

viously proposed quadratic-time Lookahead algorithm [34],

enabling global optimization with non-convex utilities on very

large caches at negligible overheads.

We evaluate Jigsaw with simulations of 16- and 64-core

tiled CMPs. On multiprogrammed mixes of single-threaded

workloads, Jigsaw improves weighted speedup by up to 2.2×
(18.4% gmean) over a shared LRU LLC, up to 35% (9.4%

gmean) over Vantage partitioning [37], up to 2.05× (11.4%

gmean) over R-NUCA [14], and up to 24% (6.3% gmean)

over an idealized shared-private D-NUCA organization that

uses twice the cache capacity [16]. Jigsaw delivers similar

benefits on multithreaded application mixes, demonstrating

that, given the right hardware primitives, software can manage

large distributed caches efficiently.

II. BACKGROUND AND RELATED WORK

This section presents the relevant prior work on multicore

caching that Jigsaw builds and improves on: techniques to

partition a shared cache, and non-uniform cache architectures.

Table 1 summarizes the main differences among techniques.

A. Cache Partitioning

Cache partitioning requires a partitioning policy to select

partition sizes, and a partitioning scheme to enforce them.

1



Scheme H
ig

h
ca

pa
ci

ty

L
ow

L
at

en
cy

C
ap

ac
it
y

co
nt

ro
l

Is
ol

at
io

n

D
ir

ec
to

ry
-

le
ss

Private caches ✗ ✓ ✗ ✓ ✗

Shared caches ✓ ✗ ✗ ✗ ✓

Partitioned shared caches ✓ ✗ ✓ ✓ ✓

Private-based D-NUCA [ ✓ ✓ ✗ ✗

Shared-based D-NUCA [ ✓ ✗ ✗ ✓

Jigsaw ✓ ✓ ✓ ✓ ✓

Table 1. Desirable properties achieved by main cache organizations.

Partitioning schemes: A partitioning scheme should support

a large number of partitions with fine-grained sizes, disallow

interference among partitions, strictly enforce partition sizes,

avoid hurting cache associativity or replacement policy perfor-

mance, support changing partition sizes efficiently, and require

small overheads. Achieving these properties is not trivial.

Several techniques rely on restricting the locations where a

line can reside depending on its partition. Way-partitioning [9]

restricts insertions from each partition to its assigned subset

of ways. It is simple, but it supports a limited number of

coarsely-sized partitions (in multiples of way size), and parti-

tion associativity is proportional to its way count, sacrificing

performance for isolation. To avoid losing associativity, some

schemes can partition the cache by sets instead of ways [35,

43], but they require significant changes to cache arrays.

Alternatively, virtual memory and page coloring can be used

to constrain the pages of a process to specific sets [25, 42].

While software-only, these schemes are incompatible with

superpages and caches indexed using hashing (common in

modern CMPs), and repartitioning requires costly recoloring

(copying) of physical pages.

Caches can also be partitioned by modifying the allocation

or replacement policies. These schemes avoid the problems

with restricted line placement, but most rely on heuristics [28,

44, 45], which provide no guarantees and often require many

more ways than partitions to work well. In contrast, Van-

tage [37] leverages the statistical properties of skew-assoc-

iative caches [39] and zcaches [36] to implement partitioning

efficiently. Vantage supports hundreds of partitions, provides

strict guarantees on partition sizes and isolation, can resize

partitions without moves or invalidations, and is cheap to

implement (requiring ≈1% extra state and negligible logic).

For these reasons, Jigsaw uses Vantage to partition each cache

bank, although Jigsaw is agnostic to the partitioning scheme.

Partitioning policies: Partitioning policies consist of a mon-

itoring mechanism, typically in hardware, that profiles parti-

tions, and a controller, in software or hardware, that uses this

information and sets partition sizes to maximize some metric,

such as throughput [34], fairness [25, 41], or QoS [23].

Utility-based cache partitioning (UCP) is a frequently used

policy [34]. UCP introduces a utility monitor (UMON) per

core, which samples the address stream and measures the

partition’s miss curve, i.e., the number of misses that the

partition would have incurred with each possible number of

allocated ways. System software periodically reads these miss

curves and repartitions the cache to maximize cache utility

(i.e., the expected number of cache hits). Miss curves are often

not convex, so deriving the optimal partitioning is NP-hard.

UCP decides partition sizes with the Lookahead algorithm,

an O(N2) heuristic that works well in practice, but is too

slow beyond small problem sizes. Although UCP was designed

to work with way-partitioning, it can be used with other

schemes [37, 45]. Instead of capturing miss curves, some

propose to estimate them with analytical models [41], use

simplified algorithms, such as hill-climbing, that do not require

miss curves [28], or capture them offline [6], which simplifies

monitoring but precludes adaptation. Prior work has also

proposed approximating miss curves by their convex fits and

using efficient convex optimization instead of Lookahead [6].

In designing Jigsaw, we observed that miss curves are often

non-convex, so hill-climbing or convex approximations are

insufficient. However, UCP’s Lookahead is too slow to handle

large numbers of fine-grained partitions. To solve this problem,

we reformulate Lookahead in a much more efficient way,

making it linear-time (Sec. IV).

B. Non-Uniform Cache Access (NUCA) Architectures

NUCA techniques [20] reduce the access latency of large

distributed caches, and have been the subject of extensive

research. Static NUCA (S-NUCA) [20] simply spreads the

data across all banks with a fixed line-bank mapping, and

exposes a variable bank access latency. Commercial designs

often use S-NUCA [21]. Dynamic NUCA (D-NUCA) schemes

improve on S-NUCA by adaptively placing data close to

the requesting core [2, 3, 8, 10, 11, 14, 18, 31, 33, 46].

They involve a combination of placement, migration, and

replication strategies. Placement and migration dynamically

place data close to cores that use it, reducing access latency.

Replication makes multiple copies of frequently used lines,

reducing latency for widely read-shared lines (e.g., hot code),

at the expense of some capacity loss.

Shared- vs private-based NUCA: D-NUCA designs often

build on a private-cache baseline. Each NUCA bank is treated

as a private cache, lines can reside in any bank, and coherence

is preserved through a directory-based or snoopy protocol,

which is often also leveraged to implement NUCA techniques.

For example, Adaptive Selective Replication [2] controls repli-

cation by probabilistically deciding whether to store a copy of

a remotely fetched line in the local L2 bank; Dynamic Spill-

Receive [33] can spill evicted lines to other banks, relying on

remote snoops to retrieve them. These schemes are flexible, but

they require all LLC capacity to be under a coherence protocol,

so they are either hard to scale (in snoopy protocols), or incur

significant area, energy, latency, and complexity overheads (in

directory-based protocols).

In contrast, some D-NUCA proposals build on a shared-

cache baseline and leverage virtual memory to perform adap-

tive placement. Cho and Jin [11] use page coloring and

a NUCA-aware allocator to map pages to specific banks.

Hardavellas et al. [14] find that most applications have a few

2



distinct classes of accesses (instructions, private data, read-

shared, and write-shared data), and propose R-NUCA, which

specializes placement and replication policies for each class

of accesses on a per-page basis, and significantly outperforms

NUCA schemes without this access differentiation. Shared-

baseline schemes are simpler, as they require no coherence

for LLC data and have a simpler lookup mechanism. How-

ever, they may incur significant overheads if remappings are

frequent or limit capacity due to restrictive mappings (Sec. VI).

Jigsaw builds on a shared baseline. However, instead of

mapping pages to locations as in prior work [11, 14], we

map pages to shares or logical caches, and decide the physical

configuration of the shares independently. This avoids page ta-

ble changes and TLB shootdowns on reconfigurations, though

some reconfigurations still need cache invalidations.

Isolation and partitioning in NUCA: Unlike partitioning,

most D-NUCA techniques rely on best-effort heuristics with

little concern for isolation, so they often improve typical

performance at the expense of worst-case degradation, further

precluding QoS. Indeed, prior work has shown that D-NUCA

often causes significant bank contention and uneven distri-

bution of accesses across banks [3]. We also see this effect

in Sec. VI — R-NUCA has the highest worst-case degra-

dation of all schemes. Dynamic Spill-Receive mitigates this

problem with a QoS-aware policy that avoids spills to certain

banks [33]. This can protect a local bank from interference,

but does not provide partitioning-like capacity control. Virtual

Hierarchies rely on a logical two-level directory to partition a

cache at bank granularity [29], but this comes at the cost of

doubling directory overheads and making misses slower.

Because conventional partitioning techniques (e.g., way-par-

titioning) only provide few partitions and often degrade perfor-

mance, D-NUCA schemes seldom use them. ASP-NUCA [12],

ESP-NUCA [31], and Elastic Cooperative Caching [16] use

way-partitioning to divide cache banks between private and

shared levels. However, this division does not provide iso-

lation, since applications interfere in the shared level. In

contrast, Jigsaw partitions the cache into multiple isolated

virtual caches that, due to smart placement, approach the low

latency of private caches. These schemes often size partitions

using hill-climbing (e.g., shadow tags [12] or LRU way hit

counters [16]), which can get stuck in local optima, whereas

Jigsaw captures full miss curves to make global decisions.

CloudCache [22] implements virtual private caches that can

span multiple banks. Each bank is way-partitioned, and parti-

tions are sized with a distance-aware greedy algorithm based

on UCP with a limited frontier. Unfortunately, CloudCache

scales poorly to large virtual caches, as it uses N-chance

spilling on evictions, and relies on broadcasts to serve local

bank misses, reducing latency at the expense of significant

bandwidth and energy (e.g., in a 64-bank cache with 8-way

banks, in a virtual cache spanning all banks, a local miss

will trigger a full broadcast, causing a 512-way lookup and a

chain of 63 evictions). In contrast, Jigsaw implements single-

lookup virtual shared caches, providing coordinated placement

and capacity management without the overheads of a globally

shared directory or multi-level lookups, and performs global

(not limited-frontier) capacity partitioning efficiently using

novel algorithms (Sec. IV).

III. JIGSAW HARDWARE

Jigsaw exposes on-chip caches to software and enables their

efficient management using a small set of primitives. First,

Jigsaw lets software explicitly divide a distributed cache in

collections of bank partitions, which we call shares. Shares

can be dynamically reconfigured by changing the size of each

bank partition. Second, Jigsaw provides facilities to map data

to shares, and to quickly migrate data among shares. Third,

Jigsaw implements share monitoring hardware to let software

find the optimal share configuration efficiently.

A. Shares

Fig. 1 illustrates the overall organization of Jigsaw. Jigsaw

banks can be divided in bank partitions. Jigsaw is agnostic to

the partitioning scheme used, as well as the array type and

replacement policy. As discussed in Sec. II, in our evaluation

we select Vantage partitioning due to its ability to partition

banks at a fine granularity with minimal costs.

Shares are configurable collections of bank partitions, visi-

ble to software. Each share has a unique id number and com-

prises a set of bank partitions that can be sized independently.

The share size is the sum of its bank partition sizes. The share

id is independent from the individual partition ids.

We could exploit shares in two ways. On the one hand,

we could assign cores to shares, having shares behave as

virtual private caches. This is transparent to software, but

would require a coherence directory for LLC data. On the

other hand, we can map data to shares. This avoids the need

for coherence beyond the private (L2) caches, as each line

can only reside in a single location. Mapping data to shares

also enables specializing shares to different types of data (e.g.,

shared vs thread-private [14]). For these reasons, we choose

to map data to shares.

Jigsaw leverages the virtual memory subsystem to map data

to shares. Fig. 1 illustrates this implementation, highlighting

the microarchitectural structures added and modified. Specifi-

cally, we add a share id to each page table entry, and extend the

TLB to store the share id. Active shares must have unique ids,

so we model 16-bit ids. Share ids are needed in L2 accesses,

so these changes should not slow down page translations.

On a miss on the private cache levels, a per-core share-

bank translation buffer (STB) finds the bank the line maps

to, as well as its bank partition. Fig. 1 depicts the per-core

STBs. Each STB has a small number of resident shares. Like

in a software-managed TLB, an access to a non-resident share

causes an exception, and system software can refill the STB.

As we will see in Sec. IV, supporting a small number of

resident shares per core (typically 4) is sufficient. Each share

descriptor consists of an array of N bank and bank partition

ids. To perform a translation, we hash the address, and use

the hash value to pick the array entry used. We take the

STB translation latency out of the critical path by doing it

3



M
e
m

 / IO
 

Tile Organization 64-tile CMP 
 

Jigsaw L3 Bank 

 

 

 
NoC Router 

Bank partitioning HW 

Bulk inv HW Monitoring HW 

Core 

STB 

TLBs 

L1I L1D 

L2 

 

 

 

 

 

 

 

 

Modified structures 
New/added structures 

Mem / IO 

M
e
m

 /
 I

O
 

Mem / IO 

Tile NoC (Mesh) 

Share-bank Translation Buffer 

STB Entry 

Address (from L1 miss) Share Id (from TLB) 

1/3 3/5 1/3 

H 

0/8 … 
1 

Bank/ 

Part 0 

Bank/ 

Part N-1 

0x5CA1AB1E maps to 

bank 3, bank part 5 

2706 

4 entries, associative, 
exception on miss 

Share 

Config 

0x5CA1AB1E 

Figure 1. Jigsaw overview: target tiled CMP, tile configuration with microarchitectural changes
and additions introduced by Jigsaw, and Share-Bank Translation Buffer (STB).

Jigsaw L3 Bank 3 

Core 0 1 

2 

LD 0x5CA1AB1E 

L1D Miss  L2 and 
STB lookup 

Tile 0 

Tile 3 

L3 Hit 
Update part 5 counters 
Add core 0 sharer 

4 

L1D L1D 

TLBs 

L2 STB 

NoC 

3 L2 Miss  Jigsaw L3 
lookup, bank 3, 
bank partition 5 

5 Serve 
line 

3 5 GETS 0x5CA1AB1E 

Figure 2. Jigsaw L3 access, including STB
lookup in parallel with L2 access.

speculatively on L2 accesses. Fig. 2 details the different steps

involved in a Jigsaw cache access.

There are several interesting design dimensions in the STB.

First, the hash function can be as simple as bit-selection.

However, to simplify share management, the STB should

divide the requests into sub-streams with statistically similar

access patterns. A more robust hash function can achieve this.

Specifically, we use an H3 hash function (H in Fig. 1), which

is universal and efficient to implement in hardware [7]. All

STBs implement the same hash function. Second, increasing

N, the number of entries in a share descriptor, lets us fine-

tune the load we put on each bank to adapt to heterogeneous

bank partition sizes. For example, if a share consists of two

bank partitions, one twice the size of the other, we’d like 66%

of the requests to go to the larger bank partition, and 33%

to the smaller one. N = 2 does not allow such division, but

N = 3 does. In our implementation, we choose N equal to the

number of banks, so shares spanning few bank partitions can

be finely tuned to bank partition sizes, but large shares that

span most banks can not. For a 64-core system with 64 banks

in which each bank has 64 partitions, bank and bank partition

ids are 6 bits, and each share descriptor takes 768 bits (96

bytes). Supporting four shares can be done with less than 400

bytes, a 0.2% storage overhead over the private cache sizes.

Alternatively, more complex weighted hash functions or more

restrictive mappings can reduce this overhead.

B. Dynamic Adaptation

So far we have seen how Jigsaw works on a static config-

uration. To be adaptive, however, we must also support both

reconfiguring a share and remapping data to another share.

Share reconfiguration: Shares can be changed in two di-

mensions. First, per-bank partition sizes can be dynamically

changed. This concerns the bank partitioning technique used

(e.g., in Vantage, this requires changing a few registers [37]),

and is transparent to Jigsaw. Second, the share descriptor (i.e.,

the mapping of lines to bank partitions) should also be changed

at runtime, to change either the bank partitions that conform

the share, or the load put on each bank partition.

To support share descriptor reconfiguration, we introduce

hardware support for bulk invalidations. On a reconfiguration,

the new STB descriptors are loaded and each bank walks the

whole array, invalidating lines from shares that have been

reassigned to other banks. When a bulk invalidation is in

progress, accesses to lines in the same bank partition are

NACKed, causing an exception at the requesting core. This

essentially quiesces the cores that use the bank partition until

the invalidation completes.

Bulk invalidations may seem heavy-handed, but they avoid

having a directory. We have observed that bulk invalidations

take 30-300 K cycles. Since we reconfigure every 50 M cycles,

and only a fraction of reconfigurations cause bulk invalida-

tions, this is a minor overhead given the hardware support. For

our benchmarks, more frequent reconfigurations show little

advantage, but this may not be the case with highly variable

workloads. We defer investigating additional mechanisms to

reduce the cost of bulk invalidations (e.g., avoiding stalls or

migrating instead of invalidating) to future work.

These tradeoffs explain why we have chosen partitionable

banks instead of a large number of tiny, unpartitionable banks.

Partitionable banks incur fewer invalidations, and addressing a

small number of banks reduces the amount of state in the share

descriptor and STB. Finally, increasing the number of banks

would degrade NoC performance and increase overheads [26].

Page remapping: To classify pages dynamically (Sec. IV),

software must also be able to remap a page to a different share.

A remap is similar to a TLB shootdown: the initiating core

quiesces other cores where the share is accessible with an IPI;

it then issues a bulk invalidation of the page. Once all the banks

involved finish the invalidation, the core changes the share in

the page table entry. Finally, quiesced cores update the stale

TLB entry before resuming execution. Page remaps typically

take a few hundred cycles, less than the associated TLB

shootdown, and are rare in our runtime, so their performance

effects are negligible.

Invalidations due to both remappings and reconfigurations

could be avoided with an extra directory between Jigsaw and

main memory. Sec. VI shows that this is costly and not needed,

as reconfiguration overheads are negligible.

C. Monitoring

In order to make reasonable partitioning decisions, software

needs monitoring hardware that gives accurate, useful and

timely information. As discussed in Sec. II, utility monitors

(UMONs) [34] are an efficient way to gather miss curves. Prior

partitioning schemes use per-core UMONs [34, 37], but this is

4



0x3DF7AB 0xFE3D98 0xDD380B 0x3930EA … 

0xB3D3GA 0x0E5A7B 0x123456 0x7890AB … 

0xCDEF00 0x3173FC 0xCDC911 0xBAD031 … 

0x7A5744 0x7A4A70 0xADD235 0x541302 … 

717,543 117,030 213,021 32,103 … 

…
 

…
 

Hit 

Counters 

Tag 

Array 

Way 0 Way N-1 … 

Address 

H3 

Limit 

< 
True 

Figure 3. Jigsaw monitoring hardware. As in UMON-DSS [34], the
tag array samples accesses and counts hits per way to produce miss
curves. The limit register finely controls the UMON’s sampling rate.

insufficient in Jigsaw, as shares can be accessed from multiple

cores, and different cores often have wildly different access

patterns to the same data. Instead, Jigsaw generates per-share

miss curves by adding UMONs to each bank.

UMONs were originally designed to work with set-associa-

tive caches, and worked by sampling a small but statistically

significant number of sets. UMONs can also be used with other

cache designs [37] by sampling a fraction of cache accesses at

the UMON. Given high enough associativity, a sampling ratio

of UMON lines : S behaves like a cache of S lines. Moreover,

the number of UMON ways determines the resolution of the

miss curve: an N -way UMON yields N+1-point miss curves.

Partitioning schemes with per-core UMONs implicitly use a

fixed sampling ratio UMON lines : cache lines. This is insuf-

ficient in Jigsaw, because shares can span multiple banks. To

address this, we introduce an adaptive sampling mechanism,

shown in Fig. 3. Each UMON has a 32-bit limit register,

and only addresses whose hash value is below this limit are

inserted into the UMON. Changing the limit register provides

fine control over the UMON’s sampling rate.

For single-bank shares, a ratio r0=UMON lines : LLC lines

lets Jigsaw model the full cache, but this is inadequate for

multi-bank shares. To see why, consider a share allocated

100 KB, split between two bank partitions allocated 67 KB

and 33 KB. The STB spreads accesses across banks, so each

bank sees a statistically similar request stream, but sampled

proportionally to bank partition size: 2/3 of the accesses are

sent to the first partition, and 1/3 to the second. Consequently,

the first bank partition’s UMON would behave like a cache of

1.5× the LLC size, and the second as a cache of 3× the LLC

size. Using a fixed sampling ratio of r0 would be wasteful.

By using r1 = 3/2 · r0 and r2 = 3 · r0, Jigsaw counters the

sampling introduced by the STB, and both UMONs model LLC

size precisely.

In general, if the STB sends a fraction fi of requests to

bank partition i, then a sampling ratio ri = r0/fi models

LLC capacity, and Jigsaw produces the share’s miss curve by

averaging the bank partitions’ curves. Moreover, when shares

span multiple banks, one or a few UMONs suffice to capture

accurate miss curves. Jigsaw therefore only implements a few

UMONs per bank (four in our evaluation) and dynamically as-

signs them to shares using a simple greedy heuristic, ensuring

that each share has at least one UMON. This makes the number

of UMONs scale with the number of shares, not bank partitions.

Finally, in order to make sound partitioning decisions, miss

curves must have sufficiently high resolution, which is deter-

mined by the number of UMON ways. While a small number

of UMON ways is sufficient to partition small caches as in prior

work [34, 37], partitioning a large, multi-banked cache among

many shares requires higher resolution. For example, for a

1 MB cache, a 32-way UMON has a resolution of 32 KB. In a

64-bank cache with 1 MB banks, on the other hand, the same

UMON’s resolution is 2 MB. This coarse resolution affects

partitioning decisions, hurting performance, as our evaluation

shows (Sec. VI-D). For now, we ameliorate this problem by

implementing 128-way UMONs and linearly interpolating miss

curves. Though high, this associativity is still practical since

UMONs only sample a small fraction of accesses. Results show

that even higher associativities are beneficial, although this

quickly becomes impractical. We defer efficient techniques for

producing higher-resolution miss curves to future work.

IV. JIGSAW SOFTWARE

Shares are a general mechanism with multiple potential uses

(e.g., maximizing throughput or fairness, providing strict pro-

cess isolation, implementing virtual local stores, or avoiding

side-channel attacks). In this work, we design a system-level

runtime that leverages Jigsaw to jointly improve cache utiliza-

tion and access latency transparently to user-level software.

The runtime first classifies data into shares, then periodically

decides how to size and where to place each share.

A. Shares and Page Mapping

Jigsaw defines three types of shares: global, per-process, and

per-thread. Jigsaw maps pages accessed by multiple processes

(e.g., OS code and data, library code) to the (unique) global

share. Pages accessed by multiple threads in the same process

are mapped to a per-process share. Finally, each thread has a

per-thread share. With this scheme, each core’s STB uses three

entries, but there are a large number of shares in the system.

Similar to R-NUCA [14], page classification is done incre-

mentally and lazily, at TLB/STB miss time. When a thread

performs the first access to a page, it maps it to its per-thread

share. If another thread from the same process tries to access

the page, the page is remapped to the per-process share. On

an access from a different process (e.g., due to IPC), the page

is remapped to the global share. When a process finishes, its

shares are deallocated and bulk-invalidated.

B. Share Sizing: Peekahead

The Jigsaw runtime first decides how to size each share,

then where to place it. This is based on the observation that

reducing misses often yields higher benefits than reducing

access latency, and considering sizing and placement inde-

pendently greatly simplifies allocation decisions. Conceptually,

sizing shares is no different than in UCP: the runtime computes

the per-share miss curves as explained in Sec. III, then runs

Lookahead (Sec. II) to compute the share sizes that maximize

utility, or number of hits.

5



A B

C

D
E

F

G

IH

Cache Size�

M
is
s
e
s
�

Figure 4. Non-convex miss curve (blue), and its convex hull (red).

Maximum allocation, S′

S′ < D D ≤ S′ < F F ≤ S′ < G G ≤ S′ < H H ≤ S′

S
ta

rt

A S′ D D D D
D - S′ F S′ H
F - - S′ - -
H - - - - S′

Table 2. Maximal utility allocations for Fig. 4 across the entire
domain from all possible starting positions.

Unfortunately, using Lookahead is unfeasible. Lookahead

greedily allocates space to the partition that provides the

highest utility per unit (hits per allocation quantum). Because

miss curves are not generally convex, on each step Lookahead

traverses each miss curve looking for the maximum utility

per unit it can achieve with the remaining unallocated space.

This results in an O(P ·S2) run-time, where P is the number

of partitions and S is the cache size in allocation quanta, or

“buckets”. With way-partitioning, S is small (the number of

ways) and this is an acceptable overhead. In Jigsaw, banks can

be finely partitioned, and we must consider all banks jointly.

Lookahead is too inefficient at this scale.

To address this, we develop the Peekahead algorithm, an

exact O(P · S) implementation of Lookahead. We leverage

the insight that the point that achieves the maximum utility

per unit is the next one in the convex hull of the miss curve.

For example, Fig. 4 shows a non-convex miss curve (blue)

and its convex hull (red). With an unlimited budget, i.e.,

abundant unallocated cache space, and starting from A, D
gives maximal utility per unit (steepest slope); starting from

D, H gives the maximal utility per unit; and so on along

the convex hull. With a limited budget, i.e. if the remaining

unallocated space limits the allocation to S′, the point that

yields maximum utility per unit is the next one in the convex

hull of the miss curve in the region [0, S′]. For example, if we

are at D and are given limit S′ between F and G, the convex

hull up to S′ is the line DFS′ and F yields maximal utility

per unit. Conversely, if S′ lies between G and H , then the

convex hull is DS′, S′ is the best option, and the algorithm

terminates (all space is allocated).

If we know these points of interest (POIs), the points that

constitute all reachable convex hulls, traversing the miss curves

on each allocation becomes unnecessary: given the current

allocation, the next relevant POI always gives the maximum

utility per unit. For example, in Fig. 4, the only POIs are A,

D, F , and H; Table 2 shows all possible decisions. Fig. 5

Cache Size�

M
is
s
e
s
�

Figure 5. Points of interest (POIs) for several example miss curves.
Dashed lines denote their convex hulls.

shows several example miss curves and their POIs. Note that

some POIs do not lie on the full convex hull (dashed lines),

but are always on the convex hull of some sub-domain.

Peekahead first finds all POIs in O(S) for each partition.

This is inspired by the three coins algorithm [30]. For example,

we construct the convex hull ADHI in Fig. 4 by considering

points from left to right. At each step, we add the next point

to the hull, and then backtrack to remove previous points that

no longer lie on the hull. We begin with the line AB. C is

added to form ABC, and then we backtrack. Because B lies

above AC, it is removed, leaving AC. Similarly, D replaces

C, leaving AD. Next, E is added to form ADE, but since D
lies below AE, it is not removed. Continuing, F replaces E,

G replaces F , H replaces G, and finally I is added to give

the convex hull ADHI .

We extend this algorithm to build all convex hulls over

[0, X] for any X up to S, which produces all POIs. We

achieve this in O(S) by not always deleting points during

backtracking. Instead, we mark points in convex regions with

the x-coordinate at which the point becomes obsolete, termed

the horizon (e.g., F ’s horizon is G). Such a point is part of

the convex hull up to its horizon, after which it is superseded

by the higher-utility-per-unit points that follow. However, if a

point is in a concave region then it is not part of any convex

hull, so it is deleted (e.g., C and G).

Algorithm 1 shows the complete Peekahead algorithm.

First, ALLHULLS preprocesses each share’s miss curve and

computes its POIs. Then, PEEKAHEAD divides cache space

across shares iteratively using a max-heap. In practice, ALL-

HULLS dominates the run-time of Algorithm 1 at O(P · S),
as Sec. VI-D confirms. We provide a detailed analysis of

Peekahead’s run-time and correctness in a technical report [4].

C. NUCA-Aware Share Placement

Once the Jigsaw runtime sizes all shares, it places them

over cache banks using a simple greedy heuristic. Each share

starts with its allocation given by PEEKAHEAD, called the

budget. The goal of the algorithm is for each share to exhaust

its budget on banks as close to the source as possible. The

source is the core or “center of mass” of cores that generate

accesses to a share. The distance of banks from the source

is precomputed for each partition and passed as the lists

6



Algorithm 1. The Peekahead algorithm. Compute all reachable
convex hulls and use the convexity property to perform Lookahead
in linear time. Letters in comments refer to points in Fig. 4. AB is
the line connecting A and B.

Inputs: A single miss curve: M , Cache size: S
Returns: POIs comprising all convex hulls over [0, X] ∀ 0 ≤ X ≤ S

1: function ALLHULLS(M , S)
2: start ← (0,M(0),∞) ⊲ POIs are (x, y, horizon)
3: pois[...] ← {start} ⊲ Vector of POIs
4: hull[...] ← {pois.HEAD} ⊲ Current convex hull; references pois
5: for x← 1 to S :
6: next ← (x,M(x),∞)
7: for i← hull.LENGTH − 1 to 1 : ⊲ Backtrack?
8: candidate ← hull[i]
9: prev ← hull[i− 1]

10: if candidate is not BELOW prev next :
11: hull.POPBACK() ⊲ Remove from hull
12: if candidate.x ≥ x− 1 :
13: pois.POPBACK() ⊲ Not a POI (C,G)
14: else :

15: candidate.horizon← x−1 ⊲ POI not on hull (F )

16: else :

17: break ⊲ POI and predecessors valid (for now)

18: pois.PUSHBACK(next) ⊲ Add POI
19: hull.PUSHBACK(pois.TAIL)

20: return pois

Inputs: Partition miss curves: M1...MP , Cache size: S
Returns: Partition allocations: A[...]
21: function PEEKAHEAD(M1...MP , S)
22: pois[...] ← {ALLHULLS(M1, S)...ALLHULLS(MP , S)}
23: current[...] ← {pois[1].HEAD...pois[p].HEAD} ⊲ Allocations

24: A[...] ←

P times
︷ ︸︸ ︷

{0...0}
25: heap ← MAKEHEAP( ) ⊲ Steps sorted by ∆U
26: function NEXTPOI(p)
27: for i← current[p] + 1 to pois[p].TAIL :
28: if i.x > current[p].x+ S : break ⊲ No space left

29: if i.horizon > current[p].x+ S : return i ⊲ Valid POI

30: x ← current[p].x+ S ⊲ Concave region; take S
31: return (x,Mp(x),∞)

32: function ENQUEUE(p)
33: next ← NEXTPOI(p)
34: ∆S ← next.x− current[p].x
35: ∆U ← (current[p].y − next.y) /∆S
36: heap.PUSH((p,∆U,∆S, next))

37: ENQUEUE([1...P ])
38: while S > 0 : ⊲ Main loop
39: (p,∆U,∆S, next) ← heap.POP()
40: if S ≥ ∆S : ⊲ Allocate if we have space
41: current[p] ← next
42: A[p] ← A[p] +∆S
43: S ← S −∆S
44: ENQUEUE(p)

45: return A[...]

D1...DP . Each bank is given an inventory of space, and shares

simply take turns making small “purchases” from banks until

all budgets are exhausted, as Algorithm 2 shows. PEEKAHEAD

dominates the run-time of the complete algorithm at O(P ·S).

V. EXPERIMENTAL METHODOLOGY

Modeled systems: We perform microarchitectural, execution-

driven simulation using zsim [38], an x86-64 simulator based

on Pin [27], and model tiled CMPs with 16 and 64 cores and a

3-level cache hierarchy, as shown in Fig. 1. We use both simple

in-order core models, and detailed OOO models validated

Algorithm 2. Jigsaw’s partitioning policy. Divide the LLC into shares
to maximize utility and locality. Shares use budgets produced by
Peekahead to claim capacity in nearby bank partitions in increments
of ∆0.

Inputs: Partition miss curves: M1...MP , Cache size: S, Num. banks: B,
Banks sorted by distance: D1...DP

Returns: Share allocation matrix:
[
Ap,b

]
where 1 ≤ p ≤ P and 1 ≤ b ≤ B

1: function PARTITION(M1...MP , S,B)
2: budget[...] ← PEEKAHEAD(M1...MP , S)

3: inventory[...] ←

B times
︷ ︸︸ ︷{

S

B
,
S

B
,
S

B
...

S

B

}

4: d[...] ← {D1.HEAD...DP .HEAD} ⊲ Prefer closer banks
5: A ← [0]1≤p≤P

1≤b≤B

6: while
∑

budget > 0 :

7: for s← 1 to P :
8: b ← d[i] ⊲ Closest bank
9: if inventory[b] > ∆0 :

10: ∆ ← ∆0 ⊲ Have space; take ∆0

11: else :

12: ∆ ← inventory[b] ⊲ Empty bank; move to next closest
13: d[i] ← d[i]+1

14: Ap,b ← Ap,b +∆
15: budget[s] ← budget[s]−∆
16: inventory[b] ← inventory[b]−∆

17: return A

against a real Westmere system [38]. The 64-core CMP,

with parameters shown in Table 3, is organized in 64 tiles,

connected with an 8×8 mesh network-on-chip (NoC), and has

4 memory controllers at the edges. The scaled-down 16-core

CMP has 16 tiles, a 4×4 mesh, and a single memory con-

troller. The 16-core CMP has a total LLC capacity of 16 MB

(1 MB/tile), and the 64-core CMP has 32 MB (512 KB/tile).

We use McPAT [24] to derive the area and energy numbers of

chip components (cores, caches, NoC, and memory controller)

at 22 nm, and Micron DDR3L datasheets [32] to compute main

memory energy. With simple cores, the 16-core system is im-

plementable in 102 mm2 and has a typical power consumption

of 10-20 W in our workloads, consistent with adjusted area and

power of Atom-based systems [13].

Cache implementations: Experiments use an unpartitioned,

shared (static NUCA) cache with LRU replacement as the

baseline. We compare Jigsaw with Vantage, a representative

partitioned design, and R-NUCA, a representative shared-

baseline D-NUCA design. Because private-baseline D-NUCA

schemes modify the coherence protocol, they are hard to

model. Instead, we model an idealized shared-private D-

NUCA scheme, IdealSPD, with 2× the LLC capacity. In

IdealSPD, each tile has a private L3 cache of the same size as

the LLC bank (512 KB or 1 MB), a fully provisioned 5-cycle

directory bank that tracks the L3s, and a 9-cycle exclusive

L4 bank (512 KB or 1 MB). Accesses that miss in the private

L3 are serviced by the proper directory bank (traversing the

NoC). The L4 bank acts as a victim cache, and is accessed in

parallel with the directory to minimize latency. This models

D-NUCA schemes that partition the LLC between shared and

private regions, but gives the full LLC capacity to both the

private (L3) and shared (L4) regions. Herrero et al. [16] show

that this idealized scheme always outperforms several state-of-

7



Cores
64 cores, x86-64 ISA, in-order IPC=1 except on memory
accesses / Westmere-like OOO, 2 GHz

L1 caches 32 KB, 8-way set-associative, split D/I, 1-cycle latency

L2 caches
128 KB private per-core, 8-way set-associative, inclusive,
6-cycle latency

L3 cache

512 KB/1 MB per tile, 4-way 52-candidate zcache, 9 cycles,
inclusive, LRU/R-NUCA/Vantage/Jigsaw, or idealized
shared-private D-NUCA with 2× capacity (IdealSPD)

Coherence
protocol

MESI protocol, 64 B lines, in-cache directory, no silent
drops; sequential consistency

Global

NoC

8×8 mesh, 128-bit flits and links, X-Y routing, 3-cycle
pipelined routers, 1-cycle links

Memory
controllers

4 MCUs, 1 channel/MCU, 120 cycles zero-load latency,
12.8 GB/s per channel

Table 3. Configuration of the simulated 64-core CMP.

the-art private-baseline D-NUCA schemes that include shared-

private partitioning, selective replication, and adaptive spilling

(DCC [15], ASR [2], and ECC [16]), often by significant

margins (up to 30%).

Vantage and Jigsaw both use 512-line (4 KB) UMONs with

128 ways (Sec. III-C), and reconfigure every 50 M cycles.

Jigsaw uses 4 UMONs per 1 MB L3 bank, a total storage over-

head of 1.4%. Vantage uses utility-based cache partitioning

(UCP) [34]. R-NUCA is configured as proposed [14] with

4-way rotational interleaving and page-based reclassification.

Jigsaw and R-NUCA use the page remapping support dis-

cussed in Sec. III, and Jigsaw implements bulk invalidations

with per-bank pipelined scans of the tag array (with 1 MB 4-

way banks, a scan requires 4096 tag array accesses). Jigsaw

uses thread-private and per-process shares. In all configu-

rations, banks use 4-way 52-candidate zcache arrays [36]

with H3 hash functions, though results are similar with more

expensive 32-way set-associative hashed arrays.

Workloads and Metrics: We simulate mixes of single and

multi-threaded workloads. For single-threaded mixes, we use

a similar methodology to prior partitioning work [34, 37]. We

classify all 29 SPEC CPU2006 workloads into four types ac-

cording to their cache behavior: insensitive (n), cache-friendly

(f), cache-fitting (t), and streaming (s) as in [37, Table 2],

and build random mixes of all the 35 possible combinations

of four workload types. We generate four mixes per possible

combination, for a total of 140 mixes. We pin each application

to a specific core, and fast-forward all applications for 20

billion instructions. We use a fixed-work methodology and

equalize sample lengths to avoid sample imbalance, similar

to FIESTA [17]: First, we run each application in isolation,

and measure the number of instructions Ii that it executes

in 1 billion cycles. Then, in each experiment we simulate

the full mix until all applications have executed at least Ii
instructions, and consider only the first Ii instructions of each

application when reporting aggregate metrics. This ensures

that each mix runs for at least 1 billion cycles. Our per-

workload performance metric is perf i = IPCi.

For multi-threaded mixes, we use ten parallel benchmarks

from PARSEC [5] (blackscholes, canneal, fluidanim-

ate, swaptions), SPLASH-2 (barnes, ocean, fft, lu,

radix), and BioParallel [19] (svm). We simulate 40 random

0 20 40 60 80 100 120 140

Workload

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

T
h
ro

u
g
h
p
u
t 
v
s
 L

R
U

Jigsaw

IdealSPD

R-NUCA

Vantage

0 20 40 60 80 100 120 140

Workload

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

W
. 
S

p
e
e
d
u
p
 v

s
 L

R
U

Jigsaw

IdealSPD

R-NUCA

Vantage

Figure 6. Throughput and weighted speedup of Jigsaw, Vantage, R-
NUCA, and IdealSPD (with 2× cache) over LRU baseline, for 140
SPEC CPU2006 mixes on the 16-core chip with in-order cores.

mixes of four workloads. Each 16-thread workload is sched-

uled in one quadrant of the 64-core chip. Since IPC can be a

misleading proxy for work in multithreaded workloads [1], we

instrument each application with heartbeats that report global

progress (e.g., when each timestep finishes in barnes). The ten

applications we use are the ones from these suites for which

we can add heartbeats without structural changes. For each

application, we find the smallest number of heartbeats that

complete in over 1 billion cycles from the start of the parallel

region when running alone. This is the region of interest (ROI).

We then run the mixes by fast-forwarding all workloads until

the start of their parallel regions, running until all applications

complete their ROI, and keep all applications running to avoid

a lighter load on longer-running applications. To avoid biasing

throughput by ROI length, our per-application performance

metric is perf i = ROItimei,alone/ROItimei.
We report throughput and fairness metrics: normalized

throughput,
∑

i perf i/
∑

i perf i,base, and weighted speedup,

(
∑

i perf i/perf i,base)/Napps, which accounts for fairness [34,

40]. To achieve statistically significant results, we introduce

small amounts of non-determinism [1], and perform enough

runs to achieve 95% confidence intervals ≤1% on all results.

VI. EVALUATION

We first compare Jigsaw against alternative cache organiza-

tions and then present a focused analysis of Jigsaw. A technical

report [4] includes additional results and experiments.

A. Single-threaded mixes on 16-core CMP

We first present results with in-order cores, as they are easier

to understand and analyze, then show OOO results.

Performance across all mixes: Fig. 6 summarizes both

throughput and weighted speedup for the cache organizations

we consider across the 140 mixes. Each line shows the perfor-

mance improvement of a single organization against the shared

LRU baseline. For each line, workload mixes (the x-axis)

are sorted according to the improvement achieved. Lines are

sorted independently, so these graphs give a concise summary

of improvements, but should not be used for workload-by-

workload comparisons among schemes.

Fig. 6 shows that Jigsaw is beneficial for all mixes,

and achieves large throughput and fairness gains: up to

50% higher throughput, and up to 2.2× weighted speedup

8



0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

C
y
c
le

s
 v

s
 L

R
U

L V R I J L V R I J L V R I J L V R I J L V R I J L V R I J L V R I J

fffn0 snnn3 stnn0 ftnn2 ttnn2 tttt3 fttt2

Exec L2 Net LLC Reconf DRAM

Figure 7. Execution time breakdown of LRU (L), Vantage (V), R-
NUCA (R), IdealSPD (I), and Jigsaw (J), for representative 16-core
single-thread mixes. Cycles are normalized to LRU’s (lower is better).

over an unpartitioned shared cache. Overall, Jigsaw achieves

gmean throughput/weighted speedups of 14.3%/18.4%, Van-

tage achieves 5.8%/8.2%, R-NUCA achieves 8.2%/6.3%, and

IdealSPD achieves 10.7%/11.4%. Partitioning schemes benefit

weighted speedup more than throughput, improving fairness

(despite using UCP, which optimizes throughput). R-NUCA

favors throughput but not fairness, and IdealSPD favors both,

but note this is an upper bound with twice the cache capacity.

Performance of memory-intensive mixes: These mixes have

a wide range of behaviors, and many access memory in-

frequently. For the mixes with the highest 20% of memory

intensities (aggregate LLC MPKIs in LRU), where the LLC

organization can have a large impact, the achieved gmean

throughputs/weighted speedups are 21.2%/29.2% for Jigsaw,

11.3%/19.7% for Vantage, 5.8%/4.8% for R-NUCA, and

8.6%/14% for IdealSPD. Jigsaw and Vantage are well above

their average speedups, R-NUCA is well below, and IdealSPD

is about the same. Most of these mixes are at the high end

of the lines in Fig. 6 for Jigsaw and Vantage, but not for R-

NUCA. R-NUCA suffers on memory-intensive mixes because

its main focus is to reduce LLC access latency, not MPKI, and

IdealSPD does not improve memory-intensive mixes because

it provides no capacity control in the shared region.

Performance breakdown: To gain more insight into these

differences, Fig. 7 shows a breakdown of execution time for

seven representative mixes. Each bar shows the total number

of cycles across all workloads in the mix for a specific

configuration, normalized to LRU’s (the inverse of each bar is

throughput over LRU). Each bar further breaks down where

cycles are spent, either executing instructions or stalled on a

memory access. Memory accesses are split into their L2, NoC,

LLC, and memory components. For R-NUCA and Jigsaw, we

include time spent on reconfigurations and remappings, which

is negligible. For IdealSPD, the LLC contribution includes

time spent in private L3, directory, and shared L4 accesses.

We see four broad classes of behavior: First, in capacity-

insensitive mixes (e.g., fffn0, snnn3) partitioning barely

helps, either because applications have small working sets that

fit in their local banks or have streaming behavior. Vantage

thus performs much like LRU on these mixes. R-NUCA im-

proves performance by keeping data in the closest bank (with

single-threaded mixes, R-NUCA behaves like a private LLC

0 20 40 60 80 100 120 140

Workload

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

E
n
e
rg

y
 v

s
 L

R
U

Jigsaw

IdealSPD

R-NUCA

Vantage

0.0

0.2

0.4

0.6

0.8

1.0

1.2

E
n
e
rg

y
 v

s
 L

R
U

L V R I J L V R I J

All Top MPKI Quintile

Static

Core

Net

LLC

DRAM

Figure 8. System energy across LLC organizations on 16-core, in-
order chip: per-mix results, and average energy breakdown across
mixes. Results are normalized to LRU’s energy (lower is better).

organization without a globally shared directory). Jigsaw maps

shares to their closest banks, achieving similar improvements.

IdealSPD behaves like R-NUCA on low memory intensity

mixes (e.g., fffn0) where the shared region is lightly used,

but with increasing memory intensity (e.g. snnn3) its directory

overheads (network and LLC) make it perform much like

LRU. The latter holds for all remaining mixes.

Second, capacity-critical mixes (e.g., stnn0) contain appli-

cations that do not fit within a single bank, but share the cache

effectively without partitioning. Here, Vantage and IdealSDP

show no advantage over LRU, but R-NUCA in particular

performs poorly, yielding higher MPKI than the shared LRU

baseline. Jigsaw gets the benefit of low latency, but without

sacrificing the MPKI advantages of higher capacity.

Third, in partitioning-friendly mixes (e.g., fftn2 and

ttnn2) each application gets different utility from the cache,

but no single application dominates LLC capacity. Partitioning

reduces MPKI slightly, whereas R-NUCA gets MPKI similar

to the shared LRU baseline, but with lower network latency.

IdealSDP performs somewhere between Vantage and LRU

because it does not partition within the shared region. Jigsaw

captures the benefits of both partitioning and low latency,

achieving the best performance of any scheme.

Finally, partitioning-critical mixes (e.g., tttt3 and fttt2)

consist of cache-fitting apps that perform poorly below a

certain capacity threshold, after which their MPKI drops

sharply. In these mixes, a shared cache is ineffective at dividing

capacity, and partitioning achieves large gains. R-NUCA limits

apps to their local bank and performs poorly. Jigsaw is able to

combine the advantages of partitioning with the low latency

of smart placement, achieving the best performance.

In some mixes (e.g., fttt2), IdealSPD achieves a lower

MPKI than Vantage and Jigsaw, but this is an artifact of having

twice the capacity. Realistic shared-private D-NUCA schemes

will always get less benefit from partitioning than Vantage or

Jigsaw, as they partition between shared and private regions,

but do not partition the shared region among applications.

Energy: Fig. 8 shows the system energy (full chip and main

memory) consumed by each cache organization for each of

the 140 mixes, normalized to LRU’s energy. Lower numbers

are better. Jigsaw achieves the largest energy reductions, up

to 72%, 10.6% on average, and 22.5% for the mixes with the

highest 20% of memory intensities. Fig. 8 also shows the per-

9



0 20 40 60 80 100 120 140

Workload

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4
T

h
ro

u
g
h
p
u
t 
v
s
 L

R
U

Jigsaw

IdealSPD

R-NUCA

Vantage

0 20 40 60 80 100 120 140

Workload

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

W
. 
S

p
e
e
d
u
p
 v

s
 L

R
U

Jigsaw

IdealSPD

R-NUCA

Vantage

Figure 9. Throughput and weighted speedup of Jigsaw, Vantage, R-
NUCA, and IdealSPD (2× cache) over LRU, for 140 SPEC CPU2006
mixes on 16-core chip with OOO cores and 4× memory bandwidth.

component breakdown of energy consumption for the different

cache organizations, showing the reasons for Jigsaw’s savings:

its higher performance reduces static (leakage and refresh)

energy, and Jigsaw reduces both NoC and main memory

dynamic energy. These results do not model UMON or STB

energy overheads because they are negligible. Each UMON is

4 KB and is accessed infrequently (less than once every 512

accesses). STBs are less than 400 bytes, and each STB lookup

reads only 12 bits of state.

Performance with OOO cores: Fig. 9 shows throughputs

and weighted speedups for each organization when using

Westmere-like OOO cores. We also quadruple the memory

channels (51.2 GB/s) to maintain a balanced system given the

faster cores. Jigsaw still provides the best gmean through-

put/weighted speedup, achieving 9.9%/10.5% over the LRU

baseline. Vantage achieves 3.2%/2.7%, R-NUCA achieves

-1.4%/1.3%, and IdealSPD achieves 3.6%/2.2%. OOO cores

tolerate memory stalls better, so improvements are smaller

than with in-order cores. Additionally, OOO cores hide short

latencies (e.g., LLC) better than long latencies (e.g., main

memory), so reducing MPKI (Jigsaw/Vantage) becomes more

important than reducing network latency (R-NUCA). Finally,

R-NUCA underperforms LRU on 25% of the mixes, with up

to 42% lower throughput. These are memory-intensive mixes,

where R-NUCA’s higher MPKIs drive main memory close to

saturation, despite the much higher bandwidth. With infinite

memory bandwidth, R-NUCA achieves 4.5%/7.1% average

improvements with a worst-case throughput degradation of

15% vs LRU, while Jigsaw achieves 11.1%/11.8%.

B. Multi-threaded mixes on 64-core CMP

Fig. 10 shows throughput and weighted speedup results

of different organizations on 40 random mixes of four 16-

thread workloads in the 64-core CMP with in-order cores. We

include two variants of Jigsaw: one with a single per-process

share (Jigsaw (P)), and another with additional thread-private

shares as discussed in Sec. IV (Jigsaw). Jigsaw achieves

the highest improvements of all schemes. Overall, gmean

throughput/weighted speedup results are 9.1%/8.9% for Jig-

saw, 1.9%/2.6% for Vantage, 5.0%/4.7% for R-NUCA, and

4.5%/5.5% for IdealSPD.

Unlike the single-threaded mixes, most applications are

capacity-insensitive and have low memory intensity; only

0 5 10 15 20 25 30 35 40

Workload

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

T
h
ro

u
g
h
p
u
t 
v
s
 L

R
U

Jigsaw

Jigsaw (P)

IdealSPD

R-NUCA

Vantage

0 5 10 15 20 25 30 35 40

Workload

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

W
. 
S

p
e
e
d
u
p
 v

s
 L

R
U

Jigsaw

Jigsaw (P)

IdealSPD

R-NUCA

Vantage

Figure 10. Throughput and weighted speedup of Jigsaw (w/ and w/o
per-thread shares), Vantage, R-NUCA, and IdealSPD (2× cache) over
LRU, for 40 4×16-thread mixes on 64-core chip with in-order cores.

canneal is cache-friendly, and ocean is cache-fitting. This

is why we model a 32 MB LLC: a 64 MB LLC improves

throughput by only 3.5%. Longer network latencies emphasize

smart placement, further de-emphasizing MPKI reduction.

Consequently, Vantage yields small benefits except on the few

mixes that contain canneal or ocean. IdealSPD enjoys the

low latency of large local banks as well as a large shared

cache, but read-write sharing is slower due to the deeper

private hierarchy and global directory, ultimately yielding

modest improvements. This drawback is characteristic of all

private-based D-NUCA schemes. On the other hand, R-NUCA

achieves low latency and, unlike the single-threaded mixes,

does not suffer from limited capacity. This is both because

of lower memory intensity and because R-NUCA uses shared

cache capacity for data shared among multiple threads.

Jigsaw (P) does better than Vantage, but worse than Jigsaw

due to the lack of per-thread shares. Jigsaw achieves lower

network latency than R-NUCA and outperforms it further

when partitioning is beneficial. Note that R-NUCA and Jig-

saw reduce network latency by different means. R-NUCA

places private data in the local bank, replicates instructions,

and spreads shared data across all banks. Jigsaw just does

placement: per-thread shares in the local bank, and per-

process shares in the local quadrant of the chip. This reduces

latency more than placing data throughout the chip and avoids

capacity loss from replication. Because there is little capacity

contention, we tried a modified R-NUCA that replicates read-

only data (i.e., all pages follow a Private→Shared Read-

only→Shared Read-write classification). This modified R-

NUCA achieves 8.6%/8.5% improvements over LRU, bridging

much of the gap with Jigsaw. While Jigsaw could implement

fixed-degree replication a là R-NUCA, we defer implementing

an adaptive replication scheme (e.g., using cost-benefit analy-

sis and integrating it in the runtime) to future work.

Though not shown, results with OOO cores follow the

same trends, with gmean throughput/weighted speedup im-

provements of 7.6%/5.7% for Jigsaw, 3.0%/3.7% for Vantage,

4.6%/2.1% for R-NUCA, and 4.4%/5.4% for IdealSPD.

C. Summary of results

Fig. 11 summarizes LLC performance for both 16- and 64-

core mixes. For each cache organization, each mix is repre-

sented by a single point. Each point’s x-coordinate is its LLC

10



0.0 0.5 1.0 1.5 2.0 2.5 3.0

LLC+DRAM Latency

0.0

0.2

0.4

0.6

0.8

1.0

1.2
N

e
t 
L
a
te

n
c
y

(a) Single-threaded mixes, 16 cores

0.0 0.2 0.4 0.6 0.8 1.0 1.2

LLC+DRAM Latency

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
e
t 
L
a
te

n
c
y

(b) Multi-threaded mixes, 64 cores

Jigsaw IdealSPD R-NUCA Vantage

Figure 11. Intrinsic MPKI and network latency reduction benefits
of Jigsaw, Vantage, R-NUCA, and IdealSPD (with 2× cache) over
LRU. Each point shows the average LLC + memory latency (x) and
network latency (y) of one mix normalized to LRU’s (lower is better).

Buckets 32 64 128 256 512 1024 2048 4096 8192

Lookahead 0.87 2.8 9.2 29 88 280 860 2,800 10,000

Peekahead 0.18 0.30 0.54 0.99 1.9 3.6 7.0 13 26

Speedup 4.8× 9.2× 17× 29× 48× 77× 125× 210× 380×
ALLHULLS % 87 90 92 95 96 98 99 99 99.5

Table 4. Performance of Peekahead and UCP’s Lookahead [34].
Results given in M cycles per invocation.

and main memory latency (excluding network) normalized to

LRU, and the y-coordinate is its network latency normalized to

LRU; lower is better in both dimensions. This representation

tries to decouple each organization’s intrinsic benefits in MPKI

and latency reduction from the specific timing of the system.

Overall, we draw the following conclusions:

• Vantage is able to significantly reduce MPKI, but has no

impact on network latency.

• R-NUCA achieves low network latency, but at the cost of

increased MPKI for a significant portion of mixes. Often

the losses in MPKI exceed the savings in network latency,

so much so that R-NUCA has the worst-case degradation of

all schemes.

• IdealSPD is able to act as either a private-cache or shared-

cache organization, but cannot realize their benefits simulta-

neously. IdealSPD can match the main memory performance

of Vantage on many mixes (albeit with twice the capac-

ity) and R-NUCA’s low latency on some mixes. However,

IdealSPD struggles to do both due to its shared/private

dichotomy, shown by its

L

-shape outline in Fig. 11a. Mixes

can achieve low latency only by avoiding the shared region.

With high memory intensity, global directory overheads

become significant, and it behaves as a shared cache.

• Jigsaw combines the latency reduction of D-NUCA schemes

with the miss reduction of partitioning, achieving the best

performance on a wide range of workloads.

D. Jigsaw analysis

Lookahead vs Peekahead: Table 4 shows the average core

cycles required to perform a reconfiguration using both the

UCP Lookahead algorithm and Peekahead as presented in

Sec. IV. To run these experiments, we use the miss curves from

the 140 16-core mixes at different resolutions. Conventional

Lookahead scales near quadratically (3.2× per 2× buckets),

1.00

1.05

1.10

1.15

1.20

T
h
ro

u
g
h
p
u
t 
v
s
 L

R
U

5 10 25 50 100 250 500

M cycles / interval

Jigsaw Vantage

(a) Reconfiguration interval

1.00

1.05

1.10

1.15

1.20

T
h
ro

u
g
h
p
u
t 
v
s
 L

R
U

32 64 128 256 512  512 2K

Associativity

4KB 32KB 64KB

(b) Jigsaw UMON configuration

Figure 12. Mean throughput improvements on the 140 16-core mixes
for a sweep over two architectural parameters. Weighted speedups
follow the same trends.

while Peekahead scales sublinearly (1.9× per 2× buckets).

ALLHULLS dominates Peekahead’s run-time, confirming lin-

ear asymptotic growth. All previous results use 128 buck-

ets (128-way UMONs), where Peekahead is 17× faster than

Lookahead. Peekahead’s advantage increases quickly with

resolution. Overall, Jigsaw spends less than 0.1% of system

cycles in reconfigurations at both 16 and 64 cores, imposing

negligible overheads.

Sensitivity to reconfiguration interval: All results presented so

far use a reconfiguration interval of 50 M cycles. Smaller inter-

vals could potentially improve performance by adapting more

quickly to phase changes in applications, but also incur higher

reconfiguration overheads. Fig. 12a shows the gmean through-

puts (weighted speedup is similar) achieved by both Jigsaw

and Vantage on the 140 16-core mixes, for reconfiguration

intervals of 5, 10, 25, 50, 100, 250, and 500 M cycles. Vantage

is fairly insensitive to interval length, which is expected since

its reconfigurations are fast and incur no invalidations, but also

shows that for our target workloads there is little to gain from

more frequent repartitionings. In contrast, Jigsaw benefits from

longer intervals, as reconfigurations involve bulk invalidations.

Performance quickly degrades below 10-25 M cycle intervals,

and at 5 M cycles, the overheads from invalidations negate

Jigsaw’s benefits over Vantage. Both Jigsaw and Vantage

degrade substantially with long intervals (250 and 500), but

this may be an artifact of having few reconfigurations per run.

To elucidate this further, we also evaluated backing Jigsaw

with a directory. We optimistically model an ideal, 0-cycle,

fully-provisioned directory that causes no directory-induced

invalidations. The directory enables migrations between lines

in different banks after a reconfiguration, and avoids all bulk

and page remapping invalidations. At 50 M cycles, directory-

backed Jigsaw improves gmean throughput by 1.7%. We con-

clude that a directory-backed Jigsaw would not be beneficial.

Even efficient implementations of this directory would require

multiple megabytes and add significant latency, energy, and

complexity. However, our workloads are fairly stable, we pin

threads to cores, and do not overcommit the system. Other use

cases (e.g., overcommitted systems) may change the tradeoffs.

Sensitivity to UMON configuration: Fig. 12b shows Jigsaw’s

performance over the 140 16-core mixes with different UMON

11



configurations. These results show the impact of both asso-

ciativity, which determines miss curve resolution, and UMON

size, which determines sampling error. The blue bars show a

sweep over associativity at 32, 64, 128, 256, and 512 ways

for a 4 KB UMON (results use 128-way 4 KB UMONs). The

red bar shows the impact of increasing UMON size 8× to

32 KB holding associativity at 512 ways; and the green bar

is an idealized configuration with 2048-way, 64 KB UMONs

shared among all bank partitions, eliminating sampling issues

for multi-bank shares (Sec. III-C).

These results demonstrate a consistent performance im-

provement, in both throughput and weighted speedup, from

32 to 512 ways. Increasing associativity from 32 to 64 ways

improves throughput/weighted speedup by 1.1%/1.4% over

LRU. This benefit comes from being able to partition the

cache at finer granularity. With low resolution, the runtime

overallocates space to applications with sharp knees in their

miss curves. This is because UMON data is missing around the

knee in the curve, so the runtime cannot tell precisely where

the knee occurs. Increasing UMON associativity improves

resolution, and frees this space for other shares that make

better use of it. Increasing to 128 ways improves performance

by 0.8%/1.2%. Subsequent doublings of associativity improve

performance by only 0.1%/0.4% over LRU on average. This

indicates that while performance increases are steady, there

are significantly diminishing returns. In contrast, increasing

UMON size by 8× (red bar) improves throughput by just 0.1%.

Clearly, sampling error is not a significant problem in Jigsaw.

Finally, the ideal configuration (green bar) shows that while

more performance is possible with ideal UMONs, the 128-way,

4 KB configuration comes within 0.8%/1.5%.

VII. CONCLUSIONS

We have presented Jigsaw, a cache organization that ad-

dresses the scalability and interference issues of distributed on-

chip caches. Jigsaw lets software define shares, virtual caches

of guaranteed size and placement, and provides efficient

mechanisms to monitor, reconfigure, and map data to shares.

We have developed an efficient, novel software runtime that

uses these mechanisms to achieve both the latency-reduction

benefits of NUCA techniques and the hit-maximization ben-

efits of controlled capacity management. As a result, Jigsaw

significantly outperforms state-of-the-art NUCA and partition-

ing techniques over a wide range of workloads. Jigsaw can

potentially be used for a variety of other purposes, including

maximizing fairness, implementing process priorities or tiered

quality of service, or exposing shares to user-level software to

enable application-specific optimizations.

ACKNOWLEDGMENTS

We sincerely thank Deirdre Connolly, Christina Delimitrou,

Srini Devadas, Frans Kaashoek, Harshad Kasture, and the

anonymous reviewers for their useful feedback on earlier

versions of this manuscript. This work was supported in

part by DARPA PERFECT contract HR0011-13-2-0005 and

Quanta Computer.

REFERENCES

[1] A. Alameldeen and D. Wood, “IPC considered harmful for multiprocessor
workloads,” IEEE Micro, vol. 26, no. 4, 2006.

[2] B. Beckmann, M. Marty, and D. Wood, “ASR: Adaptive selective replication
for CMP caches,” in Proc. MICRO-39, 2006.

[3] B. Beckmann and D. Wood, “Managing wire delay in large chip-
multiprocessor caches,” in Proc. MICRO-37, 2004.

[4] N. Beckmann and D. Sanchez, “Jigsaw: Scalable Software-Defined Caches,”
MIT CSAIL, Tech. Rep., 2013.

[5] C. Bienia et al., “The PARSEC benchmark suite: Characterization and archi-
tectural implications,” in Proc. PACT-17, 2008.

[6] S. Bird and B. Smith, “PACORA: Performance aware convex optimization for
resource allocation,” in Proc. HotPar-3, 2011.

[7] J. L. Carter and M. N. Wegman, “Universal classes of hash functions (extended
abstract),” in Proc. STOC-9, 1977.

[8] J. Chang and G. Sohi, “Cooperative caching for chip multiprocessors,” in Proc.
ISCA-33, 2006.

[9] D. Chiou et al., “Application-specific memory management for embedded
systems using software-controlled caches,” in Proc. DAC-37, 2000.

[10] Z. Chishti, M. Powell, and T. Vijaykumar, “Optimizing replication, communi-
cation, and capacity allocation in cmps,” in ISCA-32, 2005.

[11] S. Cho and L. Jin, “Managing distributed, shared L2 caches through OS-level
page allocation,” in Proc. MICRO-39, 2006.

[12] H. Dybdahl and P. Stenstrom, “An adaptive shared/private nuca cache parti-
tioning scheme for chip multiprocessors,” in Proc. HPCA-13, 2007.

[13] G. Gerosa et al., “A sub-1w to 2w low-power processor for mobile internet
devices and ultra-mobile PCs in 45nm hi-k metal gate CMOS,” in ISSCC, 2008.

[14] N. Hardavellas et al., “Reactive NUCA: near-optimal block placement and
replication in distributed caches,” in Proc. ISCA-36, 2009.

[15] E. Herrero, J. González, and R. Canal, “Distributed Cooperative Caching,” in
Proc. PACT-17, 2008.

[16] E. Herrero, J. González, and R. Canal, “Elastic cooperative caching: an au-
tonomous dynamically adaptive memory hierarchy for chip multiprocessors,”
in Proc. ISCA-37, 2010.

[17] A. Hilton, N. Eswaran, and A. Roth, “FIESTA: A sample-balanced multi-
program workload methodology,” in Proc. MoBS, 2009.

[18] J. Jaehyuk Huh et al., “A NUCA substrate for flexible CMP cache sharing,”
IEEE Trans. Par. Dist. Sys., vol. 18, no. 8, 2007.

[19] A. Jaleel, M. Mattina, and B. Jacob, “Last Level Cache (LLC) Performance of
Data Mining Workloads On A CMP,” in HPCA-12, 2006.

[20] C. Kim, D. Burger, and S. Keckler, “An adaptive, non-uniform cache structure
for wire-delay dominated on-chip caches,” in ASPLOS-10, 2002.

[21] N. Kurd et al., “Westmere: A family of 32nm IA processors,” in ISSCC, 2010.
[22] H. Lee, S. Cho, and B. R. Childers, “CloudCache: Expanding and shrinking

private caches,” in Proc. HPCA-17, 2011.
[23] B. Li et al., “CoQoS: Coordinating QoS-aware shared resources in NoC-based

SoCs,” J. Par. Dist. Comp., vol. 71, no. 5, 2011.
[24] S. Li et al., “McPAT: an integrated power, area, and timing modeling frame-

work for multicore and manycore architectures,” in MICRO-42, 2009.
[25] J. Lin et al., “Gaining insights into multicore cache partitioning: Bridging the

gap between simulation and real systems,” in HPCA-14, 2008.
[26] P. Lotfi-Kamran, B. Grot, and B. Falsafi, “NOC-Out: Microarchitecting a

Scale-Out Processor,” in Proc. MICRO-45, 2012.
[27] C.-K. Luk et al., “Pin: building customized program analysis tools with

dynamic instrumentation,” in Proc. PLDI, 2005.
[28] R. Manikantan, K. Rajan, and R. Govindarajan, “Probabilistic shared cache

management (PriSM),” in Proc. ISCA-39, 2012.
[29] M. Marty and M. Hill, “Virtual hierarchies to support server consolidation,” in

Proc. ISCA-34, 2007.
[30] A. A. Melkman, “On-line construction of the convex hull of a simple polyline,”

Information Processing Letters, vol. 25, no. 1, 1987.
[31] J. Merino, V. Puente, and J. Gregorio, “ESP-NUCA: A low-cost adaptive non-

uniform cache architecture,” in Proc. HPCA-16, 2010.
[32] Micron, “1.35V DDR3L power calculator (4Gb x16 chips),” 2013.
[33] M. Qureshi, “Adaptive Spill-Receive for Robust High-Performance Caching in

CMPs,” in Proc. HPCA-10, 2009.
[34] M. Qureshi and Y. Patt, “Utility-based cache partitioning: A low-overhead,

high-performance, runtime mechanism to partition shared caches,” in Proc.
MICRO-39, 2006.

[35] P. Ranganathan, S. Adve, and N. Jouppi, “Reconfigurable caches and their
application to media processing,” in Proc. ISCA-27, 2000.

[36] D. Sanchez and C. Kozyrakis, “The ZCache: Decoupling Ways and Associa-
tivity,” in Proc. MICRO-43, 2010.

[37] D. Sanchez and C. Kozyrakis, “Vantage: Scalable and Efficient Fine-Grain
Cache Partitioning,” in Proc. ISCA-38, 2011.

[38] D. Sanchez and C. Kozyrakis, “ZSim: Fast and Accurate Microarchitectural
Simulation of Thousand-Core Systems,” in Proc. ISCA-40, 2013.

[39] A. Seznec, “A case for two-way skewed-associative caches,” in ISCA-20, 1993.
[40] A. Snavely and D. M. Tullsen, “Symbiotic jobscheduling for a simultaneous

multithreading processor,” in Proc. ASPLOS-8, 2000.
[41] S. Srikantaiah, M. Kandemir, and Q. Wang, “SHARP control: Controlled

shared cache management in chip multiprocessors,” in MICRO-42, 2009.
[42] D. Tam et al., “Managing shared l2 caches on multicore systems in software,”

in WIOSCA, 2007.
[43] K. Varadarajan et al., “Molecular caches: A caching structure for dynamic

creation of app-specific heterogeneous cache regions,” in MICRO-39, 2006.
[44] C. Wu and M. Martonosi, “A Comparison of Capacity Management Schemes

for Shared CMP Caches,” in WDDD-7, 2008.
[45] Y. Xie and G. H. Loh, “PIPP: promotion/insertion pseudo-partitioning of multi-

core shared caches,” in Proc. ISCA-36, 2009.
[46] M. Zhang and K. Asanovic, “Victim replication: Maximizing capacity while

hiding wire delay in tiled chip multiprocessors,” in ISCA-32, 2005.

12


	Introduction
	Background and Related Work
	Cache Partitioning
	Non-Uniform Cache Access (NUCA) Architectures

	Jigsaw Hardware
	Shares
	Dynamic Adaptation
	Monitoring

	Jigsaw Software
	Shares and Page Mapping
	Share Sizing: Peekahead
	NUCA-Aware Share Placement

	Experimental Methodology
	Evaluation
	Single-threaded mixes on 16-core CMP
	Multi-threaded mixes on 64-core CMP
	Summary of results
	Jigsaw analysis

	Conclusions

